Math 6010, Fall 2004: Midterm 1 Solutions

(1) Let $S=\left\{\boldsymbol{x} \in \mathbf{R}^{n}: x_{1}+x_{2}=c\right\}$ where $c \in \mathbf{R}$ is fixed.
(a) Find all constants c that make S a subspace of \mathbf{R}^{n}.

Solution. For S to be a subspace we need to know that: (i) whenever $\boldsymbol{x}, \boldsymbol{y} \in S$ then so is $\boldsymbol{x}+\boldsymbol{y}$; (ii) for all $\alpha \in \mathbf{R}$ and $\boldsymbol{x} \in S, \alpha \boldsymbol{x} \in S$. The unique solution is $c=0$.
(b) Compute the projection matrix \mathbf{P}_{S}. Use this to project the vector $\boldsymbol{x}=(1,0, \ldots, 0)^{\prime}$ onto the subspace S (with an appropriate choice of c).

Solution. First, we need a basis for S : If $\boldsymbol{x} \in S$ then

$$
\boldsymbol{x}=x_{1}\left(\begin{array}{c}
1 \\
-1 \\
0 \\
\vdots \\
0
\end{array}\right)+x_{3}\left(\begin{array}{c}
0 \\
0 \\
1 \\
\vdots \\
0
\end{array}\right)+\cdots+x_{n}\left(\begin{array}{c}
0 \\
0 \\
0 \\
\vdots \\
1
\end{array}\right) .
$$

Therefore, the following $n \times(n-1)$ matrix is a basismatrix for S :

$$
\boldsymbol{V}=\left(\begin{array}{ccc}
1 & \mid & \\
-1 & \mid & \\
- & - & - \\
& \mid & \mathbf{I}_{n-2}
\end{array}\right)
$$

where the blank spaces are all zeros. Thus, $\boldsymbol{V}^{\prime} \boldsymbol{V}=\left(\begin{array}{cccc}2 & \mid & \\ - & - & - \\ & & \mathbf{I}_{n-2}\end{array}\right)$.
[This is $(n-1) \times(n-1)$.] This is easy to invert:

$$
\left(\boldsymbol{V}^{\prime} \boldsymbol{V}\right)^{-1}=\left(\begin{array}{ccc}
\frac{1}{2} & \mid & \\
- & - & - \\
& & \mathbf{I}_{n-2}
\end{array}\right)
$$

Therefore,
$\mathbf{P}_{S}=\boldsymbol{V}\left(\boldsymbol{V}^{\prime} \boldsymbol{V}\right)^{-1} \boldsymbol{V}^{\prime}=\left(\begin{array}{cccc}\frac{1}{2} & -\frac{1}{2} & \mid & \\ -\frac{1}{2} & \frac{1}{2} & \mid & \\ - & - & - & - \\ & & & \mathbf{I}_{n-2}\end{array}\right)$.
In particular, $\mathbf{P}_{S}(1,0, \ldots, 0)^{\prime}=\left(\frac{1}{2},-\frac{1}{2}, 0, \ldots, 0\right)^{\prime}$.
(2) Consider the model,

$$
y=\beta_{1}+\beta_{2} \sin (x)+\varepsilon .
$$

(a) Compute the design matrix to obtain the linear model $\boldsymbol{Y}=\boldsymbol{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}$.

Solution. Let $s_{i}=\sin \left(x_{i}\right)$ for $i=1, \ldots, n$. Then, the answer is the following $n \times 2$ matrix:

$$
\boldsymbol{X}=\left(\begin{array}{cc}
1 & s_{1} \\
\vdots & \vdots \\
1 & s_{n}
\end{array}\right)
$$

(b) Compute the LSE $\widehat{\boldsymbol{\beta}}$ of $\widehat{\boldsymbol{\beta}}$.

Solution. Evidently,

$$
\boldsymbol{X}^{\prime} \boldsymbol{X}=n\left(\begin{array}{cc}
1 & \bar{s} \\
\bar{s} & s^{2}
\end{array}\right), \text { so that }\left(\boldsymbol{X}^{\prime} \boldsymbol{X}\right)^{-1}=\frac{1}{n \operatorname{Var}(\boldsymbol{s})}\left(\begin{array}{cc}
\overline{s^{2}} & -\bar{s} \\
-\bar{s} & 1
\end{array}\right),
$$

where $\operatorname{Var}(\boldsymbol{s})=\overline{s^{2}}-(\bar{s})^{2}$ is the (sample) variance of s_{1}, \ldots, s_{n}. Now $\widehat{\boldsymbol{\beta}}=\left(\boldsymbol{X}^{\prime} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\prime} \boldsymbol{Y}$. But

$$
\left(\boldsymbol{X}^{\prime} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\prime}=\frac{1}{n \operatorname{Var}(\boldsymbol{s})}\left(\begin{array}{ccc}
\overline{s^{2}}-s_{1} \bar{s} & \ldots & \overline{s^{2}}-s_{n} \bar{s} \\
s_{1}-\bar{s} & \cdots & s_{n}-\bar{s}
\end{array}\right) .
$$

Thus,

$$
\begin{aligned}
\widehat{\boldsymbol{\beta}} & =\frac{1}{n \operatorname{Var}(\boldsymbol{s})}\binom{\left(\overline{s^{2}}-s_{1} \bar{s}\right) y_{1}+\cdots+\left(\overline{s^{2}}-s_{n} \bar{s}\right) y_{n}}{\left(s_{1}-\bar{s}\right) y_{1}+\cdots+\left(s_{n}-\bar{s}\right) y_{n}} \\
& =\frac{1}{\operatorname{Var}(\boldsymbol{s})}\binom{\overline{s^{2}} \cdot \bar{y}-\bar{s} \cdot \overline{s y}}{\overline{s y}-\bar{s} \cdot \bar{y}} .
\end{aligned}
$$

This is more than enough. But it can be simplified into more familiar objects. Because $\overline{s^{2}}=\operatorname{Var}(\boldsymbol{s})+(\bar{s})^{2}$,

$$
\frac{\overline{s^{2}} \cdot \bar{y}-\bar{s} \cdot \overline{s y}}{\operatorname{Var}(\boldsymbol{y})}=\bar{y}-\bar{s} \frac{\bar{s} \cdot \bar{y}-\overline{s y}}{\operatorname{Var}(\boldsymbol{s})},
$$

which is equal to $\bar{y}-\bar{s} \operatorname{Corr}(\boldsymbol{s}, \boldsymbol{y}) \mathrm{SD}(\boldsymbol{s}) / \mathrm{SD}(\boldsymbol{y})$. Therefore,

$$
\widehat{\boldsymbol{\beta}}=\binom{\operatorname{Corr}(\boldsymbol{s}, \boldsymbol{y}) \frac{\mathrm{SD}(\boldsymbol{s})}{\mathrm{SD(} \mathrm{\boldsymbol{y})}}}{\bar{y}-\bar{s} \operatorname{Corr}(\boldsymbol{s}, \boldsymbol{y}) \frac{\mathrm{SD})}{\mathrm{SD}(\boldsymbol{y})}} .
$$

This is the more familar form of simple linear regression, but with the x_{i} 's replaced everywhere by $s_{i}=\sin \left(x_{i}\right)$.

