ESTIMATING THE VARIANCE

DAVAR KHOSHNEVISAN

Recall the linear model

$$
\begin{equation*}
\boldsymbol{Y}=\boldsymbol{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon} \tag{1}
\end{equation*}
$$

The most standard assumption on the noises is that ε_{i} 's are i.i.d. $N\left(0, \sigma^{2}\right)$ for a fixed unknown parameter $\sigma>0$. The MLE for σ^{2} is

$$
\begin{equation*}
\widehat{\sigma}^{2}=\frac{1}{n} \sum_{i=1}^{n} \varepsilon_{i}^{2}=\frac{1}{n}\|\boldsymbol{\varepsilon}\|^{2}=\frac{1}{n}\|\boldsymbol{Y}-\boldsymbol{X} \widehat{\boldsymbol{\beta}}\|^{2} . \tag{2}
\end{equation*}
$$

Write $\boldsymbol{X} \widehat{\boldsymbol{\beta}}=\mathbf{P}_{\mathscr{C}(\boldsymbol{X})} \boldsymbol{Y}$ to obtain

$$
\begin{equation*}
\widehat{\sigma}^{2}=\frac{1}{n}\left\|\boldsymbol{Y}-\mathbf{P}_{\mathscr{C}(\boldsymbol{X})} \boldsymbol{Y}\right\|^{2}=\frac{1}{n}\left\|\left(\mathbf{I}_{n}-\mathbf{P}_{\mathscr{C}(\boldsymbol{X})}\right) \boldsymbol{Y}\right\|^{2} \tag{3}
\end{equation*}
$$

Lemma 0.1. If S denotes a subspace of \boldsymbol{R}^{n}, then $\mathbf{I}_{n}-\mathbf{P}_{S}=\mathbf{P}_{S^{\perp}}$, where S^{\perp} denotes the orthogonal complement to S; i.e.,

$$
\begin{equation*}
S^{\perp}=\left\{\boldsymbol{x} \in \boldsymbol{R}^{n}: \boldsymbol{x} \perp S\right\} . \tag{4}
\end{equation*}
$$

Proof. First, let us check that if $\boldsymbol{x} \in \boldsymbol{R}^{n}$ then $\left(\mathbf{I}_{n}-\mathbf{P}_{S}\right) \boldsymbol{x}$ is orthogonal to $\mathbf{P}_{S} \boldsymbol{x}$. Indeed,

$$
\begin{align*}
{\left[\left(\mathbf{I}_{n}-\mathbf{P}_{S}\right) \boldsymbol{x}\right]^{\prime} \mathbf{P}_{S} \boldsymbol{x} } & =\left[\boldsymbol{x}^{\prime}-\boldsymbol{x}^{\prime} \mathbf{P}_{S}^{\prime}\right] \mathbf{P}_{S} \boldsymbol{x} \\
& =\boldsymbol{x}^{\prime} \mathbf{P}_{S} \boldsymbol{x}-\boldsymbol{x}^{\prime} \mathbf{P}_{S}^{2} \boldsymbol{x} \tag{5}
\end{align*}
$$

because $\mathbf{P}_{S}^{\prime}=\mathbf{P}_{S}$. Since $\mathbf{P}_{S}^{2}=\mathbf{P}_{S}$, it follows that $\left(\mathbf{I}_{n}-\mathbf{P}_{S}\right) \boldsymbol{x}$ is orthogonal to $\mathbf{P}_{S} \boldsymbol{x}$, as promised.

Next, let us prove that $\mathbf{I}_{n}-\mathbf{P}_{S}$ is idempotent; i.e., a projection matrix. This too is a routine check, viz.,

$$
\begin{equation*}
\left(\mathbf{I}_{n}-\mathbf{P}_{S}\right)^{2}=\mathbf{I}_{n}-2 \mathbf{P}_{S}+\mathbf{P}_{S}^{2}=\mathbf{I}_{n}-\mathbf{P}_{S} \tag{6}
\end{equation*}
$$

as claimed.
We have shown, thus far, that $\mathbf{I}_{n}-\mathbf{P}_{S}$ is a projection matrix, and it projects $\boldsymbol{x} \in \boldsymbol{R}^{n}$ to some point in S^{\perp}. Thus, there exists a subspace T of \boldsymbol{R}^{n} such that $\mathbf{I}_{n}-\mathbf{P}_{S}=\mathbf{P}_{T}$. It remains to verify that $T=S^{\perp}$; this follows from the fact that any $\boldsymbol{x} \in \boldsymbol{R}^{n}$ can be written as $\boldsymbol{x}=\mathbf{P}_{S} \boldsymbol{x}+\left(\mathbf{I}_{n}-\mathbf{P}_{S}\right) \boldsymbol{x}$.

In summary, we have shown that

$$
\begin{align*}
\widehat{\boldsymbol{\beta}} & =\mathbf{P}_{\mathscr{C}(\boldsymbol{X})} \boldsymbol{Y}, \\
\widehat{\sigma^{2}} & =\frac{1}{n}\left\|\mathbf{P}_{\mathscr{C}(\boldsymbol{X})^{\perp}} \boldsymbol{Y}\right\|^{2} . \tag{7}
\end{align*}
$$

Date: August 30, 2004.

It will turn out that if $S \perp T$-and under the assumption that the ε_{i} 's are i.i.d. normals - then $\mathbf{P}_{S} \boldsymbol{Y}$ is statistically independent of $\mathbf{P}_{T} \boldsymbol{Y}$. Therefore, in particular, we will see soon that, in the normal-errors model, $\widehat{\boldsymbol{\beta}}$ and $\widehat{\sigma^{2}}$ are independent.

