Math 5090-001, Fall 2009

Solutions to Assignment 8

Chapter 14, Problem 1. (a) $H_{0}: m=0.5$ versus $H_{a}: m>0.5$.

Let T denote the number of data points above 0.5 . Then, $T \sim$ $\operatorname{BIN}(20,1 / 2)$, provided that H_{0} is true. Let us compute the P value:

In the sample, the observed value of our T statistic is 10 . Therefore,

$$
P \text {-value }=\mathrm{P}\left\{T \geq 10 \mid H_{0}\right\}=\mathrm{P}\{\operatorname{BIN}(20,1 / 2) \geq 10\}>\frac{1}{2}
$$

Since P-value is $\gg 0.05$ we do not reject.
(b) $H_{0}: m=0.25$ versus $H_{a}: m>0.25$.

Let T denote the number of data points above 0.25 . Then, $T \sim$ $\operatorname{BIN}(20,1 / 2)$, provided that H_{0} is true. Let us compute the P value:
In the sample, the observed value of our T statistic is 18 . Therefore,

$$
\begin{aligned}
P \text {-value } & =\mathrm{P}\left\{T \geq 18 \mid H_{0}\right\}=\mathrm{P}\{\operatorname{BIN}(20,1 / 2) \geq 18\} \\
& =1-0.9998=0.0002
\end{aligned}
$$

Since P-value is $\ll 0.1$ we reject.
Chapter 14, Problem 4. Let $Q(0.1)$ denote the 10 th percentile. We want to test

$$
H_{0}: Q(0.1)=16000 \quad H_{a}: Q(0.1)>16000
$$

Let T denote the number of data points above 16000. Then, $T \sim$ $\operatorname{BIN}(20,0.9)$, provided that H_{0} is true. Let us compute the P-value:

In the sample, the observed value of our T statistic is 15 . Therefore,

$$
\begin{aligned}
P \text {-value } & =\mathrm{P}\left\{T \geq 15 \mid H_{0}\right\}=\mathrm{P}\{\operatorname{BIN}(20,0.9) \geq 15\} \\
& =1-0.0113=0.9887 .
\end{aligned}
$$

Don't reject.
Chapter 14, Problem 7(b). The sample size is $n=60$, and the random interval $\left(X_{i: n}, X_{j: n}\right)$ is a 95% CI for the median weight, provided that i and j are chosen so that

$$
\operatorname{BIN}(j-1 ; 60,1 / 2)-\operatorname{BIN}(i-1 ; 60 ; 1 / 2) \approx 0.95
$$

By the CLT, the $\operatorname{BIN}(60,1 / 2)$ is basically $\mathrm{N}(30,15)$. Therefore, we want

$$
\begin{aligned}
95 \% & \approx \operatorname{BIN}(j-1 ; 60,1 / 2)-\operatorname{BIN}(i-1 ; 60 ; 1 / 2) \\
& \approx \Phi\left(\frac{j-1-30}{\sqrt{15}}\right)-\Phi\left(\frac{i-1-30}{\sqrt{15}}\right) .
\end{aligned}
$$

Might as well choose i and j to have symmetric intervals; i.e.,

$$
\begin{equation*}
\frac{j-1-30}{\sqrt{15}}=-\frac{i-1-30}{\sqrt{15}} . \tag{1}
\end{equation*}
$$

In that case, we want

$$
97.5 \% \approx \Phi\left(\frac{j-31}{\sqrt{15}}\right)
$$

i.e.,

$$
1.96 \approx \frac{j-31}{\sqrt{15}} \quad \Rightarrow \quad j \approx 31+1.96 \sqrt{15} \approx 38.591047358566537
$$

Therefore, we can take $j=39$ [why not 38?]. And i is computed from (1) as follows: $8=j-31=-(i-31)$; i.e., $i=31-8=23$. Thus, an approximate [conservative-ish] CI for the median weight is $\left(X_{23: 60}, X_{39: 60}\right)=(5.17,5.24)$.

Chapter 14, Problem 12. [not graded] Let $p:=$ the true proportion who prefers B. We want $H_{0}: p=\frac{1}{2}$ versus $H_{s}: p<\frac{1}{2}$. Do a binomial test from the previous chapters.

