ESTIMATING THE VARIANCE

DAVAR KHOSHNEVISAN

Recall the linear model

(1)
$$Y = X\beta + \varepsilon$$

The most standard assumption on the noises is that ε_i 's are i.i.d. $N(0, \sigma^2)$ for a fixed unknown parameter $\sigma > 0$. The MLE for σ^2 is

(2)
$$\widehat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n \varepsilon_i^2 = \frac{1}{n} \|\boldsymbol{\varepsilon}\|^2 = \frac{1}{n} \|\boldsymbol{Y} - \boldsymbol{X}\widehat{\boldsymbol{\beta}}\|^2.$$

Write $X \hat{\beta} = \mathbf{P}_{\mathscr{C}(X)} Y$ to obtain

(3)
$$\widehat{\sigma}^{2} = \frac{1}{n} \left\| \boldsymbol{Y} - \boldsymbol{P}_{\mathscr{C}(\boldsymbol{X})} \boldsymbol{Y} \right\|^{2} = \frac{1}{n} \left\| \left(\mathbf{I}_{n} - \boldsymbol{P}_{\mathscr{C}(\boldsymbol{X})} \right) \boldsymbol{Y} \right\|^{2}.$$

Lemma 0.1. If S denotes a subspace of \mathbf{R}^n , then $\mathbf{I}_n - \mathbf{P}_S = \mathbf{P}_{S^{\perp}}$, where S^{\perp} denotes the orthogonal complement to S; i.e.,

(4)
$$S^{\perp} = \{ \boldsymbol{x} \in \boldsymbol{R}^n : \ \boldsymbol{x} \perp S \}$$

Proof. First, let us check that if $\boldsymbol{x} \in \boldsymbol{R}^n$ then $(\mathbf{I}_n - \mathbf{P}_S)\boldsymbol{x}$ is orthogonal to $\mathbf{P}_S \boldsymbol{x}$. Indeed,

(5)
$$[(\mathbf{I}_n - \mathbf{P}_S) \mathbf{x}]' \mathbf{P}_S \mathbf{x} = [\mathbf{x}' - \mathbf{x}' \mathbf{P}'_S] \mathbf{P}_S \mathbf{x}$$
$$= \mathbf{x}' \mathbf{P}_S \mathbf{x} - \mathbf{x}' \mathbf{P}_S^2 \mathbf{x},$$

because $\mathbf{P}'_{S} = \mathbf{P}_{S}$. Since $\mathbf{P}_{S}^{2} = \mathbf{P}_{S}$, it follows that $(\mathbf{I}_{n} - \mathbf{P}_{S})\mathbf{x}$ is orthogonal to $\mathbf{P}_{S}\mathbf{x}$, as promised.

Next, let us prove that $\mathbf{I}_n - \mathbf{P}_S$ is idempotent; i.e., a projection matrix. This too is a routine check, viz.,

(6)
$$(\mathbf{I}_n - \mathbf{P}_S)^2 = \mathbf{I}_n - 2\mathbf{P}_S + \mathbf{P}_S^2 = \mathbf{I}_n - \mathbf{P}_S,$$

as claimed.

We have shown, thus far, that $\mathbf{I}_n - \mathbf{P}_S$ is a projection matrix, and it projects $\boldsymbol{x} \in \boldsymbol{R}^n$ to some point in S^{\perp} . Thus, there exists a subspace T of \boldsymbol{R}^n such that $\mathbf{I}_n - \mathbf{P}_S = \mathbf{P}_T$. It remains to verify that $T = S^{\perp}$; this follows from the fact that any $\boldsymbol{x} \in \boldsymbol{R}^n$ can be written as $\boldsymbol{x} = \mathbf{P}_S \boldsymbol{x} + (\mathbf{I}_n - \mathbf{P}_S) \boldsymbol{x}$. \Box

In summary, we have shown that

(7)
$$\hat{\boldsymbol{\beta}} = \mathbf{P}_{\mathscr{C}(\boldsymbol{X})}\boldsymbol{Y},$$
$$\widehat{\sigma^2} = \frac{1}{n} \left\| \mathbf{P}_{\mathscr{C}(\boldsymbol{X})^{\perp}}\boldsymbol{Y} \right\|^2$$

Date: August 30, 2004.

DAVAR KHOSHNEVISAN

It will turn out that if $S \perp T$ —and under the assumption that the ε_i 's are i.i.d. normals—then $\mathbf{P}_S \mathbf{Y}$ is statistically independent of $\mathbf{P}_T \mathbf{Y}$. Therefore, in particular, we will see soon that, in the normal-errors model,

(8) $\widehat{\boldsymbol{\beta}}$ and $\widehat{\sigma^2}$ are independent.