Math 6010, Fall 2004: Homework

Homework 4

\#3, page 41: We have three samples, Y_{1}, Y_{2}, and Y_{3}. We have three noise terms, $\varepsilon_{1}, \varepsilon_{2}$, and ε_{3}, and we have two parameters, $\beta_{1}=\theta$ and $\beta_{2}=\phi$. The linear model, then, is

$$
\boldsymbol{Y}=X \boldsymbol{\beta}+\varepsilon \quad \text { where } \quad \boldsymbol{X}=\left(\begin{array}{cc}
1 & 0 \\
2 & -1 \\
1 & 2
\end{array}\right)
$$

Note that

$$
\boldsymbol{X}^{\prime} \boldsymbol{X}=\left(\begin{array}{ll}
6 & 5 \\
0 & 5
\end{array}\right), \quad \text { so that } \quad\left(\boldsymbol{X}^{\prime} \boldsymbol{X}\right)^{-1}=\left(\begin{array}{cc}
\frac{1}{6} & 0 \\
0 & \frac{1}{5}
\end{array}\right)
$$

In particular,

$$
\widehat{\boldsymbol{\beta}}=\binom{\widehat{\theta}}{\widehat{\phi}}=\left(\boldsymbol{X}^{\prime} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\prime} \boldsymbol{Y}=\left(\begin{array}{ccc}
\frac{1}{6} & \frac{1}{3} & \frac{1}{6} \\
0 & -\frac{1}{5} & \frac{2}{5}
\end{array}\right)\left(\begin{array}{l}
Y_{1} \\
Y_{2} \\
Y_{3}
\end{array}\right) .
$$

In other words,

$$
\begin{aligned}
& \widehat{\theta}=\frac{Y_{1}+2 Y_{2}+Y_{3}}{6} \\
& \widehat{\phi}=\frac{-Y_{2}+2 Y_{3}}{5}
\end{aligned}
$$

\#4, page 41: The design matrix is

$$
\boldsymbol{X}=\left(\begin{array}{ccc}
1 & x_{1} & 3 x_{1}^{2}-2 \\
1 & x_{2} & 3 x_{2}^{2}-2 \\
1 & x_{3} & 3 x_{3}^{2}-2
\end{array}\right)=\left(\begin{array}{ccc}
1 & -1 & 1 \\
1 & 0 & -2 \\
1 & 1 & 1
\end{array}\right)
$$

The matrix $\left(\boldsymbol{X}^{\prime} \boldsymbol{X}\right)^{-1}$ is the diagonal matrix with respective entries 3,2 , and 5. Therefore,

$$
\widehat{\boldsymbol{\beta}}=\left(\begin{array}{ccc}
3 & 3 & 3 \\
-2 & 0 & 2 \\
5 & -10 & 5
\end{array}\right) \boldsymbol{Y}
$$

So,

$$
\begin{aligned}
& \widehat{\beta_{0}}=3 Y_{1}+3 Y_{2}+3 Y_{3}, \\
& \widehat{\beta_{1}}=-2 Y_{1}+2 Y_{3}, \\
& \widehat{\beta_{2}}=5 Y_{1}-10 Y_{2}+Y_{3} .
\end{aligned}
$$

If we knew that $\beta_{2}=0$, then the design matrix is

$$
\boldsymbol{X}=\left(\begin{array}{cc}
1 & -1 \\
1 & 0
\end{array}\right) \Longrightarrow\left(\boldsymbol{X}^{\prime} \boldsymbol{X}\right)^{-1}=\left(\begin{array}{ll}
3 & 0 \\
0 & 2
\end{array}\right)
$$

The rest is easy.
\#1, page 49: We can write $Y_{i}=\theta+\varepsilon_{i}$ where $\varepsilon \sim N_{n}\left(0, \sigma^{2} \mathbf{I}_{n}\right)$. So this is a linear model with design matrix, $\boldsymbol{X}=\mathbf{1}_{n}$ [the n-vector of all ones]. Note that $\boldsymbol{X}^{\prime} \boldsymbol{X}=n$, so its inverse is $(1 / n)$. Therefore,

$$
\widehat{\theta}=\frac{1}{n} \boldsymbol{X}^{\prime} \boldsymbol{Y}=\bar{Y} .
$$

Therefore, the i th coordinate of $\boldsymbol{Y}-\widehat{\boldsymbol{\theta}}$ is $Y_{i}-\bar{Y}$. Because $\operatorname{rank}(\boldsymbol{X})=p=1$,

$$
S^{2}=\frac{\|\boldsymbol{Y}-\widehat{\boldsymbol{\theta}}\|^{2}}{n-1}=\frac{1}{n-1} \sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}
$$

Theorem 3.5 does the rest.
\#2, page 49: We are asked to prove the independence of the random variables $\|\boldsymbol{X}(\widehat{\boldsymbol{\beta}}-\boldsymbol{\beta})\|^{2}$ and $\|\boldsymbol{Y}-\boldsymbol{X} \widehat{\boldsymbol{\beta}}\|^{2}$. So, we can try to prove that $\boldsymbol{U}=\boldsymbol{X}(\widehat{\boldsymbol{\beta}}-\boldsymbol{\beta})$ and $\boldsymbol{V}=\boldsymbol{Y}-\boldsymbol{X} \widehat{\boldsymbol{\beta}}$ are independent.

Recall that $\boldsymbol{X} \widehat{\boldsymbol{\beta}}=\mathbf{P}_{\mathcal{C}(X)} \boldsymbol{Y}$. This proves that

$$
\boldsymbol{U}=\mathbf{P} \boldsymbol{Y}-\boldsymbol{\theta}, \quad \text { and } \quad \boldsymbol{V}=\mathbf{P}_{\perp} \boldsymbol{Y},
$$

where \mathbf{P} and \mathbf{P}_{\perp} denote projection onto $\mathcal{C}(\boldsymbol{X})$ and $\mathcal{C}(\boldsymbol{X})^{\perp}$, respectively. This proves that $(\boldsymbol{U}, \boldsymbol{V})^{\prime}$ is multivariate normal because

$$
\binom{\boldsymbol{U}}{\boldsymbol{V}}=\left(\begin{array}{cc}
\mathbf{P} & \mathbf{0} \\
\mathbf{0} & \mathbf{P}_{\perp}
\end{array}\right) \boldsymbol{Y}-\binom{\boldsymbol{\theta}}{\mathbf{0}} .
$$

It also proves that U and V are independent because

$$
\operatorname{Cov}(\boldsymbol{U}, \boldsymbol{V})=\operatorname{Cov}\left(\mathbf{P} \boldsymbol{Y}-\boldsymbol{\theta}, \mathbf{P}_{\perp} \boldsymbol{Y}\right)=\mathbf{P} \operatorname{Var}(\boldsymbol{Y}) \mathbf{P}_{\perp}=\sigma^{2} \mathbf{P} \mathbf{P}_{\perp}
$$

But $\mathbf{P P}_{\perp}=\mathbf{0}$, whence the result.

