Math 5090-001, Fall 2009

Solutions to the Midterm Exam

1. Suppose X_{1}, \ldots, X_{n} are i.i.d. according to a density [and/or mass function] $f(x ; \theta)$, where θ is unknown. State, very carefully, the NeymannPearson lemma for the simple hypothesis $H_{0}: \theta=\theta_{0}$ versus the simple alternative $H_{a}: \theta=\theta_{a}$.

Solution: See the text.
2. Suppose X_{1}, \ldots, X_{n} are i.i.d. $E X P(\theta)$'s, where $\theta>0$ is unknown. That is, they have common density

$$
f(x ; \theta)= \begin{cases}\frac{1}{\theta} \mathrm{e}^{-x / \theta} & \text { if } x>0 \\ 0 & \text { if } x \leq 0 .\end{cases}
$$

Find the form of the UMP test for $H_{0}: \theta=1$ versus $H_{a}: \theta>1$. Justify your assertion carefully.

Solution: The likelihood ratio for H_{0} versus $H_{a}: \theta=\theta_{a}\left[\theta_{a}>1\right]$ is

$$
L=\theta_{a}^{n} \exp \left\{-\left(1-\frac{1}{\theta_{a}}\right) \sum_{j=1}^{n} X_{j}\right\}=\theta_{a}^{n} \exp \left\{-n\left(1-\theta_{a}^{-1}\right) \bar{X}\right\} .
$$

This is a decreasing function of $t(\boldsymbol{X}):=\bar{X}$ because $1-\theta_{a}^{-1}>0$. Therefore, the Neymann-Pearson lemma provides us with a UMP test against the one-sided alternative $H_{a}: \theta>1$. That is, reject H_{0} when $\bar{X} \geq c$. [The constant c comes from a χ^{2}-table. In fact, $2 n \bar{X}$ is $\chi^{2}(2 n)$ under H_{0}.]
3. (Consider the following density on the interval $(0,1)$:

$$
f(x, \theta):= \begin{cases}\theta x^{\theta-1} & \text { if } 0<x<1 \\ 0 & \text { otherwise }\end{cases}
$$

where $\theta>0$ is unknown.
(a) Show that $-2 \theta \ln X_{1} \sim \chi^{2}(2)$. You may use, without derivation, the fact that if $Y \sim \chi^{2}(2 n)$, then its MGF is

$$
\mathrm{E}\left[\mathrm{e}^{t Y}\right]= \begin{cases}\frac{1}{1-2 t} & \text { if } t<\frac{1}{2} \\ \infty & \text { otherwise }\end{cases}
$$

Solution: We compute the MGF of $-2 \theta \ln X_{1}$ as follows:

$$
\begin{aligned}
M(t) & =\mathrm{E}\left[\mathrm{e}^{-t 2 \theta \ln X_{1}}\right]=\mathrm{e}\left[X_{1}^{-2 \theta t}\right] \\
& =\theta \int_{0}^{1} x^{-2 \theta t} x^{\theta-1} \mathrm{~d} x \\
& =\frac{1}{1-2 t} \quad \text { if } t<\frac{1}{2},
\end{aligned}
$$

and ∞ if $t \geq \frac{1}{2}$. This and the uniqueness theorem for MGF's together imply the result.
(b) Use the result of part (a) to find a $(1-\alpha) 100 \%$ confidence interval for θ. You may use (a) even if you did not derive it.
Solution: By (a), $-2 \theta \sum_{j=1}^{n} \ln X_{j} \sim \chi^{2}(2 n)$. Therefore,

$$
\mathrm{P}\left\{\chi_{\alpha / 2}^{2}(2 n) \leq-2 \theta \sum_{j=1}^{n} \ln X_{j} \leq \chi_{1-(\alpha / 2)}^{2}(2 n)\right\}=1-\alpha .
$$

Solve algebraically, all the time recalling that $-\sum_{j=1}^{n} \ln X_{j}$ is a positive random variable, to see that

$$
\mathrm{P}\left\{\frac{\chi_{1-(\alpha / 2)}^{2}(2 n)}{-2 \sum_{j=1}^{n} \ln X_{j}} \leq \theta \leq \frac{\chi_{\alpha / 2}^{2}(2 n)}{-2 \sum_{j=1}^{n} \ln X_{j}}\right\}=1-\alpha .
$$

Therefore, a $(1-\alpha) 100 \%$ CI for θ is

$$
\left(\frac{\chi_{1-(\alpha / 2)}^{2}(2 n)}{-2 \sum_{j=1}^{n} \ln X_{j}}, \frac{\chi_{\alpha / 2}^{2}(2 n)}{-2 \sum_{j=1}^{n} \ln X_{j}}\right) .
$$

