
Confidence Intervals
and Sets

Throughout we adopt the normal-error model, and wish to say some
things about the construction of confidence intervals [and sets] for the
parameters β0� � � � � β�−1.

1. Confidence intervals for one parameter

Suppose we want a confidence intervals for the �th parameter β�, where
1 ≤ � ≤ � is fixed. Recall that
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is a (1−α)×100% confidence interval for β�. This yields a complete anal-
ysis of confidence intervals for a univariate parameter; these confidence
intervals can also be used for testing, of course.

2. Confidence ellipsoids

The situation is more interesting if we wish to say something about more
than one parameter at the same time. For example, suppose we want
to know about (β0 � β1) in the overly-simplified case that σ = 1. The
general philosophy of confidence intervals [for univariate parameters]
suggests that we look for a random set Ω such that
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Here is a possible method: Let
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What does Ω look like? In order to answer this, let us apply the spectral
theorem:
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Consider
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This is the interior of an ellipsoid, and Ω = P� is the image of the
ellipsoid under the “linear orthogonal map” P. Such sets are called
“generalized ellipsoids,” and we have found a (1 − α) × 100% confidence
[generalized] ellipsoid for (β1 � β2)�.

The preceding can be generalized to any number of the parameters
β�1 � � � � � β��

, but is hard to work with, as the geometry of Ω can be com-
plicated [particularly if � � 2]. Therefore, instead we might wish to look
for approximate confidence sets that are easier to work with. Before we
move on though, let me mention that if you want to know whether or
not H0 : β1 = β1�0� β2 = β2�0, then we can use these confidence bounds
fairly easily, since it is not hard to check whether or not (β1�0 � β2�0)� is in
Ω: You simply compute the scalar quantity
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and check to see if it is ≤ χ
2
2(α/2)! But if you really need to imagine

or see the confidence set[s], then this exact method can be unwieldy
[particularly in higher dimensions than 2].

3. Bonferonni bounds

Our approximate confidence intervals are based on a fact from general
probability theory.

Proposition 1 (Bonferonni’s inequality). Let E1� � � � � E� be � events. Then,
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Here is how we can use Bonferonni’s inequality. Define
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We have seen already that

P{β� ∈ C�} = 1 −
α

2 �

[This is why we used α/4 in the definition of C� .] Therefore, Bonferonni’s
inequality implies that

P{β1 ∈ C1 � β2 ∈ C2} ≥ 1 −

�
α
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In other words, (C1 � C2) forms a “conservative” (1−α)×100% simultane-
ous confidence interval for (β1 � β2). This method becomes very inaccu-
rate quickly as the number of parameters of interest grows. For instance,
if you want Bonferonni confidence sets for (β1 � β2 � β3), then you need to
use individual confidence intervals with confidence level 1 − (α/3) each.
And for � parameters you need individual confidence level 1 − (α/�),
which can yield bad performance when � is large.

This method is easy to implement, but usually very conservative.1

4. Scheffé’s simultaneous conservative confidence bounds

There is a lovely method, due to Scheffé, that works in a similar fashion
to the Bonferonni method; but has also the advantage of being often
[far] less conservative! [We are now talking strictly about our linear
model.] The starting point of this discussion is a general fact from matrix
analysis.
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and it also tells us that the inequality is achieved for some � ∈ R�
�

1On the other hand, the Bonferonni method can be applied to a wide range of statistical problems
that involve simultaneous confidence intervals [and is not limited to the theory of linear models.
So it is well worth your while to understand this important method.
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Proof of Rayleigh–Ritz inequality. Recall the Cauchy–Schwarz inequal-
ity from your linear algebra course: (��
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This does the job. �
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Equivalently,
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If we restrict attention to a subcollection of �’s then the probability is
even more. In particular, consider only �’s that are the standard basis
vectors of R� , in order to deduce from the preceding that
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In other words, we have demonstrated the following.

Theorem 3 (Scheffé). The following are conservative (1 − α) × 100%
simultaneous confidence bounds for (β1 � � � � � β�)�:
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When the sample size � is very large, the preceding yields an as-
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5. Confidence bounds for the regression surface

Given a vector � ∈ R� of predictor variables, our linear model yields
E� = �

�
β. In other words, we can view our efforts as one about trying

to understand the unknown function
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That is, if we are interested in a confidence interval for � (�) for a fixed
�, then we have
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On the other hand, we can also apply Scheffé’s method and obtain the
following simultaneous (1 − α) × 100% confidence set:
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Example 4 (Simple linear regression). Consider the basic regression
model

Y� = α + β�� + ε� (1 ≤ � ≤ �)�
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On the other hand, if we want a confidence interval for α + β� for a
fixed �, then we can do better using our �-test:
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You should check the details of this computation. �
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6. Prediction intervals

The difference between confidence and prediction intervals is this: For
a confidence interval we try to find an interval around the parameter
�

�
β. For a prediction interval we do so for the random variable �0 :=
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0β + ε0, where �0 is known and fixed and ε0 is the “noise,” which is
hitherto unobserved (i.e., independent of the vector Y of observations).
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but note that both �0 and the prediction interval are now random.


