
Linear statistical

models

1. Introduction

The goal of this course is, in rough terms, to predict a variable �, given
that we have the opportunity to observe variables �1� � � � � ��−1. This is a
very important statistical problem. Therefore, let us spend a bit of time
and examine a simple example:

Given the various vital statistics of a newborn baby, you wish to pre-
dict his height � at maturity. Examples of those “vital statistics” might be
�1 := present height, and �2 := present weight. Or perhaps there are
still more predictive variables �3 := your height and �4 := your spouse’s
height, etc.

In actual fact, a visit to your pediatrist might make it appear that this
prediction problem is trivial. But that is not so [though it is nowadays
fairly well understood in this particular case]. A reason the problem
is nontrivial is that there is no a priori way to know “how” � depends
on �1� � � � � �4 [say, if we plan to use all 4 predictive variables]. In such
a situation, one resorts to writing down a reasonable model for this
dependence structure, and then analyzing that model. [Finally, there
might be need for model verification as well.]

In this course, we study the general theory of “linear statistical mod-
els.” That theory deals with the simplest possible nontrivial setting where
such problems arises in various natural ways. Namely, in that theory we
posit that � is a linear function of (�1 � � � � � �4), possibly give or take some
“noise.” In other words, the theory of linear statistical models posits that
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there exist unknown parameters β0� � � � � β�−1 [here, � = 5] such that

� = β0 + β1�1 + β2�2 + · · · + β�−1��−1 + ε� (1)

where ε is a random variable. The problem is still not fully well de-
fined [for instance, what should be the distribution of ε, etc.?]. But this
is roughly the starting point of the theory of linear statistical models.
And one begins asking natural questions such as, “how can we estimate
β0� � � � � β4?,” or “can we perform inference for these parameters?” [for
instance, can we test to see if � does not depend on �1 in this model; i.e.,
test for H0 : β1 = 0?]. And so on.

We will also see, at some point, how the model can be used to improve
itself. For instance, suppose we have only one predictive variable �, but
believe to have a nonlinear dependence between � and �. Then we could
begin by thinking about polynomial regression; i.e., a linear statistical
model of the form

� = β0 + β1� + β2�
2 + · · · + β�−1�

�−1 + ε�

Such a model fits in the general form (1) of linear statistical models, as
well: We simply define new predictive variables �� := �

� for all 1 ≤ � < �.
One of the conclusions of this discussion is that we are studying models
that are linear functions of unknown parameters β0� � � � � β�−1 and not
�1� � � � � ��−1. This course studies statistical models with such properties.
And as it turns out, not only these models are found in a great number
of diverse applications, but also they have a rich mathematical structure.

2. The method of least squares

Suppose we have observed � data points in pairs: (�1 � �1)� � � � (�� � ��).
The basic problem here is, what is the best straight line that fits this
data? There is of course no unique sensible answer, because “best” might
mean different things.

We will use the method of least squares, introduced by C.-F. Gauss.
Here is how the method works: If we used the line � = β0 + β1� to
describe how the �� ’s affect the �� ’s, then the error of approximation, at
� = ��, is �� − (β0 + β1��); this is called the �th residual error. The sum
of the squared residual errors is SSE :=

�
�

�=1(�� − β0 − β1��)2, and the
method of least squares is to find the line with the smallest SSE. That is,
we need to find the optimal β0 and β1—written β̂0 and β̂1—that solve the
following optimization problem:

min
β0�β1

��

�=1
(�� − β0 − β1��)2 � (2)
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Theorem 1 (Gauss). The least-squares solution to (2) is given by

β̂1 :=
�

�

�=1(�� − �̄)(�� − �̄)�
�

�=1(�� − �̄)2 and β̂0 := �̄ − β̂1�̄�

Proof. Define

L(β0� β1) :=
��

�=1
(�� − β0 − β1��)2 �

Our goal is to minimize the function L. An inspection of the graph of L

shows that L has a unique minimum; multivariable calculus then tells us
that it suffices to set ∂L/∂β� = 0 for � = 1� 2 and solve. Because

∂

∂β0
L(β0� β1) = −2

��

�=1
(�� − β0 − β1��) �

∂

∂β1
L(β0� β1) = −2

��

�=1
�� (�� − β0 − β1��) �

a few lines of simple arithmetic finish the derivation. �

The preceding implies that, given the points (�1 � �1)� � � � � (�� � ��), the
best line of fit through these points—in the sense of least squares—is

� = β̂0 + β̂1�� (3)

For all real numbers � and �, define �SU and �SU to be their respective
“standardizations.” That is,

�SU := � − �̄�
1
�

�
�

�=1(�� − �̄)2
� �SU := � − �̄�

1
�

�
�

�=1(�� − �̄)2
�

Then, (3) can be re-written in the following equivalent form:

�SU = β̂0 − �̄�
1
�

�
�

�=1(�� − �̄)2
+ β̂1��

1
�

�
�

�=1(�� − �̄)2

= β̂1�
1
�

�
�

�=1(�� − �̄)2
(� − �̄) �

the last line following from the identity β̂0 = �̄ − β̂1�̄. We re-write the
preceding again:

�SU =
β̂1

�
1
�

�
�

�=1(�� − �̄)2
�

1
�

�
�

�=1(�� − �̄)2
�SU�
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Because

β̂1 =
1
�

�
�

�=1(�� − �̄)(�� − �̄)
1
�

�
�

�=1(�� − �̄)2
�

we can re-write the best line of fit, yet another time, this time as the
following easy-to-remember formula:

�SU = ��SU�

where � [a kind of “correlation coefficient”] is defined as

� :=
1
�

�
�

�=1(�� − �̄)(�� − �̄)�
1
�

�
�

�=1(�� − �̄)2 ·

�
1
�

�
�

�=1(�� − �̄)2
�

3. Simple linear regression

Suppose Y1� � � � � Y� are observations from a distribution, and they satisfy
Y� = β0 + β1�� + ε� (1 ≤ � ≤ �)� (4)

where ε1� � � � � ε� are [unobserved] i.i.d. N(0 � σ
2) for a fixed [possibly un-

known] σ > 0. We assume that �1� � � � � �� are known, and seek to find
the “best” β0 and β1.1

In other words, we believe that we are observing a certain linear
function of the variable � at the �� ’s, but our measurement [and/or mod-
eling] contains noise sources [ε� ’s] which we cannot observe.

Theorem 2 (Gauss). Suppose ε1� � � � � ε� are i.i.d. with common distri-

bution N(0 � σ
2), where σ > 0 is fixed. Then the maximum likelihood

estimators of β1 and β0 are, respectively,

β̂1 =
�

�

�=1(�� − �̄)(Y� − Ȳ )
�

�

�=1(�� − �̄)2 and β̂0 = Ȳ − β̂1�̄�

Therefore, based on the data (�1 � Y1)� � � � � (�� � Y�), we predict the �-
value at � = �∗ to be �∗ := β̂0 + β̂1�∗.

Proof. Note that Y1� � � � � Y� are independent [though not i.i.d.], and the
distribution of Y� is N(β0 + β1�� � σ

2). Therefore, the joint probability
density function of (Y1 � � � � � Y�) is

� (�1 � � � � � ��) := 1
(2πσ2)�/2

exp



−
1

2σ2

��

�=1
(�� − β0 − β1�� )2



 �

1In actual applications, the �� ’s are often random. In such a case, we assume that the model holds
after conditioning on the �� ’s.
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According to the MLE principle we should maximize � (Y1 � � � � � Y�) over
all choices of β0 and β0. But this is equivalent to minimizing L(β0 � β1) :=�

�

�=1(Y� − β0 − β1��)2. But this was exactly what we did in Theorem
1 [except for real variables �1� � � � � �� in place of the random variables
Y1� � � � � Y�]. �

In this way we have the following “regression equation,” which uses
the observed data (�1 � Y1)� � � � � (�� � Y�) in order to predict a �-value cor-
responding to � = �∗:

Y (�) = β̂0 + β̂1��

But as we shall see, this method is good not only for prediction, but also
for inference. Perhaps a first important question is, “do the � ’s depend
linearly on the �’s”? Mathematically speaking, we are asking to test the
hypothesis that β1 = 0. If we could compute the distribution of β̂1, then
standard methods can be used to accomplish this. We will see later on
how this can be accomplished. But before we develop the theory of
linear inference we need to know a few things about linear algebra and
some of its probabilistic consequences.


