Math 6010, Fall 2004: Homework

Homework 3

\#2, page 23: Recall that $\boldsymbol{Y} \sim N_{n}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ iff for all $\boldsymbol{t} \in \mathbf{R}^{n}, \boldsymbol{t}^{\prime} \boldsymbol{Y} \sim$ $N\left(\boldsymbol{t}^{\prime} \boldsymbol{\mu}, \boldsymbol{t}^{\prime} \boldsymbol{\Sigma} \boldsymbol{t}\right)$. Choose \boldsymbol{t} such that $t_{i}=1$ and $t_{j}=0$ for $j \neq i$. Then $\boldsymbol{t}^{\prime} \boldsymbol{Y}=Y_{i}, \boldsymbol{t}^{\prime} \boldsymbol{\mu}=\mu_{i}$, and $\boldsymbol{t}^{\prime} \boldsymbol{\Sigma} \boldsymbol{t}=\sigma_{i, i}$.
\#3, page 23: Of course, $\boldsymbol{Z}=\boldsymbol{A} \boldsymbol{Y}$, where

$$
\boldsymbol{A}=\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & -1 & 0
\end{array}\right)
$$

Therefore, $\boldsymbol{Z} \sim N_{2}\left(\boldsymbol{A} \boldsymbol{\mu}, \boldsymbol{A} \boldsymbol{\Sigma} \boldsymbol{A}^{\prime}\right)$. This is a bivariate normal;

$$
\boldsymbol{A} \boldsymbol{\mu}=\binom{5}{1} \quad \boldsymbol{A} \boldsymbol{\mu} \boldsymbol{A}^{\prime}=\left(\begin{array}{cc}
10 & -1 \\
-1 & 3
\end{array}\right) .
$$

\#5, page 24: Each $\left(X_{i}, Y_{i}\right)$ is obtained from linear combination of two i.i.d. standard normals. That is, $X_{i}=a_{i, 1} Z_{i, 1}+a_{i, 2} Z_{i, 2}$ and $Y_{i}=b_{i, 1} Z_{i, 1}+b_{i, 2} Z_{i, 2}$, where $Z_{1,1}, Z_{1,2}, Z_{2,1}, Z_{2,2}, \ldots, Z_{n, 1}, Z_{n, 2}$ are i.i.d. standard normals, and $a_{i, j}$'s and $b_{i, j}$'s are constants. Therefore,

$$
\left(\begin{array}{c}
X_{1} \\
Y_{1} \\
X_{2} \\
Y_{2} \\
\vdots \\
X_{n} \\
Y_{n}
\end{array}\right)=\left(\begin{array}{llll}
\boldsymbol{A}_{1} & & & \\
& \boldsymbol{A}_{2} & & \\
& & \ddots & \\
& & & \boldsymbol{A}_{n}
\end{array}\right)\left(\begin{array}{c}
Z_{1,1} \\
Z_{1,2} \\
Z_{2,1} \\
Z_{2,2} \\
\vdots \\
Z_{n, 1} \\
Z_{n, 1}
\end{array}\right),
$$

where the empty parts of the matrix with \boldsymbol{A} 's in it are are zero, and

$$
\boldsymbol{A}_{j}=\left(\begin{array}{cc}
a_{j, 1} & a_{j, 2} \\
b_{j, 1} & b_{j, 2}
\end{array}\right)
$$

This proves that $\left(X_{1}, Y_{1}, \ldots, X_{n}, Y_{n}\right)^{\prime}$ is multivariate normal. Therefore, so is

$$
(\bar{X})=\left(\begin{array}{ccccccc}
1 & 0 & 1 & 0 & \cdots & 1 & 0 \\
0 & 1 & 0 & 1 & \cdots & 0 & 1
\end{array}\right)\left(\begin{array}{c}
X_{1} \\
Y_{1} \\
X_{2} \\
Y_{2} \\
\vdots \\
X_{n} \\
Y_{n}
\end{array}\right) .
$$

It is easiest to compute the mean and variance matrix directly though. Suppose $E X_{1}=\mu_{X}, E Y_{1}=\mu_{Y}, \operatorname{Var} X_{1}=\sigma_{X}^{2}, \operatorname{Var} Y_{1}=$ σ_{Y}^{2}, and $\operatorname{Cor}\left(X_{1}, Y_{1}\right)=\rho$. Then, $E \bar{X}=E X_{1}=\mu_{X}, E \bar{Y}=$ $E Y_{1}=\mu_{Y}, \operatorname{Var} \bar{X}=\sigma_{X}^{2} / n, \operatorname{Var} \bar{Y}=\sigma_{Y}^{2} / n$. Finally,

$$
\begin{aligned}
\operatorname{Cov}(\bar{X}, \bar{Y}) & =\operatorname{Cov}\left(\frac{1}{n} \sum_{i=1}^{n} X_{i}, \frac{1}{n} \sum_{j=1}^{n} Y_{j}\right) \\
& =\frac{1}{n^{2}} \sum_{i=1}^{n} \sum_{j=1}^{n} \operatorname{Cov}\left(X_{i}, Y_{j}\right)=\frac{1}{n^{2}} \sum_{i=1}^{n} \operatorname{Cov}\left(X_{i}, Y_{i}\right) \\
& =\frac{\rho \sigma_{X} \sigma_{Y}}{n} .
\end{aligned}
$$

Therefore, $\operatorname{Cor}(\bar{X}, \bar{Y})=\operatorname{Cov}(\bar{X}, \bar{Y}) / \operatorname{SD}(\bar{X}) \operatorname{SD}(\bar{Y})=\rho$. Thus, $(\bar{X}, \bar{Y}) \sim N_{2}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, where

$$
\boldsymbol{\mu}=\binom{\mu_{X}}{\mu_{Y}} \quad \boldsymbol{\Sigma}=\left(\begin{array}{cc}
\sigma_{X}^{2} / n & \rho \\
\rho & \sigma_{Y}^{2} / n
\end{array}\right) .
$$

\#6, page 24: Let $\mu_{i}=E Y_{2}$ and $\sigma_{i}^{2}=\operatorname{Var} Y_{i}$. Also define $\rho=$ $\operatorname{Cor}\left(Y_{1}, Y_{2}\right)$.

Define $Z_{1}=Y_{1}+Y_{2}$ and $Z_{2}=Y_{1}-Y_{2}$. Then we are told that Z_{1} and Z_{2} are independent $N(0,1)$'s. Note that

$$
\binom{Y_{1}}{Y_{2}}=\boldsymbol{A}\binom{Z_{1}}{Z_{2}} \text { where } \boldsymbol{A}=\left(\begin{array}{cc}
\frac{1}{2} & \frac{1}{2} \\
-\frac{1}{2} & -\frac{1}{2}
\end{array}\right) .
$$

Therefore, $\left(Y_{1}, Y_{2}\right)^{\prime}$ is bivariate normal with

$$
E \boldsymbol{Y}=\binom{0}{0} \text { and } \operatorname{Var} \boldsymbol{Y}=\boldsymbol{A} \boldsymbol{A}^{\prime}=\frac{1}{2}\left(\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right) .
$$

\#5, page 32: Define

$$
\boldsymbol{W}=\left(\mathrm{I}_{n}-\frac{\boldsymbol{a} \boldsymbol{a}^{\prime}}{\|\boldsymbol{a}\|^{2}}\right) \boldsymbol{Y}:=\boldsymbol{A} \boldsymbol{Y}
$$

[NB: $\boldsymbol{a} \boldsymbol{a}^{\prime}$ is an $n \times n$ matrix.] We compute directly to find that

$$
\begin{aligned}
\operatorname{Cov}\left(\boldsymbol{W}, \boldsymbol{a}^{\prime} \boldsymbol{Y}\right) & =\boldsymbol{A} \operatorname{Cov}(\boldsymbol{Y}, \boldsymbol{Y}) \boldsymbol{a}=\boldsymbol{A} \boldsymbol{a} \\
& =\boldsymbol{a}-\frac{\boldsymbol{a} \boldsymbol{a}^{\prime}}{\|\boldsymbol{a}\|^{2}} \boldsymbol{a}=\mathbf{0}
\end{aligned}
$$

This proves that \boldsymbol{W} and $\boldsymbol{a}^{\prime} \boldsymbol{Y}$ are independent (Theorem 2.5). Note that \boldsymbol{A} is symmetric and idempotent (i.e., $\boldsymbol{A}^{2}=\boldsymbol{A}$). Therefore,

$$
\begin{aligned}
\|\boldsymbol{W}\|^{2} & =\boldsymbol{W}^{\prime} \boldsymbol{W}=\boldsymbol{Y}^{\prime} \boldsymbol{A}^{2} \boldsymbol{Y}=\boldsymbol{Y}^{\prime} \boldsymbol{Y}-\boldsymbol{Y}^{\prime} \frac{\boldsymbol{a a ^ { \prime }}}{\|\boldsymbol{a}\|^{2}} \boldsymbol{Y} \\
& =\boldsymbol{Y}^{\prime} \boldsymbol{Y}-\frac{\left\|\boldsymbol{a}^{\prime} \boldsymbol{Y}\right\|^{2}}{\|\boldsymbol{a}\|^{2}}
\end{aligned}
$$

Turn this around to see that $\|\boldsymbol{Y}\|^{2}=\|\boldsymbol{W}\|^{2}+\left\|\boldsymbol{a}^{\prime} \boldsymbol{Y}\right\|^{2} /\|\boldsymbol{a}\|^{2}$. Because \boldsymbol{W} is independent of $\boldsymbol{a}^{\prime} \boldsymbol{Y}$, the conditional distribution of $\|\boldsymbol{Y}\|^{2}$ given $\boldsymbol{a}^{\prime} \boldsymbol{Y}=0$ is the same as the (unconditional) distribution of $\|\boldsymbol{W}\|^{2}=\|\boldsymbol{A} \boldsymbol{Y}\|^{2}$. Thanks to Theorem 2.8, the said distribution is χ_{r}^{2} where r denotes the number of eigenvalues of \boldsymbol{A} that are one; whence, $n-r$ eigenvalues are zero. It remains to prove that $r=n-1$. This follows immediately from the fact that the only non-zero solution to $\boldsymbol{A x}=\mathbf{0}$ is $\boldsymbol{x}=\boldsymbol{a}$. To see this note that $\boldsymbol{A} \boldsymbol{a}=\mathbf{0}$, so \boldsymbol{a} is a solution to $\boldsymbol{A} \boldsymbol{x}=\mathbf{0}$. Suppose there were another non-zero solution to $\boldsymbol{A} \boldsymbol{x}=\mathbf{0}$. We can use Gramm-Schmitt to obtain a non-zero solution \boldsymbol{v} to $\boldsymbol{A} \boldsymbol{x}=\mathbf{0}$ with the property that \boldsymbol{v} is orthogonal to \boldsymbol{a}; i.e., $\boldsymbol{v}^{\prime} \boldsymbol{a}=0$. Note that $\boldsymbol{a} \boldsymbol{a}^{\prime} \boldsymbol{v}=0$ so that $\mathbf{0}=\boldsymbol{A} \boldsymbol{v}=\boldsymbol{v}$. Therefore, there is exactly one non-zero solution to $\boldsymbol{A} \boldsymbol{x}=\mathbf{0}$, and that is $\boldsymbol{x}=\boldsymbol{a}$. Equivalently, the column rank of \boldsymbol{A} is $r=n-1$.
\#6, page 32: Let $X_{i}=\left(Y_{i}-\mu_{i}\right) / \sqrt{1-\rho}$ to find that $\boldsymbol{X} \sim$ $N_{n}\left(\mathbf{0},(1-\rho)^{-1} \boldsymbol{\Sigma}\right)$. Because $\left(Y_{i}-\bar{Y}\right) / \sqrt{1-\rho}=X_{i}-\bar{X}$, $\left(\begin{array}{c}\frac{Y_{1}-\bar{Y}}{\sqrt{1-\rho}} \\ \vdots \\ \frac{Y_{n}-\bar{Y}}{\sqrt{1-\rho}}\end{array}\right)=\boldsymbol{A} \boldsymbol{X}$, where $\boldsymbol{A}=\frac{1}{\sqrt{1-\rho}}\left(\mathbf{I}_{n}-\frac{1}{n} \mathbf{1}_{n} \mathbf{1}_{n}^{\prime}\right)$,
since $\mathbf{1}_{n} \mathbf{1}_{n}^{\prime}$ is an $n \times n$ matrix of all ones. The first thing to notice is that $\boldsymbol{A} \mathbf{1}_{n} \mathbf{1}_{n}^{\prime}=\mathbf{0}$. This follows from the fact that

4
$\left(\mathbf{1}_{n} \mathbf{1}_{n}^{\prime}\right)^{2}=n \mathbf{1}_{n} \mathbf{1}_{n}^{\prime}$. In particular, $\boldsymbol{A}^{2}=(1-\rho)^{-1}$. In addition,

$$
\begin{aligned}
\boldsymbol{A} \operatorname{Var} \boldsymbol{X} & =\frac{1}{\sqrt{1-\rho}} \boldsymbol{A} \boldsymbol{\Sigma} \\
& =\sqrt{1-\rho} \boldsymbol{A}+\frac{\rho}{\sqrt{1-\rho}} \boldsymbol{A} \mathbf{1}_{n} \mathbf{1}_{n}^{\prime}=\sqrt{1-\rho} \boldsymbol{A}
\end{aligned}
$$

Therefore, $\boldsymbol{A} \operatorname{Var} \boldsymbol{X}$ is idempotent. The corollary on page 30 tells us then that $\|\boldsymbol{A} \boldsymbol{X}\|^{2} \sim \chi_{r}^{2}$ where $r=\operatorname{rank}(\boldsymbol{A} \operatorname{Var} \boldsymbol{X})$. Note that

$$
\|\boldsymbol{A} \boldsymbol{X}\|^{2}=\frac{1}{1-\rho} \sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}
$$

Therefore, it suffices to prove that $r=n-1$. That is, we wish to prove that there is exactly one solution to $\boldsymbol{A} \operatorname{Var}(\boldsymbol{X}) \boldsymbol{x}=\mathbf{0}$. This was proved in $\# 5$, page 32 ; simply set $\boldsymbol{a}=\mathbf{1}_{n}$ there.
\#11, page 32: One can check that $\boldsymbol{Y}=\boldsymbol{A} \boldsymbol{a}$, where $\boldsymbol{A}(n+1$ columns and n rows) as follows:

$$
\boldsymbol{A}=\left(\begin{array}{cccccccc}
\phi & 1 & 0 & 0 & 0 & \cdots & 0 & 0 \\
0 & \phi & 1 & 0 & 0 & \cdots & 0 & 0 \\
0 & 0 & \phi & 1 & 0 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \ddots & \cdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \ddots & \ddots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & 0 & 0 & 0 & \cdots & \phi & 1
\end{array}\right) .
$$

So $\boldsymbol{Y} \sim N_{n}\left(\mathbf{0}, \sigma^{2} \boldsymbol{A} \boldsymbol{A}^{\prime}\right)$. To finish, we compute the $n \times n$ matrix,

$$
\boldsymbol{A} \boldsymbol{A}^{\prime}=\left(\begin{array}{ccccccccc}
\phi^{2}+1 & \phi & 0 & 0 & \cdots & 0 & 0 & 0 & 0 \\
\phi & \phi^{2}+1 & \phi & 0 & \cdots & 0 & 0 & 0 & 0 \\
0 & \phi & \phi^{2}+1 & \phi & \cdots & 0 & 0 & 0 & 0 \\
\vdots & \vdots & \ddots & \ddots & \ddots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \ddots & \ddots & \ddots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \ddots & \ddots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \cdots & \phi & \phi^{2}+1 & \phi & 0 \\
0 & 0 & 0 & 0 & \cdots & 0 & \phi & \phi^{2}+1 & \phi
\end{array}\right) .
$$

That is, $\left(\boldsymbol{A} \boldsymbol{A}^{\prime}\right)_{i, i}=\phi^{2}+1,\left(\boldsymbol{A} \boldsymbol{A}^{\prime}\right)_{i, i+1}=\left(\boldsymbol{A} \boldsymbol{A}^{\prime}\right)_{i, i-1}=\phi$, and for all $j \notin\{i, i \pm 1\},\left(\boldsymbol{A} \boldsymbol{A}^{\prime}\right)_{i, j}=0$.

