Math 5090–001, Fall 2009 Solutions to the Midterm Exam

1. Suppose X_1, \ldots, X_n are *i.i.d.* according to a density [and/or mass function] $f(x; \theta)$, where θ is unknown. State, very carefully, the Neymann–Pearson lemma for the simple hypothesis $H_0: \theta = \theta_0$ versus the simple alternative $H_a: \theta = \theta_a$.

Solution: See the text.

2. Suppose X_1, \ldots, X_n are *i.i.d.* $EXP(\theta)$'s, where $\theta > 0$ is unknown. That is, they have common density

$$f(x;\theta) = \begin{cases} \frac{1}{\theta} e^{-x/\theta} & \text{if } x > 0, \\ 0 & \text{if } x \le 0. \end{cases}$$

Find the form of the UMP test for H_0 : $\theta = 1$ versus H_a : $\theta > 1$. Justify your assertion carefully.

Solution: The likelihood ratio for H_0 versus H_a : $\theta = \theta_a \ [\theta_a > 1]$ is

$$L = \theta_a^n \exp\left\{-\left(1 - \frac{1}{\theta_a}\right)\sum_{j=1}^n X_j\right\} = \theta_a^n \exp\left\{-n\left(1 - \theta_a^{-1}\right)\bar{X}\right\}.$$

This is a decreasing function of $t(\mathbf{X}) := \bar{X}$ because $1 - \theta_a^{-1} > 0$. Therefore, the Neymann–Pearson lemma provides us with a UMP test against the one-sided alternative $H_a: \theta > 1$. That is, reject H_0 when $\bar{X} \ge c$. [The constant c comes from a χ^2 -table. In fact, $2n\bar{X}$ is $\chi^2(2n)$ under H_0 .]

3. (Consider the following density on the interval (0, 1):

$$f(x, \theta) := \begin{cases} \theta x^{\theta - 1} & \text{if } 0 < x < 1, \\ 0 & \text{otherwise,} \end{cases}$$

where $\theta > 0$ is unknown.

(a) Show that $-2\theta \ln X_1 \sim \chi^2(2)$. You may use, without derivation, the fact that if $Y \sim \chi^2(2n)$, then its MGF is

$$\mathbf{E}\left[\mathbf{e}^{tY}\right] = \begin{cases} \frac{1}{1-2t} & \text{if } t < \frac{1}{2}, \\ \infty & \text{otherwise.} \end{cases}$$

Solution: We compute the MGF of $-2\theta \ln X_1$ as follows:

$$M(t) = \mathbf{E} \left[\mathbf{e}^{-t2\theta \ln X_1} \right] = \mathbf{e} \left[X_1^{-2\theta t} \right]$$
$$= \theta \int_0^1 x^{-2\theta t} x^{\theta - 1} \, \mathrm{d}x$$
$$= \frac{1}{1 - 2t} \qquad \text{if } t < \frac{1}{2},$$

and ∞ if $t \geq \frac{1}{2}$. This and the uniqueness theorem for MGF's together imply the result.

(b) Use the result of part (a) to find a (1-α)100% confidence interval for θ. You may use (a) even if you did not derive it.
Solution: Def(a) = 20∑ⁿ la X = 2²(2n). Therefore

Solution: By (a), $-2\theta \sum_{j=1}^{n} \ln X_j \sim \chi^2(2n)$. Therefore,

$$P\left\{\chi_{\alpha/2}^{2}(2n) \leq -2\theta \sum_{j=1}^{n} \ln X_{j} \leq \chi_{1-(\alpha/2)}^{2}(2n)\right\} = 1 - \alpha.$$

Solve algebraically, all the time recalling that $-\sum_{j=1}^{n} \ln X_j$ is a positive random variable, to see that

$$P\left\{\frac{\chi_{1-(\alpha/2)}^2(2n)}{-2\sum_{j=1}^n \ln X_j} \le \theta \le \frac{\chi_{\alpha/2}^2(2n)}{-2\sum_{j=1}^n \ln X_j}\right\} = 1 - \alpha.$$

Therefore, a $(1 - \alpha)100\%$ CI for θ is

$$\left(\frac{\chi_{1-(\alpha/2)}^2(2n)}{-2\sum_{j=1}^n \ln X_j}, \frac{\chi_{\alpha/2}^2(2n)}{-2\sum_{j=1}^n \ln X_j}\right).$$