Math 5090-001, Fall 2009

Solutions to Assignment 7

Chapter 13, Problem 1. You can use a χ^{2} test; but a normal approximation works slightly better here [the end results are more or less the same in both cases.] We have $n=100$ and $\hat{p}=0.2$. The test statistic is

$$
S:=\frac{\hat{p}-p_{0}}{\sqrt{p_{0}\left(1-p_{0}\right) / n}}=\frac{0.2-0.3}{\sqrt{0.3 \times 0.7 / 100}} \approx-2.182179
$$

The distribution of S is approximately $\mathrm{N}(0,1)$ by the CLT. Therefore, we find our 2 -sided P-value to be 0.0292 . Certainly reject H_{0} at 5%.

If we wanted a one-sided test, then the answer would depend on how we set up our hypotheses. But the natural one is $H_{0}: p=0.3$ versus $H_{a}: p<0.3$. In that case, the P-value is 0.0146 . Again, reject strongly at 5%. [The χ^{2} test will miss this part!]

Chapter 13, Problem 6. We compute the χ^{2} table:

	spades	hearts	diamonds	clubs
observed	6	8	9	13
expected	9	9	9	9

This leads to a χ^{2} statistic:

$$
\chi^{2}:=\frac{(6-9)^{2}}{9}+\frac{(8-9)^{2}}{9}+\frac{(9-9)^{2}}{9}+\frac{(13-9)^{2}}{9} \approx 2.9 .
$$

Therefore, we can use a χ_{3}^{2} table to find that P-value ≈ 0.4. Therefore, we do not reject at just about every reasonable level.

Chapter 13, Problem 10. The observed frequency table is:

	Mech.	Elect.	Other
Design 1	50	30	60
Design 2	40	30	40

The observed relative frequencies (as probabilities, out of a total of 250 trials) are:

	Mech.	Elect.	Other	
Design 1	0.2	0.12	0.24	0.56
Design 2	0.16	0.12	0.16	0.44
	0.36	0.24	0.4	

If " H_{0} : independent" is true, then our estimate for the joint probabilities should be - based on the preceding marginals- obtained by multiplying into the table as follows:

	Mech.	Elect.	Other	
Design 1	0.2016	0.1344	0.224	0.56
Design 2	0.1584	0.1056	0.176	0.44
	0.36	0.24	0.4	

[For instance, the $(1,1)$ is obtained as $0.56 \times 0.36 \approx 0.2016$.] Turn the preceding into a table of expected frequencies [after estimation] by multiplying everything by 250 :

	Mech.	Elect.	Other
Design 1	50.4	33.6	56
Design 2	39.6	26.4	44

Therefore,

$$
\begin{aligned}
\chi^{2} & =\frac{(50-50.4)^{2}}{50.4}+\frac{(30-33.6)^{2}}{33.6}+\frac{(60-56)^{2}}{65}+\frac{(40-39.6)^{2}}{39.6}+\frac{(30-26.4)^{2}}{26.4}+\frac{(40-44)^{2}}{44} \\
& \approx 1.533 .
\end{aligned}
$$

We use a $\chi_{(\text {row }-1)(\text { col-1) }}^{2}=\chi_{2}^{2}$ table in order to find that P-value ≈ 0.7. Therefore, "do not reject."

Chapter 13, Problem 14. (a) First of all, under H_{0}, the pdf is $f(x)=0.01 \exp (-0.01 x)$ for $x \geq 0$. Therefore, $\mathrm{P}\{a \leq X<b\}=\mathrm{e}^{-a}-\mathrm{e}^{-b}$ whenever $0<a<b$.

I will test to see if the correct proportion fall in the 5 intervals $[0,20],(20,50],(50,80],(80,100]$, and $(100, \infty)$. [We can't have too many more intervals, since the data size is only 40.]

	observed	expected
$0 \leq x<20$	8	7.25
$20 \leq x<50$	7	8.48
$50 \leq x<80$	9	6.28
$80 \leq x<100$	4	3.25
$x \geq 100$	12	14.7

Therefore,

$$
\chi^{2}=\frac{(8-7.25)^{2}}{7.25}+\cdots+\frac{(12-14.7)^{2}}{14.7} \approx 2
$$

Based on a χ_{4}^{2}, we have P-value ≈ 0.7. No reason to reject.
(b) If $X=\operatorname{EXP}(\mu)$ for some $\mu>0$, then $\mathrm{E} X=1 / \mu$. Therefore, we first estimate $\mathrm{E} X$ by $\bar{X}_{50} \approx 93.15$. Thus, we can test for $H_{0}: \operatorname{EXP}(0.0107)$.

	observed	expected
$0 \leq x<20$	8	7.73
$20 \leq x<50$	7	8.89
$50 \leq x<80$	9	6.44
$80 \leq x<100$	4	3.27
$x \geq 100$	12	13.67

Therefore,

$$
\chi^{2}=\frac{(8-7.73)^{2}}{7.73}+\cdots+\frac{(12-13.67)^{2}}{13.67} \approx 1.8
$$

Based on a χ_{4}^{2}, we have P-value ≈ 0.78. No reason to reject. [The P-value for (b) should be larger than the P-value for (a). Why?]

