Math 6010, Fall 2004: Homework

Homework 4

\#1, page 136: As in the hint let $I_{i}=1$ if E_{i} is incorrect; else, let $I_{i}=0$. Then $\sum_{i} I_{i}$ denotes the number of incorrect statements, and $E\left[\sum_{i} I_{i}\right]=\sum_{i} E\left[I_{i}\right]=$ $\sum_{i} P\left(E_{i}\right)=\sum_{i} \alpha_{i}$ is the corresponding expectation.
\#2, page 136: Fix $k>1$, and define

$$
f(\alpha)=\left(1-\frac{\alpha}{k}\right)^{k}-(1-\alpha) \quad 0 \leq \alpha \leq 1
$$

Evidently,

$$
f^{\prime}(\alpha)=1-\left(1-\frac{\alpha}{k}\right)^{k-1}>0
$$

for all $\alpha>0$. This proves that the minimum of f occurs uniquely at $\alpha=0$; i.e., $f(\alpha)>f(0)$, which is the desired result.
\#4, page 136: A solution will be posted soon.
\#5, page 136: Every time we add a new variable we increase the variance (§5.4). Here, however, is a direct argument: Suppose we have the new model,

$$
G: \quad Y=X \boldsymbol{\beta}+\mathbf{Z} \boldsymbol{\gamma}+\boldsymbol{\varepsilon}=\boldsymbol{W} \boldsymbol{\delta}+\varepsilon,
$$

where $\boldsymbol{W}=(\boldsymbol{X}, \boldsymbol{Z})$ columnwise, and $\delta=\left(\boldsymbol{\beta}^{\prime}, \gamma^{\prime}\right)^{\prime}$. The least-squares predictor, under G, is

$$
\hat{\delta}_{G}=\left(\boldsymbol{W}^{\prime} \boldsymbol{W}\right)^{-1} \boldsymbol{W}^{\prime} \boldsymbol{Y} .
$$

Thus, the new predictor at $\left(x_{0}^{\prime}, \gamma_{0}^{\prime}\right)^{\prime}$ is:

$$
\hat{\Upsilon}_{0 G}=\left(x_{0}^{\prime}, \gamma_{0}^{\prime}\right)^{\prime} \hat{\delta}_{G} .
$$

By Theorem 3.6(iv) (p. 55),

$$
\operatorname{Var}\left(\hat{\delta}_{G}\right)=\left(\begin{array}{cc}
\left(\boldsymbol{X}^{\prime} \boldsymbol{X}\right)^{-1}+\boldsymbol{L M} \boldsymbol{L}^{\prime} & -\boldsymbol{L} \boldsymbol{M}^{\prime} \\
-\boldsymbol{M} L^{\prime} & \boldsymbol{M}
\end{array}\right)
$$

where $\boldsymbol{L}=\left(\boldsymbol{X}^{\prime} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\prime} \boldsymbol{Z}, \boldsymbol{M}=\left(\boldsymbol{Z}^{\prime} \boldsymbol{R} \boldsymbol{Z}\right)^{-1}$, and $\boldsymbol{R}=\mathbf{I}_{n}-\boldsymbol{W}\left(\boldsymbol{W}^{\prime} \boldsymbol{W}\right)^{-1} \boldsymbol{W}^{\prime}$. Therefore,

$$
\begin{aligned}
& \operatorname{Var}\left[\hat{Y}_{0 G}\right]=\left(\boldsymbol{x}_{0}^{\prime}, \gamma_{0}^{\prime}\right)^{\prime} \operatorname{Var}\left(\hat{\delta}_{G}\right)\left(\boldsymbol{x}_{0}^{\prime}, \gamma_{0}^{\prime}\right) \\
& =\sigma^{2}\left(\boldsymbol{x}_{0}^{\prime}\left(\boldsymbol{X}^{\prime} \boldsymbol{X}\right)^{-1} \boldsymbol{x}_{0}+\boldsymbol{x}_{0}^{\prime} \boldsymbol{L} \boldsymbol{M} \boldsymbol{L}^{\prime} \boldsymbol{x}_{0}-\gamma_{0}^{\prime} \boldsymbol{M} \boldsymbol{L}^{\prime} \boldsymbol{x}_{0}-\boldsymbol{x}_{0}^{\prime} \boldsymbol{L} \boldsymbol{M}^{\prime} \gamma_{0}+\gamma_{0}^{\prime} \boldsymbol{M} \gamma_{0}\right) \\
& =\sigma^{2}\left(\boldsymbol{x}_{0}^{\prime}\left(\boldsymbol{X}^{\prime} \boldsymbol{X}\right)^{-1} \boldsymbol{x}_{0}+\boldsymbol{x}_{0}^{\prime} \boldsymbol{L} \boldsymbol{M} \boldsymbol{L}^{\prime} \boldsymbol{x}_{0}-2 \gamma_{0}^{\prime} \boldsymbol{M} \boldsymbol{L}^{\prime} \boldsymbol{x}_{0}+\gamma_{0}^{\prime} \boldsymbol{M} \gamma_{0}\right) \\
& =\sigma^{2}\left(\boldsymbol{x}_{0}^{\prime}\left(\boldsymbol{X}^{\prime} \boldsymbol{X}\right)^{-1} \boldsymbol{x}_{0}+\left[\boldsymbol{L}^{\prime} \boldsymbol{x}_{0}-\gamma_{0}\right]^{\prime} \boldsymbol{M}\left[\boldsymbol{L}^{\prime} \boldsymbol{x}_{0}-\gamma_{0}\right]\right) \\
& \geq \sigma^{2} \boldsymbol{x}_{0}^{\prime}\left(\boldsymbol{X}^{\prime} \boldsymbol{X}\right)^{-1} \boldsymbol{x}_{0},
\end{aligned}
$$

as long as \boldsymbol{M} is positive definite. It remains to prove that \boldsymbol{M} is p.d. We can note that M^{-1} is positive definite, because $\boldsymbol{w}^{\prime} \boldsymbol{M} \boldsymbol{w}=\|R Z \boldsymbol{w}\|^{2}$ for all \boldsymbol{w}. (This uses $\boldsymbol{R}^{\prime} \boldsymbol{R}=\boldsymbol{R}$.) Therefore, \boldsymbol{M}^{-1} has all strictly positive eigenvalues,
which means that the same is true for M. This proves that M is p.d. and the result follows.
\#6, page 136: Let $\boldsymbol{a}=\left(a_{0}, a_{1}\right)^{\prime}$; we are to find simultaneous $100(1-\alpha) \%$-CI's for all linear combinations $\boldsymbol{a}^{\prime} \boldsymbol{\beta}$. An answer is,

$$
\boldsymbol{a}^{\prime} \hat{\boldsymbol{\beta}} \pm \sqrt{2 S^{2} \boldsymbol{a}^{\prime}\left(\boldsymbol{X}^{\prime} \boldsymbol{X}\right)^{-1} \boldsymbol{a} F_{2, n-2}(\alpha)}
$$

But here,

$$
\left(\boldsymbol{X}^{\prime} \boldsymbol{X}\right)^{-1}=\frac{1}{n s_{x}^{2}}\left(\begin{array}{cc}
\overline{x^{2}} & -\bar{x} \\
-\bar{x} & 1
\end{array}\right)
$$

Therefore,

$$
\boldsymbol{a}^{\prime}\left(\boldsymbol{X}^{\prime} \boldsymbol{X}\right)^{-1} \boldsymbol{a}=\frac{1}{n s_{x}^{2}}\left(a_{0}^{2} \overline{x^{2}}-2 a_{0} a_{1} \bar{x}+a_{1}^{2}\right) .
$$

\#5, page 196: Recall that $H_{0}: \mu_{1}=\cdots=\mu_{p}$, which imposes $q=p-1$ linear restrictions. In class we proved that

$$
\operatorname{RSS}_{H_{0}}-\operatorname{RSS}=\sum_{i=1}^{p} J_{i}\left(\bar{Y}_{i .}-\bar{Y}_{. .}\right)^{2}=\sum_{i=1}^{p} \sum_{j=1}^{J_{i}}\left(\bar{Y}_{i .}-\bar{Y}_{. .}\right)^{2}
$$

Therefore, by Theorem 4.1(ii) (p. 100),

$$
\begin{aligned}
E\left[\sum_{i=1}^{p} \sum_{j=1}^{J_{i}}\left(\bar{Y}_{i .}-\bar{Y}_{. .}\right)^{2}\right] & =\sigma^{2}(p-1)+\left(\operatorname{RSS}_{H_{0}}-\operatorname{RSS}\right)_{Y=E[\boldsymbol{Y}]} \\
& =\sigma^{2}(p-1)+\sum_{i=1}^{p} \sum_{j=1}^{J_{i}}\left(\mu_{i}-\frac{1}{p} \sum_{i=1}^{p} J_{i} \mu_{i}\right)^{2}
\end{aligned}
$$

This answers (a). For (b), note that

$$
\begin{aligned}
E\left[\sum_{i=1}^{n} \sum_{j=1}^{J_{i}}\left(Y_{i j}-\bar{Y}_{i .}\right)^{2}\right] & =\sum_{i=1}^{n} \sum_{j=1}^{J_{i}} E\left[\left(Y_{i j}-\bar{Y}_{i .}\right)^{2}\right] \\
& =\sum_{i=1}^{n} J_{i} E\left[\left(Y_{i 1}-\bar{Y}_{i .}\right)^{2}\right] \quad \text { (why?) } \\
& =\sum_{i=1}^{n} J_{i} \frac{\sigma^{2}}{J_{i}-1}=\sigma^{2} \sum_{i=1}^{n} \frac{J_{i}}{J_{i}-1}
\end{aligned}
$$

