
Math 6010, Fall 2004: Homework

Homework 3

#2, page 23: Recall that Y ∼ Nn(µ,Σ) iff for all t ∈ Rn, t′Y ∼
N(t′µ, t′Σt). Choose t such that ti = 1 and tj = 0 for j 6= i.
Then t′Y = Yi, t′µ = µi, and t′Σt = σi,i.

#3, page 23: Of course, Z = AY , where

A =

(
1 1 1
1 − 1 0

)
.

Therefore, Z ∼ N2(Aµ, AΣA′). This is a bivariate normal;

Aµ =

(
5
1

)
AµA′ =

(
10 − 1
− 1 3

)
.

#5, page 24: Each (Xi, Yi) is obtained from linear combination
of two i.i.d. standard normals. That is, Xi = ai,1Zi,1 + ai,2Zi,2

and Yi = bi,1Zi,1+bi,2Zi,2, where Z1,1, Z1,2, Z2,1, Z2,2, . . . , Zn,1, Zn,2

are i.i.d. standard normals, and ai,j’s and bi,j’s are constants.
Therefore,

X1

Y1

X2

Y2
...

Xn

Yn


=


A1

A2

. . .
An





Z1,1

Z1,2

Z2,1

Z2,2
...

Zn,1

Zn,1


,

where the empty parts of the matrix with A’s in it are are zero,
and

Aj =

(
aj,1 aj,2

bj,1 bj,2

)
.

1



2

This proves that (X1, Y1, . . . , Xn, Yn)′ is multivariate normal.
Therefore, so is

(
X
Y

)
=

(
1 0 1 0 · · · 1 0
0 1 0 1 · · · 0 1

)


X1

Y1

X2

Y2
...

Xn

Yn


.

It is easiest to compute the mean and variance matrix directly
though. Suppose EX1 = µX , EY1 = µY , VarX1 = σ2

X , VarY1 =
σ2

Y , and Cor(X1, Y1) = ρ. Then, EX = EX1 = µX , EY =
EY1 = µY , VarX = σ2

X/n, VarY = σ2
Y /n. Finally,

Cov(X, Y ) = Cov

(
1

n

n∑
i=1

Xi ,
1

n

n∑
j=1

Yj

)

=
1

n2

n∑
i=1

n∑
j=1

Cov(Xi, Yj) =
1

n2

n∑
i=1

Cov(Xi, Yi)

=
ρσXσY

n
.

Therefore, Cor(X, Y ) = Cov(X, Y )/SD(X)SD(Y ) = ρ. Thus,
(X, Y ) ∼ N2(µ,Σ), where

µ =

(
µX

µY

)
Σ =

(
σ2

X/n ρ
ρ σ2

Y /n

)
.

#6, page 24: Let µi = EY2 and σ2
i = VarYi. Also define ρ =

Cor(Y1, Y2).
Define Z1 = Y1 +Y2 and Z2 = Y1−Y2. Then we are told that

Z1 and Z2 are independent N(0, 1)’s. Note that(
Y1

Y2

)
= A

(
Z1

Z2

)
where A =

(
1
2

1
2

− 1
2

− 1
2

)
.

Therefore, (Y1, Y2)
′ is bivariate normal with

EY =

(
0
0

)
and VarY = AA′ =

1

2

(
1 − 1
− 1 1

)
.
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#5, page 32: Define

W =

(
In −

aa′

‖a‖2

)
Y := AY .

[NB: aa′ is an n×n matrix.] We compute directly to find that

Cov(W , a′Y ) = ACov(Y , Y )a = Aa

= a− aa′

‖a‖2
a = 0.

This proves that W and a′Y are independent (Theorem 2.5).
Note that A is symmetric and idempotent (i.e., A2 = A).
Therefore,

‖W ‖2 = W ′W = Y ′A2Y = Y ′Y − Y ′ aa′

‖a‖2
Y

= Y ′Y − ‖a′Y ‖2

‖a‖2
.

Turn this around to see that ‖Y ‖2 = ‖W ‖2 + ‖a′Y ‖2/‖a‖2.
Because W is independent of a′Y , the conditional distribution
of ‖Y ‖2 given a′Y = 0 is the same as the (unconditional) dis-
tribution of ‖W ‖2 = ‖AY ‖2. Thanks to Theorem 2.8, the said
distribution is χ2

r where r denotes the number of eigenvalues of
A that are one; whence, n− r eigenvalues are zero. It remains
to prove that r = n−1. This follows immediately from the fact
that the only non-zero solution to Ax = 0 is x = a. To see
this note that Aa = 0, so a is a solution to Ax = 0. Suppose
there were another non-zero solution to Ax = 0. We can use
Gramm–Schmitt to obtain a non-zero solution v to Ax = 0
with the property that v is orthogonal to a; i.e., v′a = 0. Note
that aa′v = 0 so that 0 = Av = v. Therefore, there is ex-
actly one non-zero solution to Ax = 0, and that is x = a.
Equivalently, the column rank of A is r = n− 1.

#6, page 32: Let Xi = (Yi − µi)/
√

1− ρ to find that X ∼
Nn(0, (1− ρ)−1Σ). Because (Yi − Y )/

√
1− ρ = Xi −X,

Y1−Y√
1−ρ
...

Yn−Y√
1−ρ

 = AX, where A =
1√

1− ρ

(
In −

1

n
1n1

′
n

)
,

since 1n1
′
n is an n × n matrix of all ones. The first thing to

notice is that A1n1
′
n = 0. This follows from the fact that
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(1n1
′
n)2 = n1n1

′
n. In particular, A2 = (1− ρ)−1. In addition,

AVarX =
1√

1− ρ
AΣ

=
√

1− ρA +
ρ√

1− ρ
A1n1

′
n =

√
1− ρA.

Therefore, AVarX is idempotent. The corollary on page 30
tells us then that ‖AX‖2 ∼ χ2

r where r = rank(AVarX). Note
that

‖AX‖2 =
1

1− ρ

n∑
i=1

(Yi − Y )2.

Therefore, it suffices to prove that r = n− 1. That is, we wish
to prove that there is exactly one solution to AVar(X)x = 0.
This was proved in #5, page 32; simply set a = 1n there.

#11, page 32: One can check that Y = Aa, where A (n + 1
columns and n rows) as follows:

A =



φ 1 0 0 0 · · · 0 0
0 φ 1 0 0 · · · 0 0
0 0 φ 1 0 · · · 0 0
...

...
...

. . . . . . · · · ...
...

...
...

...
...

. . . . . .
...

...
...

...
...

...
...

. . . . . .
...

0 0 0 0 0 · · · φ 1


.

So Y ∼ Nn(0, σ2AA′). To finish, we compute the n×n matrix,

AA′ =



φ2 + 1 φ 0 0 · · · 0 0 0 0
φ φ2 + 1 φ 0 · · · 0 0 0 0
0 φ φ2 + 1 φ · · · 0 0 0 0
...

...
. . . . . . . . .

...
...

...
...

...
...

...
. . . . . . . . .

...
...

...
...

...
...

...
. . . . . . . . .

...
...

0 0 0 0 · · · φ φ2 + 1 φ 0
0 0 0 0 · · · 0 φ φ2 + 1 φ


.

That is, (AA′)i,i = φ2 + 1, (AA′)i,i+1 = (AA′)i,i−1 = φ, and
for all j 6∈ {i, i± 1}, (AA′)i,j = 0.


