Homework 4

#3, page 41: We have three samples, Y_1, Y_2 , and Y_3 . We have three noise terms, $\varepsilon_1, \varepsilon_2$, and ε_3 , and we have two parameters, $\beta_1 = \theta$ and $\beta_2 = \phi$. The linear model, then, is

$$Y = X\beta + \varepsilon$$
 where $X = \begin{pmatrix} 1 & 0 \\ 2 & -1 \\ 1 & 2 \end{pmatrix}$.

Note that

$$X'X = \begin{pmatrix} 6 & 5 \\ 0 & 5 \end{pmatrix}$$
, so that $(X'X)^{-1} = \begin{pmatrix} \frac{1}{6} & 0 \\ 0 & \frac{1}{5} \end{pmatrix}$

In particular,

$$\widehat{\boldsymbol{\beta}} = \begin{pmatrix} \widehat{\boldsymbol{\theta}} \\ \widehat{\boldsymbol{\phi}} \end{pmatrix} = \left(\boldsymbol{X}' \boldsymbol{X} \right)^{-1} \boldsymbol{X}' \boldsymbol{Y} = \begin{pmatrix} \frac{1}{6} & \frac{1}{3} & \frac{1}{6} \\ 0 & -\frac{1}{5} & \frac{2}{5} \end{pmatrix} \begin{pmatrix} Y_1 \\ Y_2 \\ Y_3 \end{pmatrix}.$$

In other words,

$$\widehat{\theta} = \frac{Y_1 + 2Y_2 + Y_3}{6},$$
$$\widehat{\phi} = \frac{-Y_2 + 2Y_3}{5}.$$

#4, page 41: The design matrix is

$$X = \begin{pmatrix} 1 & x_1 & 3x_1^2 - 2 \\ 1 & x_2 & 3x_2^2 - 2 \\ 1 & x_3 & 3x_3^2 - 2 \end{pmatrix} = \begin{pmatrix} 1 & -1 & 1 \\ 1 & 0 & -2 \\ 1 & 1 & 1 \end{pmatrix}$$

The matrix $(X'X)^{-1}$ is the diagonal matrix with respective entries 3, 2, and 5. Therefore,

$$\widehat{oldsymbol{eta}} = egin{pmatrix} 3 & 3 & 3 \ -2 & 0 & 2 \ 5 & -10 & 5 \end{pmatrix} \mathbf{Y}.$$

So,

$$\widehat{\beta_0} = 3Y_1 + 3Y_2 + 3Y_3, \widehat{\beta_1} = -2Y_1 + 2Y_3, \widehat{\beta_2} = 5Y_1 - 10Y_2 + Y_3.$$

If we knew that $\beta_2 = 0$, then the design matrix is

$$X = \begin{pmatrix} 1 & -1 \\ 1 & 0 \end{pmatrix} \implies (X'X)^{-1} = \begin{pmatrix} 3 & 0 \\ 0 & 2 \end{pmatrix}.$$

The rest is easy.

#1, page 49: We can write $Y_i = \theta + \varepsilon_i$ where $\varepsilon \sim N_n(\mathbf{0}, \sigma^2 \mathbf{I}_n)$. So this is a linear model with design matrix, $X = \mathbf{1}_n$ [the *n*-vector of all ones]. Note that X'X = n, so its inverse is (1/n). Therefore,

$$\widehat{\theta} = \frac{1}{n} X' Y = \overline{Y}.$$

Therefore, the *i*th coordinate of $\mathbf{Y} - \widehat{\mathbf{\theta}}$ is $Y_i - \overline{Y}$. Because rank $(\mathbf{X}) = p = 1$,

$$S^{2} = \frac{\left\|\boldsymbol{Y} - \widehat{\boldsymbol{\theta}}\right\|^{2}}{n-1} = \frac{1}{n-1} \sum_{i=1}^{n} (Y_{i} - \overline{Y})^{2}.$$

Theorem 3.5 does the rest.

#2, page 49: We are asked to prove the independence of the random variables $||X(\hat{\beta} - \beta)||^2$ and $||Y - X\hat{\beta}||^2$. So, we can try to prove that $U = X(\hat{\beta} - \beta)$ and $V = Y - X\hat{\beta}$ are independent.

Recall that $X\widehat{\beta} = \mathbf{P}_{\mathcal{C}(X)}Y$. This proves that

$$U = \mathbf{P}Y - \boldsymbol{\theta}$$
, and $V = \mathbf{P}_{\perp}Y$,

where **P** and **P**_{\perp} denote projection onto C(X) and $C(X)^{\perp}$, respectively. This proves that (U, V)' is multivariate normal because

$$\begin{pmatrix} \boldsymbol{U} \\ \boldsymbol{V} \end{pmatrix} = \begin{pmatrix} \boldsymbol{P} & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{P}_{\perp} \end{pmatrix} \boldsymbol{Y} - \begin{pmatrix} \boldsymbol{\theta} \\ \boldsymbol{0} \end{pmatrix}$$

It also proves that **U** and **V** are independent because

 $\operatorname{Cov}(\boldsymbol{U}, \boldsymbol{V}) = \operatorname{Cov}(\mathbf{P}\boldsymbol{Y} - \boldsymbol{\theta}, \mathbf{P}_{\perp}\boldsymbol{Y}) = \mathbf{P}\operatorname{Var}(\boldsymbol{Y})\mathbf{P}_{\perp} = \sigma^{2}\mathbf{P}\mathbf{P}_{\perp}.$ But $\mathbf{P}\mathbf{P}_{\perp} = \mathbf{0}$, whence the result.