Some linear algebra

Recall the convention that, for us, all vectors are column vectors.

1. Symmetric matrices

Let A be a real $n \times n$ matrix. Recall that a complex number λ is an eigenvalue of A if there exists a real and nonzero vector x—called an eigenvector for λ—such that $Ax = \lambda x$. Whenever x is an eigenvector for λ, so is ax for every real number a.

The characteristic polynomial χ_A of matrix A is the function

$$\chi_A(\lambda) := \det(\lambda I - A),$$

defined for all complex numbers λ, where I denotes the $n \times n$ identity matrix. It is not hard to see that a complex number λ is an eigenvalue of A if and only if $\chi_A(\lambda) = 0$. We see by direct computation that χ_A is an nth-order polynomial. Therefore, A has precisely n eigenvalues, thanks to the fundamental theorem of algebra. We can write them as $\lambda_1, \ldots, \lambda_n$, or sometimes more precisely as $\lambda_1(A), \ldots, \lambda_n(A)$.

1. The spectral theorem. The following important theorem is the starting point of our discussion. It might help to recall that vectors $x_1, \ldots, x_k \in \mathbb{R}^n$ are orthonormal if $x_i'x_j = 0$ when $i \neq j$ and $x_i'x_i = \|x_i\|^2 = 1$.

Theorem 1. If A is a real and symmetric $n \times n$ matrix, then $\lambda_1, \ldots, \lambda_n$ are real numbers. Moreover, there exist n orthonormal eigenvectors v_1, \ldots, v_n that correspond respectively to $\lambda_1, \ldots, \lambda_n$.

I will not prove this result, as it requires developing a good deal of elementary linear algebra that we will not need. Instead, let me state and prove a result that is central for us.

Theorem 2 (The spectral theorem). Let A denote a symmetric $n \times n$ matrix with real eigenvalues $\lambda_1, \ldots, \lambda_n$ and corresponding orthonormal eigenvectors v_1, \ldots, v_n. Define $D := \text{diag}(\lambda_1, \ldots, \lambda_n)$ to be the diagonal matrix of the λ_i’s and P to be the matrix whose columns are v_1 through v_n respectively; that is,

$$D := \begin{pmatrix} \lambda_1 & 0 & 0 & \cdots & 0 \\ 0 & \lambda_2 & 0 & \cdots & 0 \\ 0 & 0 & \lambda_3 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & \lambda_n \end{pmatrix}, \quad P := (v_1, \ldots, v_n).$$

Then P is orthogonal [$P' = P^{-1}$] and $A = PDP^{-1} = PDP'$.

Proof. P is orthogonal because the orthonormality of the v_i’s implies that

$$P'P = \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix} \begin{pmatrix} v_1 & \cdots & v_n \end{pmatrix} = I.$$

Furthermore, because $Av_j = \lambda_j v_j$, it follows that $AP = PD$, which is another way to say that $A = PDP^{-1}$.

Recall that the *trace* of an $n \times n$ matrix A is the sum $A_{1,1} + \cdots + A_{n,n}$ of its diagonal entries.

Corollary 3. If A is a real and symmetric $n \times n$ matrix with real eigenvalues $\lambda_1, \ldots, \lambda_n$, then

$$\text{tr}(A) = \lambda_1 + \cdots + \lambda_n \quad \text{and} \quad \text{det}(A) = \lambda_1 \times \cdots \times \lambda_n.$$

Proof. Write A, in spectral form, as PDP^{-1}. Since the determinant of P^{-1} is the reciprocal of that of A, it follows that $\text{det}(A) = \text{det}(D)$, which is clearly $\lambda_1 \times \cdots \times \lambda_n$. In order to compute the trace of A we compute directly also:

$$\text{tr}(A) = \sum_{i=1}^{n} \sum_{j=1}^{n} P_{i,j} \left(DP^{-1}\right)_{i,j} = \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{k=1}^{n} P_{i,j}D_{i,k}P_{j,k}^{-1} = \sum_{i=1}^{n} \sum_{k=1}^{n} \left(P^{-1}P\right)_{i,k}D_{i,k} = \sum_{i=1}^{n} D_{i,i} = \text{tr}(D),$$
2. Positive-semidefinite matrices

which is \(\lambda_1 + \cdots + \lambda_n. \)

2. The square-root matrix. Let \(A \) continue to denote a real and symmetric \(n \times n \) matrix.

Proposition 4. There exists a complex and symmetric \(n \times n \) matrix \(B \)—called the square root of \(A \) and written as \(A^{1/2} \) or even sometimes as \(\sqrt{A} \)—such that \(A = B^2 := BB \).

The proof of Proposition 4 is more important than its statement. So let us prove this result.

Proof. Apply the spectral theorem and write \(A = PDP^{-1} \). Since \(D \) is a diagonal matrix, its square root can be defined unambiguously as the following complex-valued \(n \times n \) diagonal matrix:

\[
D^{1/2} := \begin{pmatrix}
\lambda_1^{1/2} & 0 & 0 & \cdots & 0 \\
0 & \lambda_2^{1/2} & 0 & \cdots & 0 \\
0 & 0 & \lambda_3^{1/2} & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & \lambda_n^{1/2}
\end{pmatrix}
\]

Define \(B := PD^{1/2}P^{-1} \), and note that

\[
B^2 = PD^{1/2}P^{-1}PD^{1/2}P^{-1} = PDP^{-1} = A,
\]
since \(P^{-1}P = I \) and \((D^{1/2})^2 = D \). \(\square \)

2. Positive-semidefinite matrices

Recall that an \(n \times n \) matrix \(A \) is **positive semidefinite** if it is symmetric and

\[
x'Ax \geq 0 \quad \text{for all } x \in \mathbb{R}^n.
\]

Recall that \(A \) is **positive definite** if it is symmetric and

\[
x'Ax > 0 \quad \text{for all nonzero } x \in \mathbb{R}^n.
\]

Theorem 5. A symmetric matrix \(A \) is positive semidefinite if and only if all of its eigenvalues are \(\geq 0 \). \(A \) is positive definite if and only if all of its eigenvalues are \(> 0 \). In the latter case, \(A \) is also nonsingular.

The following is a ready consequence.

Corollary 6. All of the eigenvalues of a variance-covariance matrix are always \(\geq 0 \).

Now let us establish the theorem.
Proof of Theorem 5. Suppose A is positive semidefinite, and let λ denote one of its eigenvalues, together with corresponding eigenvector x. Since $0 \leq x^tAx = \lambda \|x\|^2$ and $\|x\| > 0$, it follows that $\lambda \geq 0$. This proves that all of the eigenvalues of A are nonnegative. If A is positive definite, then the same argument shows that all of its eigenvalues are > 0. Because $\det(A)$ is the product of all n eigenvalues of A (Corollary 3), it follows that $\det(A) > 0$, whence A is nonsingular.

This proves slightly more than half of the proposition. Now let us suppose that all eigenvalues of A are ≥ 0. We write A in spectral form $A = PD\text{P}^t$, and observe that D is a diagonal matrix of nonnegative numbers. By virtue of its construction, $x^tAx = \left(D_{1/2}^tPx\right)^t\left(D_{1/2}^tPx\right) = \left(D_{1/2}^tPx\right)^2$, which is ≥ 0. Therefore, A is positive semidefinite.

If all of the eigenvalues of A are > 0, then (1) tells us that

$$x^tAx = \left(D_{1/2}^tPx\right)^2 = \sum_{j=1}^n \left(D_{1/2}^tPx\right)_j^2 = \sum_{j=1}^n \lambda_j (\left[Px\right]_j)^2,$$

which is ≥ 0. Therefore, A is positive semidefinite.

For all $x \in \mathbb{R}^n$,

$$x^tAx = \left(D_{1/2}^tPx\right)^2 = \sum_{j=1}^n \left(D_{1/2}^tPx\right)_j^2 = \sum_{j=1}^n \lambda_j (\left[Px\right]_j)^2,$$

where $\lambda_j > 0$ for all j. Therefore,

$$x^tAx \geq \min_{1 \leq j \leq n} \lambda_j \cdot \sum_{j=1}^n (\left[Px\right]_j)^2 = \min_{1 \leq j \leq n} \lambda_j \cdot x^tP^tPx = \min_{1 \leq j \leq n} \lambda_j \cdot \|x\|^2.$$

Since $\min_{1 \leq j \leq n} \lambda_j > 0$, it follows that $x^tAx > 0$ for all nonzero x. This completes the proof.

Let us pause and point out a consequence of the proof of this last result.

Corollary 7. If A is positive semidefinite, then its extremal eigenvalues satisfy

$$\min_{1 \leq j \leq n} \lambda_j = \min_{\|x\| > 0} \frac{x^tAx}{\|x\|^2}, \quad \max_{1 \leq j \leq n} \lambda_j = \max_{\|x\| > 0} \frac{x^tAx}{\|x\|^2}.$$

Proof. We saw, during the course of the previous proof, that

$$\min_{1 \leq j \leq n} \lambda_j \cdot \|x\|^2 \leq x^tAx \quad \text{for all} \quad x \in \mathbb{R}^n.$$

Optimize over all x to see that

$$\min_{1 \leq j \leq n} \lambda_j \leq \min_{\|x\| > 0} \frac{x^tAx}{\|x\|^2}.$$
3. The rank of a matrix

But \(\min_{1 \leq j \leq n} \lambda_j \) is an eigenvalue for \(A \); let \(z \) denote a corresponding eigenvector in order to see that
\[
\min_{1 \leq j \leq n} \lambda_j \leq \min_{\|x\| > 0} \frac{x'Ax}{\|x\|^2} \leq \frac{z'Az}{\|z\|^2} = \min_{1 \leq j \leq n} \lambda_j.
\]
So both inequalities are in fact equalities, and hence follows the formula for the minimum eigenvalue. The one for the maximum eigenvalue is proved similarly. \(\square \)

Finally, a word about the square root of positive semidefinite matrices:

Proposition 8. If \(A \) is positive semidefinite, then so is \(A^{1/2} \). If \(A \) is positive definite, then so is \(A^{1/2} \).

Proof. We write, in spectral form, \(A = PD P' \) and observe [by squaring it] that \(A^{1/2} = PD^{1/2} P' \). Note that \(D^{1/2} \) is a real diagonal matrix since the eigenvalues of \(A \) are \(\geq 0 \). Therefore, we may apply (1) to \(A^{1/2} \) [in place of \(A \)] to see that \(x'A^{1/2}x = \|D^{1/2}Px\|^2 \geq 0 \) where \(D^{1/2} \) denotes the [real] square root of \(D^{1/2} \). This proves that if \(A \) is positive semidefinite, then so is \(A^{1/2} \). Now suppose there exists a positive definite \(A \) whose square root is not positive definite. It would follow that there necessarily exists a nonzero \(x \in \mathbb{R}^n \) such that \(x'A^{1/2}x = \|D^{1/2}Px\|^2 = 0 \). Since \(D^{1/2}Px = 0 \),
\[
D^{1/2}Px = D^{1/2}D^{1/2}Px = 0 \quad \Rightarrow \quad x'Ax = \|D^{1/2}Px\|^2 = 0.
\]
And this contradicts the assumption that \(A \) is positive definite. \(\square \)

3. The rank of a matrix

Recall that vectors \(v_1, \ldots, v_k \) are **linearly independent** if
\[
c_1v_1 + \cdots + c_kv_k = 0 \quad \Rightarrow \quad c_1 = \cdots = c_k = 0.
\]
For instance, \(v_1 := (1, 0)' \) and \(v_2 := (0, 1)' \) are linearly independent 2-vectors.

The **column rank** of a matrix \(A \) is the maximum number of linearly independent column vectors of \(A \). The **row rank** of a matrix \(A \) is the maximum number of linearly independent row vectors of \(A \). We can interpret these definitions geometrically as follows: First, suppose \(A \) is \(m \times n \) and define \(\mathcal{L}(A) \) denote the linear space of all vectors of the form \(c_1v_1 + \cdots + c_nv_n \), where \(v_1, \ldots, v_n \) are the column vectors of \(A \) and \(c_1, \ldots, c_n \) are real numbers. We call \(\mathcal{L}(A) \) the column space of \(A \).

We can define the row space \(\mathcal{R}(A) \), of \(A \) similarly, or simply define \(\mathcal{R}(A) := \mathcal{L}(A') \).
Lemma 9. For every $m \times n$ matrix A,

$$G(A) = \{ Ax : x \in \mathbb{R}^n \}, \quad R(A) := \{ x'A : x \in \mathbb{R}^m \}. $$

We can think of an $m \times n$ matrix A as a mapping from \mathbb{R}^n into \mathbb{R}^m; namely, we can think of matrix A also as the function $f_A(x) := x \mapsto Ax$. In this way we see that $G(A)$ is also the “range” of the function f_A.

Proof. Let us write the columns of A as a_1, a_2, \ldots, a_n. Note that $y \in G(A)$ if and only if there exist c_1, \ldots, c_n such that $y = c_1a_1 + \cdots + c_na_n = Ac$, where $c := (c_1, \ldots, c_n)'$. This shows that $G(A)$ is the collection of all vectors of the form Ax, for $x \in \mathbb{R}^n$. The second assertion [about $R(A)$] follows from the definition of $R(A)$ equalling $G(A')$ and the already-proven first assertion. \hfill\Box

It then follows, from the definition of dimension, that

$$\text{column rank of } A = \dim G(A), \quad \text{row rank of } A = \dim R(A).$$

Proposition 10. Given any matrix A, its row rank and column rank are the same. We write their common value as $\text{rank}(A)$.

Proof. Suppose A is $m \times n$ and its column rank is r. Let b_1, \ldots, b_r denote a basis for $G(A)$ and consider the matrix $m \times r$ matrix $B := (b_1, \ldots, b_r)$. Write A, columnwise, as $A := (a_1, \ldots, a_n)$. For every $1 \leq j \leq n$, there exists $c_{1,j}, \ldots, c_{r,j}$ such that $a_j = c_{1,j}b_1 + \cdots + c_{r,j}b_r$. Let $C := (c_{i,j})$ be the resulting $r \times n$ matrix, and note that $A = BC$. Because $A_{i,j} = \sum_{k=1}^r B_{i,k}C_{k,j}$, every row of A is a linear combination of the rows of C. In other words, $R(A) \subseteq R(C)$ and hence the row rank of A is $\leq \dim R(C) = r = \text{the column rank of } A$. Apply this fact to A' to see that also the row rank of A' is \leq the column rank of A'; equivalently that the column rank of A is \leq the row rank of A. \hfill\Box

Proposition 11. If A is $n \times m$ and B is $m \times k$, then

$$\text{rank}(AB) \leq \min(\text{rank}(A), \text{rank}(B)).$$

Proof. The proof uses an idea that we exploited already in the proof of Proposition 10: Since $(AB)_{i,l} = \sum_{v=1}^m A_{i,v}B_{v,l}$, the rows of AB are linear combinations of the rows of B; that is $R(AB) \subseteq R(B)$, whence $\text{rank}(AB) \leq \text{rank}(B)$. Also, $G(AB) \subseteq G(A)$, whence $\text{rank}(AB) \leq \text{rank}(A)$. These observations complete the proof. \hfill\Box
Proposition 12. If \(A \) and \(C \) are nonsingular, then
\[
\text{rank}(ABC) = \text{rank}(B),
\]
provided that the dimensions match up so that \(ABC \) makes sense.

Proof. Let \(D := ABC \); our goal is to show that \(\text{rank}(D) = \text{rank}(B) \).

Two applications of the previous proposition together yield \(\text{rank}(D) \leq \text{rank}(AB) \leq \text{rank}(B) \). And since \(B = A^{-1}DC^{-1} \), we have also \(\text{rank}(B) \leq \text{rank}(A^{-1}D) \leq \text{rank}(D) \). \(\square \)

Corollary 13. If \(A \) is an \(n \times n \) real and symmetric matrix, then \(\text{rank}(A) = \) the total number of nonzero eigenvalues of \(A \). In particular, \(A \) has full rank if and only if \(A \) is nonsingular. Finally, \(\mathcal{G}(A) \) is the linear space spanned by the eigenvectors of \(A \) that correspond to nonzero eigenvalues.

Proof. We write \(A \), in spectral form, as \(A = PDP^{-1} \), and apply the preceding proposition to see that \(\text{rank}(A) = \text{rank}(D) \), which is clearly the total number of nonzero eigenvalue of \(A \). Since \(A \) is nonsingular if and only if all of its eigenvalues are nonzero, \(A \) has full rank if and only if \(A \) is nonsingular.

Finally, suppose \(A \) has rank \(k \leq n \); this is the number of its nonzero eigenvalues \(\lambda_1, \ldots, \lambda_k \). Let \(v_1, \ldots, v_n \) denote orthonormal eigenvectors such that \(v_1, \ldots, v_k \) are eigenvectors that correspond to \(\lambda_1, \ldots, \lambda_k \) and \(v_{k+1}, \ldots, v_n \) are eigenvectors that correspond to eigenvalues \(0 \) [Gram–Schmidt]. And define \(\mathcal{E} \) to be the span of \(v_1, \ldots, v_k \); i.e.,
\[
\mathcal{E} := \{c_1v_1 + \cdots + c_kv_k : c_1, \ldots, c_k \in \mathbb{R}\}.
\]

Our final goal is to prove that \(\mathcal{E} = \mathcal{G}(A) \), which we know is equal to the linear space of all vectors of the form \(Ax \).

Clearly, \(c_1v_1 + \cdots + c_kv_k = Ax \), where \(x = \sum_{j=1}^{k} (c_j/\lambda_j)v_j \). Therefore, \(\mathcal{E} \subseteq \mathcal{G}(A) \). If \(k = n \), then this suffices because in that case \(v_1, \ldots, v_k \) is a basis for \(\mathbb{R}^n \), hence \(\mathcal{E} = \mathcal{G}(A) = \mathbb{R}^n \). If \(k < n \), then we can write every \(x \in \mathbb{R}^n \) as \(a_1v_1 + \cdots + a_nv_n \), so that \(Ax = \sum_{j=1}^{k} a_j\lambda_jv_j \in \mathcal{E} \). Thus, \(\mathcal{G}(A) \subseteq \mathcal{E} \) and we are done. \(\square \)

Let \(A \) be \(m \times n \) and define the null space [or "kernel"] of \(A \) as
\[
\mathcal{N}(A) := \{x \in \mathbb{R}^n : Ax = 0\}.
\]
Note that \(\mathcal{N}(A) \) is the linear span of the eigenvectors of \(A \) that correspond to eigenvalue \(0 \). The other eigenvectors can be chosen to be orthogonal to these, and hence the preceding proof contains the facts
that: (i) Nonzero elements of $N(A)$ are orthogonal to nonzero elements of $G(A)$; and (ii)
\[
\dim N(A) + \text{rank}(A) = n \quad (\text{the number of columns of } A).
\]
(5)

Proposition 14. $\text{rank}(A) = \text{rank}(A'A) = \text{rank}(AA')$ for every $m \times n$ matrix A.

Proof. If $Ax = 0$ then $A'Ax = 0$, and if $A'Ax = 0$, then $\|Ax\|^2 = x'A'Ax = 0$. In other words, $N(A) = N(A'A)$. Because $A'A$ and A both have n columns, it follows from (5) that $\text{rank}(A'A) = \text{rank}(A)$. Apply this observation to A' to see that $\text{rank}(A') = \text{rank}(AA')$ as well. The result follows from this and the fact that A and A' have the same rank (Proposition 10). \qed

4. Projection matrices

A matrix A is said to be a projection matrix if: (i) A is symmetric; and (ii) A is "idempotent"; that is, $A^2 = A$.

Note that projection matrices are always positive semidefinite. Indeed, $x'A'Ax = x'A'Ax = \|Ax\|^2 \geq 0$

Proposition 15. If A is an $n \times n$ projection matrix, then so is $I - A$. Moreover, all eigenvalues of A are zeros and ones, and $\text{rank}(A) = \text{the number of eigenvalues that are equal to one}$.

Proof. $(I - A)^2 = I - 2A + A^2 = I - A$. Since $I - A$ is symmetric also, it is a projection. If λ is an eigenvalue of A and x is a corresponding eigenvector, then $\lambda x = Ax = A^2x = \lambda Ax = \lambda^2x$. Multiply both sides by x' to see that $\lambda \|x\|^2 = \lambda^2\|x\|^2$. Since $\|x\| > 0$, it follows that $\lambda \in \{0, 1\}$. The total number of nonzero eigenvalues is then the total number of eigenvalues that are ones. Therefore, the rank of A is the total number of eigenvalues that are one. \qed

Corollary 16. If A is a projection matrix, then $\text{rank}(A) = \text{tr}(A)$.

Proof. Simply recall that $\text{tr}(A)$ is the sum of the eigenvalues, which for a projection matrix, is the total number of eigenvalues that are one. \qed

Why are they called "projection" matrices? Or, perhaps even more importantly, what is a "projection"?
Lemma 17. Let Ω denote a linear subspace of \mathbb{R}^n, and $x \in \mathbb{R}^n$ be fixed. Then there exists a unique element $y \in \Omega$ that is closest to x; that is,
$$
\|y - x\| = \min_{z \in \Omega} \|z - x\|.
$$
The point y is called the projection of x onto Ω.

Proof. Let $k := \dim \Omega$, so that there exists an orthonormal basis b_1, \ldots, b_k for Ω. Extend this to a basis b_1, \ldots, b_n for all of \mathbb{R}^n by the Gram–Schmidt method.

Given a fixed vector $x \in \mathbb{R}^n$, we can write it as $x := c_1 b_1 + \cdots + c_n b_n$ for some $c_1, \ldots, c_n \in \mathbb{R}$. Define $y := c_1 b_1 + \cdots + c_k b_k$. Clearly, $y \in \Omega$ and
$$
\|y - x\|^2 = \sum_{i=k+1}^n c_i^2.
$$
Any other $z \in \Omega$ can be written as $z = \sum_{i=1}^k d_i b_i$, and hence
$$
\|z - x\|^2 = \sum_{i=1}^k (d_i - c_i)^2 + \sum_{i=k+1}^n c_i^2,
$$
which is strictly greater than
$$
\|y - x\|^2 = \sum_{i=k+1}^n c_i^2
$$
unless $d_i = c_i$ for all $i = 1, \ldots, k$; i.e., unless $z = y$.

Usually, we have a k-dimensional linear subspace Ω of \mathbb{R}^n that is the range of some $n \times k$ matrix A. That is, $\Omega = \{Ay : y \in \mathbb{R}^k\}$. Equivalently,
$$
\Omega = \mathcal{G}(A).
$$
In that case,
$$
\min_{z \in \Omega} \|z - x\|^2 = \min_{y \in \mathbb{R}^k} \|Ay - x\|^2 = \min_{y \in \mathbb{R}^k} \left[y'A'Ay - y'A'x - x'Ay + x'x \right].
$$
Because $y'A'x$ is a scalar, the preceding is simplified to
$$
\min_{z \in \Omega} \|z - x\|^2 = \min_{y \in \mathbb{R}^k} \left[y'A'Ay - 2y'A'x + x'x \right].
$$
Suppose that the $k \times k$ positive semidefinite matrix $A'A$ is nonsingular [so that $A'A$ and hence also $(A'A)^{-1}$ are both positive definite]. Then, we can relabel variables $\alpha := A'Ay$ to see that
$$
\min_{z \in \Omega} \|z - x\|^2 = \min_{\alpha \in \mathbb{R}^k} \left[(A'A)^{-1}\alpha - 2\alpha(A'A)^{-1}A'x + x'x \right].
$$
A little arithmetic shows that
$$
(A' - A'x')(A'A)^{-1}(A' - A'x)
= (A'A)^{-1}A'x - 2\alpha(A'A)^{-1}A'x + x'A(A'A)^{-1}A'x.
$$
Consequently,
$$
\min_{z \in \Omega} \|z - x\|^2
= \min_{\alpha \in \mathbb{R}^k} \left[(A' - A'x')(A'A)^{-1}(A' - A'x) - x'A(A'A)^{-1}A'x + x'x \right].
$$
The first term in the parentheses is ≥ 0; in fact it is > 0 unless we select $\alpha = A'x$. This proves that the projection of x onto Ω is obtained by setting $\alpha := A'x$, in which case the projection itself is $Ay =$
$A(A'A)^{-1}A'x$ and the distance between y and x is the square root of $\|x\|^2 - x'A(A'A)^{-1}A'x$.

Let $P_\Omega := A(A'A)^{-1}A'$. It is easy to see that P_Ω is a projection matrix. The preceding shows that $P_\Omega x$ is the projection of x onto Ω for every $x \in \mathbb{R}^n$. That is, we can think of P_Ω as the matrix that projects onto Ω. Moreover, the distance between x and the linear subspace Ω [i.e., $\min_{z \in \mathbb{R}^n} \|z - x\|$] is exactly the square root of $x'x - x'P_\Omega x = x'(I - P_\Omega)x = \|(I - P_\Omega)x\|^2$, because $I - P_\Omega$ is a projection matrix. What space does it project into?

Let Ω^\perp denote the collection of all n-vectors that are perpendicular to every element of Ω. If $z \in \Omega^\perp$, then we can write, for all $x \in \mathbb{R}^n$,

$$\|z - x\|^2 = \|z - (I - P_\Omega)x + P_\Omega x\|^2$$

$$= \|z - (I - P_\Omega)x\|^2 + \|P_\Omega x\|^2 - 2(z - (I - P_\Omega)x)'P_\Omega x$$

$$= \|z - (I - P_\Omega)x\|^2 + \|P_\Omega x\|^2,$$

since z is orthogonal to every element of Ω including $P_\Omega x$, and $P_\Omega = P_\Omega^2$.

Take the minimum over all $z \in \Omega^\perp$ to find that $I - P_\Omega$ is the projection onto Ω^\perp. Let us summarize our findings.

Proposition 18. If $A'A$ is nonsingular [equivalently, has full rank], then $P_{A(A'A)^{-1}A'} := A(A'A)^{-1}A'$ is the projection onto $\mathbb{R}(A)$, $I - P_{A(A'A)^{-1}A'}$ is the projection onto $\mathbb{R}^\perp(A)$, and we have

$$x = P_{A(A'A)^{-1}A'}x + P_{A(A'A)^{-1}A'}^\perp x, \quad \text{and} \quad \|x\|^2 = \|P_{A(A'A)^{-1}A'}x\|^2 + \|P_{A(A'A)^{-1}A'}^\perp x\|^2.$$

The last result is called the "Pythagorean property."