
Gaussian Random
Vectors

1. The multivariate normal distribution

Let X := (X1 � � � � � X�)� be a random vector. We say that X is a Gaussian

random vector if we can write

X = µ + AZ�

where µ ∈ R�, A is an � × � matrix and Z := (Z1 � � � � � Z�)� is a �-vector
of i.i.d. standard normal random variables.

Proposition 1. Let X be a Gaussian random vector, as above. Then,

EX = µ� Var(X) := Σ = AA
�
� and MX(�) = e�

�
µ+ 1

2 �A
�
��

2 = e�
�
µ+ 1

2 �
�Σ�

�

for all � ∈ R�
.

Thanks to the uniqueness theorem of MGF’s it follows that the dis-
tribution of X is determined by µ, Σ, and the fact that it is multivariate
normal. From now on, we sometimes write X ∼ N�(µ � Σ), when we
mean that MX(�) = exp(��

µ + 1
2�

�Σ�). Interesetingly enough, the choice
of A and Z are typically not unique; only (µ � Σ) influences the distribu-
tion of X.

Proof. The expectation of X is µ, since E(AZ) = AE(Z) = 0. Also,

E(XX
�) = E

�
[µ + AZ] [µ + AZ]�

�
= µµ

� + AE(ZZ
�)A�

�

Since E(ZZ
�) = I , the variance-covariance of X is E(XX

�) − (EX)(EX)� =
E(XX

�) − µµ
� = AA

�, as desired. Finally, note that MX(�) = exp(��
µ) ·
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32 6. Gaussian Random Vectors

MZ(A�
�). This establishes the result on the MGF of X, since MZ(�) =�

�

�=1 exp(�2
�
/2) = exp(1

2���
2) for all � ∈ R�. �

We say that X has the multivariate normal distribution with param-
eters µ and Σ := AA

�, and write this as X ∼ N�(µ � AA
�).

Theorem 2. X := (X1 � � � � � X�)� has a multivariate normal distribution

if and only if �
�
X =

�
�

�=1 ��X� has a normal distribution on the line for

every � ∈ R�
. That is, X1� � � � � X� are jointly normally distributed if and

only if all of their linear combinations are normally distributed.

Note that the distribution of X depends on A only through the pos-
itive semidefinite � × � matrix Σ := AA

�. Sometimes we say also that
X1� � � � � X� are jointly normal [or Gaussian] when X := (X1 � � � � � X�)� has
a multivariate normal distribution.

Proof. If X ∈ N�(µ � AA
�) then we can write it as X = µ + AZ, we as

before. In that case, �
�
X = �

�
µ+�

�
AZ is a linear combination of Z1� � � � � Z�,

whence has a normal distribution with mean �1µ1+· · ·+��µ� and variance
�

�
AA

�
� = �A

�
��

2
�

For the converse, suppose that �
�
X has a normal distribution for

every � ∈ R�. Let µ := EX and Σ := Var(X), and observe that �
�
X

has mean vector �
�
µ and variance-covariance matrix �

�Σ�. Therefore,
the MGF of the univariate normal �

�
X is M��X(�) = exp(��

�
µ + 1

2�
2
�

�Σ�)
for all � ∈ R. Note that M��X(�) = E exp(��

�
X). Therefore, apply this

with � := 1 to see that M��X(1) = MX(�) is the MGF of a multivariate
normal. The uniqueness theorem for MGF’s (Theorem 1, p. 27) implies
the result. �

2. The nondegenerate case

Suppose X ∼ N�(µ � Σ), and recall that Σ is always positive semidefinite.
We say that X is nondegenerate when Σ is positive definite (equivalently,
invertible).

Take, in particular, X ∼ N1(µ � Σ); µ can be any real number and Σ is
a positive semidefinite 1 × 1 matrix; i.e., Σ ≥ 0. The distribution of X is
defined via its MGF as

MX(�) = e�µ+ 1
2 �

2Σ
�

When X is nondegenerate (Σ > 0), X ∼ N(µ � Σ). If Σ = 0, then MX(�) =
exp(�µ); therefore by the uniqueness theorem of MGFs, P{X = µ} = 1.
Therefore, N1(µ � σ

2) is the generalization of N(µ � σ
2) in order to include

the case that σ = 0. We will not write N1(µ � σ
2); instead we always write

N(µ � σ
2) as no confusion should arise.
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Theorem 3. X ∼ N�(µ � Σ) has a probability density function if and

only if it is nondegenerate. In that case, the pdf of X is

�X(�) = 1
(2π)�/2 (det Σ)1/2

exp
�

−
1
2(� − µ)�Σ−1(� − µ)

�

for all � ∈ R�
.

Proof. First of all let us consider the case that X is degenerate. In that
case Σ has some number � < � of strictly-positive eigenvalues. The
proof of Theorem 2 tells us that we can write X = AZ + µ, where Z is a
�-dimensional vector of i.i.d. standard normals and A is an � × � matrix.
Consider the �-dimensional space

E :=
�

� ∈ R� : � = A� + µ for some � ∈ R�

�
�

Because P{Z ∈ R�
} = 1, it follows that P{X ∈ E} = 1. If X had a pdf �X,

then
1 = P{X ∈ E} =

�

E

�X(�) d��

But the �-dimensional volume of E is zero since the dimension of E is
� < �. This creates a contradiction [unless X did not have a pdf, that is].

If X is nondegenerate, then we can write X = AZ + µ, where Z is
an �-vector of i.i.d. standard normals and Σ = AA

� is invertible; see the
proof of Theorem 2. Recall that the choice of A is not unique; in this
case, we can always choose A := Σ1/2 because Σ1/2

Z + µ ∼ N�(µ � Σ). In
other words,

X� =
��

�=1
A���Z� + µ� =

��

�=1
Σ1/2

���
Z� + µ� := ��(Z1 � � � � � Z�) (1 ≤ � ≤ �)�

If � = Σ1/2
�+µ, then � = Σ−1/2(�−µ). Therefore, the change of variables

formula of elementary probability implies that

�X(�) =
�Z

�
Σ−1/2(� − µ)

�

|det J|
�

as long as det J �= 0, where

J :=




∂�1
∂�1

· · ·
∂�1
∂��...
...

∂��

∂�1
· · ·

∂��

∂��


 =




A1�1 · · · A1��

...
...

A��1 · · · A���


 = A�

Because det(Σ) = det(AA
�) = (det A)2, it follows that det A = (det Σ)1/2,

and hence
�X(�) = 1

(det Σ)1/2
�Z

�
Σ−1/2(� − µ)

�
�



34 6. Gaussian Random Vectors

Because of the independence of the Z� ’s,

�Z(�) =
��

�=1

e−�
2
�
/2

√
2π

= 1
(2π)�/2

e−�
�
�/2

for all � ∈ R�. Therefore,

�Z

�
Σ−1/2(� − µ)

�
= 1

(2π)�/2
exp

�
−

1
2(� − µ)�Σ−1(� − µ)

�
�

and the result follows. �

3. The bivariate normal distribution

A bivariate normal distribution has the form N2(µ � Σ), where µ1 = EX1,
µ2 = EX2, Σ1�1 = Var(X1) := σ

2
1 > 0, Σ2�2 = Var(X2) := σ

2
2 > 0, and

Σ1�2 = Σ2�1 = Cov(X1 � X2). Let

ρ := Corr(X1 � X2) := Cov(X1 � X2)�
Var(X1) · Var(X2)

denote the correlation between X1 and X2, and recall that −1 ≤ ρ ≤ 1.
Then, Σ1�2 = Σ2�1 = ρσ1σ2, whence

Σ =
�

σ
2
1 ρσ1σ2

ρσ1σ2 σ
2
2

�
�

Since det Σ = σ
2
1 σ

2
2 (1 − ρ

2), it follows immediately that our bivariate nor-
mal distribution is non-degenerate if and only if −1 < ρ < 1, in which
case

Σ−1 =




1
σ

2
1 (1 − ρ2)

−
ρ

1 − ρ2 ·
1

σ1σ2

−
ρ

1 − ρ2 ·
1

σ1σ2

1
σ

2
2 (1 − ρ2)




�

Because

�
�Σ−1

� =
�

�1
σ1

�2
− 2ρ

�
�1
σ1

� �
�2
σ2

�
+

�
�2
σ2

�2

for all � ∈ R�, the pdf of X = (X1 � X2)�—in the non-degenerate case
where there is a pdf—is

�X(�1 � �2)

= 1
2πσ1σ2

�
1 − ρ2

exp
�

−
1

2(1 − ρ2)

��
�1 − µ1

σ1

�2
− 2ρ

�
�1 − µ1

σ1

� �
�2 − µ2

σ2

�
+

�
�2 − µ2

σ2

�2
��

�
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But of course non-degenerate cases are also possible. For instance,
suppose Z ∼ N(0 � 1) and define X := (Z � −Z). Then X = AZ where
A := (1 � −1)�, whence

Σ = AA
� =

�
1 −1

−1 1

�

is singular. In general, if X ∼ N�(µ � Σ) and the rank of Σ is � < �, then
X depends only on � [and not �] i.i.d. N(0 � 1)’s. This can be gleaned from
the proof of Theorem 2.

4. A few important properties of multivariate normal
distributions

Proposition 4. Let X ∼ N�(µ � Σ). If C is an � × � matrix and � is

an �-vector, then CX + � ∼ N�(Cµ + � � CΣC
�). In general, CΣC

�

is positive semidefinite; it is positive definite if and only if it has full

rank �.

In particular, if � is a nonrandom �-vector, then �
�
X ∼ N(��

µ � �
�Σ�)�

Proof. We compute the MGF of CX + � as follows:

MCX+�(�) = E exp
�
�

� [CX + �]
�

= e�
�
�
MX(�)�

where � := C
�
�� Therefore,

MCX+�(�) = exp
�

�
�
� + �

�
µ + 1

2�
�Σ�

�
= exp

�
�

�
ν + 1

2�
�
Q�

�
�

where ν := Cµ + � and Q := CΣC
�. Finally, a general fact about sym-

metric matrices (Corollary 13, p. 17) implies that the symmetric � × �

matrix CΣC
� is nonsingular if and only if it has full rank �. �

Proposition 5. If X ∈ N�(µ � Σ), for a nonsingular variance-covariance

matrix Σ, and C�×� and ��×1 are nonrandom, then CX + � is non-

singular if and only if rank(C) = �.

Proof. Recall that the nonsingularity of Σ is equivalent to it being pos-
itive definite. Now CX + � is multivariate normal by the preceding re-
sult. It is nondegenerate if and only if CΣC

� is positive definite. But
�

�
CΣC

�
� = (C�

�)�Σ(C�
�) > 0 if and only if (C�

�) �= 0, since Σ is positive
definite. Therefore, CX + � is nondegenerate if and only if C

�
� �= 0

whenever � �= 0. This is equivalent to �
�
C �= 0 for all nonzero vectors

�; that is, C has row rank—hence rank—�. �
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The following is an easy corollary of the previous proposition, and
identifies the “standard multivariate normal” distribution as the distribu-
tion of i.i.d. standard univariate normal distributions. It also states that
we do not change the distribution of a standard multivariate normal if
we apply to it an orthogonal matrix.
Corollary 6. Z ∼ N�(0 � I) if and only if Z1� � � � � Z� are i.i.d. N(0 � 1)’s.

Moreover, if Z ∼ N�(0 � I) and A�×� is orthogonal then AZ ∼ N�(0 � I)
also.

Next we state another elementary fact, derived by looking only at
the MGF’s. It states that a subset of a multivariate normal vector itself is
multivariate normal.
Proposition 7. Suppose X ∼ N�(µ � Σ) and 1 ≤ �1 < �2 < · · · < �� ≤ � is

a subsequence of 1 � � � � � �. Then, (X�1 � � � � � X��
)� ∼ N�(ν � Q), where

ν := E




X�1
.
.
.

X��


 =




µ�1
.
.
.

µ��


 � Q := Var




X�1
.
.
.

X��


 =




Σ�1��1 · · · Σ�1���

.

.

.
.
.
.

Σ����1 · · · Σ�����


 �

Proposition 8. Suppose X ∼ N�(µ � Σ), and assume that we can divide

the X� ’s into two groups: (X�)�∈G and (X� )� �∈G , where G is a subset of the

index set {1 � � � � � �}. Suppose in addition that Cov(X� � X� ) = 0 for all

� ∈ G and � �∈ G. Then, (X�)�∈G is independent from (X� )� �∈G .

Thus, for example, if (X1 � X2 � X3)� has a trivariate normal distribu-
tion and X1 is uncorrelated from X2 and X3, then X1 is independent
of (X2 � X3). For a second example suppose that (X1 � X2 � X3 � X4) has a
multivariate normal distribution and: E(X1X2) = E(X1)E(X2), E(X1X3) =
E(X1)E(X3), E(X4X2) = E(X4)E(X2), and E(X4X3) = E(X4)E(X3), then (X1 � X4)
and (X2 � X3) are two independent bivariate normal random vectors.

Proof. I will prove the following special case of the proposition; the gen-
eral case follows from a similar reasoning, but the notation is messier.

Suppose (X1 � X2) has a bivariate normal distribution and E(X1X2) =
E(X1)E(X2). Then, X1 and X2 are independent. In order to prove this we
write the MGF of X := (X1 � X2)�:

MX(�) = e�
�
µ+ 1

2 �
�Σ�

= e�1µ1+�2µ2 · exp
�

1
2(�1 � �2)

�
Var(X1) 0

0 Var(X2)

� �
�1
�2

��

= e�1µ1+ 1
2 �

2
1 Var(X1)

· e�2µ2+ 1
2 �

2
2 Var(X2)

= MX1 (�1) · MX2 (�2)�
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The result follows from the independence theorem for MGF’s (Theorem
6, p. 29). �

Remark 9. The previous proposition has generalizations. For instance,
suppose we could decompose {1 � � � � � �} into � disjoint groups G1� � � � � G�

[so G� ∩ G� = ∅ if � �= � , and G1 ∪ · · · ∪ G� = {1 � � � � � �}] such that
X�1 � � � � � X��

are [pairwise] uncorrelated for all �1 ∈ G1� � � � � �� ∈ G�. Then,
(X�)�∈G1 � � � � � (X�)�∈G�

are independent multivariate normal random vec-
tors. The proof is the same as in the case � = 2. �

Remark 10. It is important that X has a multivariate normal distribution.
For instance, we can construct two standard-normal random variables X

and Y , on the same probability space, such that X and Y are uncorrelated
but dependent. Here is one way to do this: Let Y ∼ N(0 � 1) and S = ±1
with probability 1/2 each. Assume that S and Y are independent, and
define X := S|Y |. Note that

P{X ≤ �} = P{X ≤ � � S = 1} + P{X ≤ � � S = −1}

= 1
2P{|Y | ≤ �} + 1

2P{−|Y | ≤ �}�

If � ≥ 0, then P{X ≤ �} = 1
2P{|Y | ≤ �} + 1

2 = P{Y ≤ �}� Similarly,
P{X ≤ �} = P{Y ≤ �} if � ≤ 0. Therefore, X� Y ∼ N(0 � 1). Further-
more, X and Y are uncorrelated because S has mean zero; here is why:
E(XY ) = E(SY |Y |) = E(S)E(Y |Y |) = 0 = E(X)E(Y )� But X and Y are
not independent because |X| = |Y |: For instance, P{|X| < 1} > 0, but
P{|X| < 1 | |Y | ≥ 2} = 0� The problem is [and can only be] that (X � Y )� is
not bivariate normal. �

5. Quadratic forms

Given a multivariate-normal random variable X ∼ N�(0 � I) and an � × �

positive semidefinite matrix A := (A��� ), we can consider the random
quadratic form

QA(X) := X
�
AX�

We can write A, in spectral form, as A = PDP
�, so that

QA(X) = X
�
PDP

�
X�

Since P is orthogonal and X ∼ N�(0 � I), Z := P
�
X ∼ N�(0 � I) as well.

Therefore,

QA(X) = Z
�
DZ =

��

�=1
D���Z

2
�
�
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If A is a projection matrix, then all of the D��� ’s are ones and zeros. In
that case, QA(X) ∼ χ

2
� , where � := the number of eigenvalues of A that

are ones; i.e, � = rank(A). Finally, recall that the rank of a projection
matrix is equal to its trace (Corollary 16, p. 16). Let us summarize our
findings.

Proposition 11. If X ∼ N�(0 � I) and A is a projection matrix, then

X
�
AX ∼ χ

2
rank(A) = χ

2
tr(A) = χ

2
� , where � := the total number of nonzero

[i.e., one] eigenvalues of A.

Example 12. Let

A :=




1 − 1/� 1/� −1/� · · · 1/�
−1/� 1 − 1/� −1/� · · · − 1/�

...
...

... . . . ...
−1/� −1/� −1/� · · · 1 − 1/�


 �

Then we have seen (Example 5, p. 23) that

�
�
A� =

��

�=1
(�� − �̄)2 for all � ∈ R�

�

Now let us observe that A has the form

A = I − B�

where B := (1/�)1�×�. Note that B is symmetric and B
2 = B. Therefore,

B is a projection, and hence so is A = I − B. Clearly, tr(A) = � − 1.
Therefore, Proposition 11 implies the familiar fact that if X1� � � � � X� are
i.i.d. standard normals, then

�
�

�=1(X� − X̄)2 ∼ χ
2
�−1. �

Example 13. If A is an � ×� projection matrix of rank [or trace] �, then
I − A is an � × � projection matrix of rank [or trace] � − �. Therefore,
X

�(I − A)X ∼ χ
2
�−� , whenever X ∼ N�(0 � I). �

Example 14. What is the distribution of X is a nonstandard multivariate
normal? Suppose X ∼ N�(µ � Σ) and A is a projection matrix. If X is
nondegenerate, then Σ−1/2(X − µ) ∼ N�(0 � I)� Therefore,

(X − µ)�Σ−1/2
AΣ−1/2(X − µ) ∼ χ

2
rank(A) = χ

2
tr(A)�

for every � × � projection matrix A. In particular,

(X − µ)�Σ−1(X − µ) ∼ χ
2
��

which can be seen by specializing the preceding to the projection matrix
A := I . Specializing further still, we see that if X1� � � � � X� are independent
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normal random variables, then we obtain the familiar fact that
��

�=1

�
X� − µ�

σ�

�2
∼ χ

2
��

where µ� := EX� and σ
2
�

:= Var(X�). �


