Math 6010, Fall 2004: Homework

Homework 3

#2, page 23: Recall that $\mathbf{Y} \sim N_n(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ iff for all $\mathbf{t} \in \mathbf{R}^n, \mathbf{t}' \mathbf{Y} \sim N(\mathbf{t}'\boldsymbol{\mu}, \mathbf{t}'\boldsymbol{\Sigma}\mathbf{t})$. Choose \mathbf{t} such that $t_i = 1$ and $t_j = 0$ for $j \neq i$. Then $\mathbf{t}'\mathbf{Y} = Y_i, \mathbf{t}'\boldsymbol{\mu} = \mu_i$, and $\mathbf{t}'\boldsymbol{\Sigma}\mathbf{t} = \sigma_{i,i}$.

#3, page 23: Of course, Z = AY, where

$$\boldsymbol{A} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & -1 & 0 \end{pmatrix}.$$

Therefore, $\boldsymbol{Z} \sim N_2(\boldsymbol{A}\boldsymbol{\mu}, \boldsymbol{A}\boldsymbol{\Sigma}\boldsymbol{A}')$. This is a bivariate normal;

$$oldsymbol{A}oldsymbol{\mu} = egin{pmatrix} 5 \ 1 \end{pmatrix} oldsymbol{A}oldsymbol{\mu}oldsymbol{A}' = egin{pmatrix} 10 & -1 \ -1 & 3 \end{pmatrix}.$$

#5, page 24: Each (X_i, Y_i) is obtained from linear combination of two i.i.d. standard normals. That is, $X_i = a_{i,1}Z_{i,1} + a_{i,2}Z_{i,2}$ and $Y_i = b_{i,1}Z_{i,1} + b_{i,2}Z_{i,2}$, where $Z_{1,1}, Z_{1,2}, Z_{2,1}, Z_{2,2}, \ldots, Z_{n,1}, Z_{n,2}$ are i.i.d. standard normals, and $a_{i,j}$'s and $b_{i,j}$'s are constants. Therefore,

$$\begin{pmatrix} X_1 \\ Y_1 \\ X_2 \\ Y_2 \\ \vdots \\ X_n \\ Y_n \end{pmatrix} = \begin{pmatrix} \mathbf{A}_1 & & \\ & \mathbf{A}_2 & \\ & & \ddots & \\ & & & \mathbf{A}_n \end{pmatrix} \begin{pmatrix} Z_{1,1} \\ Z_{1,2} \\ Z_{2,1} \\ Z_{2,1} \\ Z_{2,2} \\ \vdots \\ Z_{n,1} \\ Z_{n,1} \end{pmatrix},$$

where the empty parts of the matrix with \boldsymbol{A} 's in it are are zero, and

$$oldsymbol{A}_j = egin{pmatrix} a_{j,1} & a_{j,2} \ b_{j,1} & b_{j,2} \end{pmatrix}.$$

This proves that $(X_1, Y_1, \ldots, X_n, Y_n)'$ is multivariate normal. Therefore, so is

$$\begin{pmatrix} \overline{X} \\ \overline{Y} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 1 & 0 & \cdots & 1 & 0 \\ 0 & 1 & 0 & 1 & \cdots & 0 & 1 \end{pmatrix} \begin{pmatrix} X_1 \\ Y_1 \\ X_2 \\ Y_2 \\ \vdots \\ X_n \\ Y_n \end{pmatrix}$$

It is easiest to compute the mean and variance matrix directly though. Suppose $EX_1 = \mu_X$, $EY_1 = \mu_Y$, $\operatorname{Var} X_1 = \sigma_X^2$, $\operatorname{Var} Y_1 = \sigma_Y^2$, and $\operatorname{Cor}(X_1, Y_1) = \rho$. Then, $E\overline{X} = EX_1 = \mu_X$, $E\overline{Y} = EY_1 = \mu_Y$, $\operatorname{Var} \overline{X} = \sigma_X^2/n$, $\operatorname{Var} \overline{Y} = \sigma_Y^2/n$. Finally,

$$\operatorname{Cov}(\overline{X}, \overline{Y}) = \operatorname{Cov}\left(\frac{1}{n} \sum_{i=1}^{n} X_{i}, \frac{1}{n} \sum_{j=1}^{n} Y_{j}\right)$$
$$= \frac{1}{n^{2}} \sum_{i=1}^{n} \sum_{j=1}^{n} \operatorname{Cov}(X_{i}, Y_{j}) = \frac{1}{n^{2}} \sum_{i=1}^{n} \operatorname{Cov}(X_{i}, Y_{i})$$
$$= \frac{\rho \sigma_{X} \sigma_{Y}}{n}.$$

Therefore, $\operatorname{Cor}(\overline{X}, \overline{Y}) = \operatorname{Cov}(\overline{X}, \overline{Y}) / \operatorname{SD}(\overline{X}) \operatorname{SD}(\overline{Y}) = \rho$. Thus, $(\overline{X}, \overline{Y}) \sim N_2(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, where

$$oldsymbol{\mu} = egin{pmatrix} \mu_X \ \mu_Y \end{pmatrix} \qquad oldsymbol{\Sigma} = egin{pmatrix} \sigma_X^2/n &
ho \
ho & \sigma_Y^2/n \end{pmatrix}.$$

#6, page 24: Let $\mu_i = EY_2$ and $\sigma_i^2 = \operatorname{Var} Y_i$. Also define $\rho = \operatorname{Cor}(Y_1, Y_2)$.

Define $Z_1 = Y_1 + Y_2$ and $Z_2 = Y_1 - Y_2$. Then we are told that Z_1 and Z_2 are independent N(0, 1)'s. Note that

$$\begin{pmatrix} Y_1 \\ Y_2 \end{pmatrix} = \boldsymbol{A} \begin{pmatrix} Z_1 \\ Z_2 \end{pmatrix}$$
 where $\boldsymbol{A} = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ -\frac{1}{2} & -\frac{1}{2} \end{pmatrix}$.

Therefore, $(Y_1, Y_2)'$ is bivariate normal with

$$E\mathbf{Y} = \begin{pmatrix} 0\\ 0 \end{pmatrix}$$
 and $\operatorname{Var}\mathbf{Y} = \mathbf{A}\mathbf{A}' = \frac{1}{2}\begin{pmatrix} 1 & -1\\ -1 & 1 \end{pmatrix}$.

#5, page 32: Define

$$oldsymbol{W} = \left(\mathrm{I}_n - rac{oldsymbol{a}oldsymbol{a}'}{\|oldsymbol{a}\|^2}
ight) oldsymbol{Y} := oldsymbol{A}oldsymbol{Y}.$$

[NB: aa' is an $n \times n$ matrix.] We compute directly to find that

$$egin{aligned} \operatorname{Cov}(oldsymbol{W},oldsymbol{a}'oldsymbol{Y}) &= oldsymbol{A}\operatorname{Cov}(oldsymbol{Y},oldsymbol{Y})oldsymbol{a} &= oldsymbol{A}\ &= oldsymbol{a} - rac{oldsymbol{a}oldsymbol{a}'}{\|oldsymbol{a}\|^2}oldsymbol{a} &= oldsymbol{0}. \end{aligned}$$

This proves that W and a'Y are independent (Theorem 2.5). Note that A is symmetric and idempotent (i.e., $A^2 = A$). Therefore,

$$egin{aligned} \|oldsymbol{W}\|^2 &= oldsymbol{W}'oldsymbol{W} = oldsymbol{Y}'oldsymbol{A}^2oldsymbol{Y} = oldsymbol{Y}'oldsymbol{Y} - oldsymbol{M}'oldsymbol{a}^2oldsymbol{Y} = oldsymbol{Y}'oldsymbol{Y} - rac{\|oldsymbol{a}'oldsymbol{Y}\|^2}{\|oldsymbol{a}\|^2}. \end{aligned}$$

Turn this around to see that $\|\mathbf{Y}\|^2 = \|\mathbf{W}\|^2 + \|\mathbf{a}'\mathbf{Y}\|^2/\|\mathbf{a}\|^2$. Because \mathbf{W} is independent of $\mathbf{a}'\mathbf{Y}$, the conditional distribution of $\|\mathbf{Y}\|^2$ given $\mathbf{a}'\mathbf{Y} = 0$ is the same as the (unconditional) distribution of $\|\mathbf{W}\|^2 = \|\mathbf{A}\mathbf{Y}\|^2$. Thanks to Theorem 2.8, the said distribution is χ_r^2 where r denotes the number of eigenvalues of \mathbf{A} that are one; whence, n - r eigenvalues are zero. It remains to prove that r = n - 1. This follows immediately from the fact that the only non-zero solution to $\mathbf{A}\mathbf{x} = \mathbf{0}$ is $\mathbf{x} = \mathbf{a}$. To see this note that $\mathbf{A}\mathbf{a} = \mathbf{0}$, so \mathbf{a} is a solution to $\mathbf{A}\mathbf{x} = \mathbf{0}$. Suppose there were another non-zero solution to $\mathbf{A}\mathbf{x} = \mathbf{0}$. We can use Gramm–Schmitt to obtain a non-zero solution \mathbf{v} to $\mathbf{A}\mathbf{x} = \mathbf{0}$ with the property that \mathbf{v} is orthogonal to \mathbf{a} ; i.e., $\mathbf{v}'\mathbf{a} = 0$. Note that $\mathbf{a}\mathbf{a}'\mathbf{v} = 0$ so that $\mathbf{0} = \mathbf{A}\mathbf{v} = \mathbf{v}$. Therefore, there is exactly one non-zero solution to $\mathbf{A}\mathbf{x} = \mathbf{0}$, and that is $\mathbf{x} = \mathbf{a}$. Equivalently, the column rank of \mathbf{A} is r = n - 1.

#6, page 32: Let $X_i = (Y_i - \mu_i)/\sqrt{1-\rho}$ to find that $\mathbf{X} \sim N_n(\mathbf{0}, (1-\rho)^{-1}\mathbf{\Sigma})$. Because $(Y_i - \overline{Y})/\sqrt{1-\rho} = X_i - \overline{X}$,

$$\begin{pmatrix} \frac{Y_1 - \overline{Y}}{\sqrt{1 - \rho}} \\ \vdots \\ \frac{Y_n - \overline{Y}}{\sqrt{1 - \rho}} \end{pmatrix} = \boldsymbol{A} \boldsymbol{X}, \text{ where } \boldsymbol{A} = \frac{1}{\sqrt{1 - \rho}} \left(\mathbf{I}_n - \frac{1}{n} \mathbf{1}_n \mathbf{1}'_n \right),$$

since $\mathbf{1}_n \mathbf{1}'_n$ is an $n \times n$ matrix of all ones. The first thing to notice is that $A\mathbf{1}_n\mathbf{1}'_n = \mathbf{0}$. This follows from the fact that

 $(\mathbf{1}_{n}\mathbf{1}_{n}')^{2} = n\mathbf{1}_{n}\mathbf{1}_{n}'$. In particular, $\mathbf{A}^{2} = (1-\rho)^{-1}$. In addition, $\mathbf{A}\mathbf{Var}\mathbf{X} = \frac{1}{\sqrt{1-\rho}}\mathbf{A}\mathbf{\Sigma}$ $= \sqrt{1-\rho}\mathbf{A} + \frac{\rho}{\sqrt{1-\rho}}\mathbf{A}\mathbf{1}_{n}\mathbf{1}_{n}' = \sqrt{1-\rho}\mathbf{A}.$

Therefore, $\mathbf{A} \operatorname{Var} \mathbf{X}$ is idempotent. The corollary on page 30 tells us then that $\|\mathbf{A}\mathbf{X}\|^2 \sim \chi_r^2$ where $r = \operatorname{rank}(\mathbf{A} \operatorname{Var} \mathbf{X})$. Note that

$$\|\mathbf{A}\mathbf{X}\|^2 = \frac{1}{1-\rho} \sum_{i=1}^n (Y_i - \overline{Y})^2.$$

Therefore, it suffices to prove that r = n - 1. That is, we wish to prove that there is exactly one solution to AVar(X)x = 0. This was proved in #5, page 32; simply set $a = 1_n$ there.

#11, page 32: One can check that Y = Aa, where A(n + 1) columns and n rows) as follows:

$$\boldsymbol{A} = \begin{pmatrix} \phi & 1 & 0 & 0 & 0 & \cdots & 0 & 0 \\ 0 & \phi & 1 & 0 & 0 & \cdots & 0 & 0 \\ 0 & 0 & \phi & 1 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \ddots & \ddots & \vdots & \vdots \\ \vdots & \vdots & \vdots & \vdots & \ddots & \ddots & \vdots & \vdots \\ \vdots & \vdots & \vdots & \vdots & \ddots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 & \cdots & \phi & 1 \end{pmatrix}$$

So $\boldsymbol{Y} \sim N_n(\boldsymbol{0}, \sigma^2 \boldsymbol{A} \boldsymbol{A}')$. To finish, we compute the $n \times n$ matrix,

	$(\phi^2 + 1)$	ϕ	0	0	•••	0	0	0	0	
$oldsymbol{A}oldsymbol{A}' =$	ϕ	$\phi^2 + 1$	ϕ	0	•••	0	0	0	0	
	0	ϕ	$\phi^2 + 1$	ϕ	•••	0	0	0	0	
	÷	:	·	·.	·	÷	÷	:	÷	
	÷	÷	÷	·.	·.	·	÷	÷	÷	
			÷							
	0	0	0	0	•••	ϕ	$\phi^2 + 1$	ϕ	0	
	0	0	0	0	•••	0	ϕ	$\phi^2 + 1$	ϕ	

That is, $(\mathbf{A}\mathbf{A}')_{i,i} = \phi^2 + 1$, $(\mathbf{A}\mathbf{A}')_{i,i+1} = (\mathbf{A}\mathbf{A}')_{i,i-1} = \phi$, and for all $j \notin \{i, i \pm 1\}$, $(\mathbf{A}\mathbf{A}')_{i,j} = 0$.