Math 5090–001, Fall 2009 Solutions to Assignment 7

Chapter 13, Problem 1. You can use a χ^2 test; but a normal approximation works slightly better here [the end results are more or less the same in both cases.] We have n = 100 and $\hat{p} = 0.2$. The test statistic is

$$S := \frac{\hat{p} - p_0}{\sqrt{p_0(1 - p_0)/n}} = \frac{0.2 - 0.3}{\sqrt{0.3 \times 0.7/100}} \approx -2.182179.$$

The distribution of S is approximately N(0, 1) by the CLT. Therefore, we find our 2-sided *P*-value to be 0.0292. Certainly reject H_0 at 5%.

If we wanted a one-sided test, then the answer would depend on how we set up our hypotheses. But the natural one is H_0 : p = 0.3 versus H_a : p < 0.3. In that case, the *P*-value is 0.0146. Again, reject strongly at 5%. [The χ^2 test will miss this part!]

Chapter 13, Problem 6. We compute the χ^2 table:

	spades	hearts	diamonds	clubs
observed	6	8	9	13
expected	9	9	9	9

This leads to a χ^2 statistic:

$$\chi^2 := \frac{(6-9)^2}{9} + \frac{(8-9)^2}{9} + \frac{(9-9)^2}{9} + \frac{(13-9)^2}{9} \approx 2.9$$

Therefore, we can use a χ_3^2 table to find that *P*-value ≈ 0.4 . Therefore, we do not reject at just about every reasonable level.

Chapter 13, Problem 10. The observed frequency table is:

	Mech.	Elect.	Other
Design 1	50	30	60
Design 2	40	30	40

The observed relative frequencies (as probabilities, out of a total of 250 trials) are:

	Mech.	Elect.	Other	
Design 1	0.2	0.12	0.24	0.56
Design 2	0.16	0.12	0.16	0.44
	0.36	0.24	0.4	

If " H_0 : independent" is true, then our estimate for the joint probabilities should be—based on the preceding marginals— obtained by multiplying into the table as follows:

	Mech.	Elect.	Other	
Design 1	0.2016	0.1344	0.224	0.56
Design 2	0.1584	0.1056	0.176	0.44
	0.36	0.24	0.4	

[For instance, the (1, 1) is obtained as $0.56 \times 0.36 \approx 0.2016$.] Turn the preceding into a table of expected frequencies [after estimation] by multiplying everything by 250:

	Mech.	Elect.	Other
Design 1	50.4	33.6	56
Design 2	39.6	26.4	44

Therefore,

$$\chi^{2} = \frac{(50 - 50.4)^{2}}{50.4} + \frac{(30 - 33.6)^{2}}{33.6} + \frac{(60 - 56)^{2}}{65} + \frac{(40 - 39.6)^{2}}{39.6} + \frac{(30 - 26.4)^{2}}{26.4} + \frac{(40 - 44)^{2}}{44} \approx 1.533.$$

We use a $\chi^2_{(row-1)(col-1)} = \chi^2_2$ table in order to find that *P*-value ≈ 0.7 . Therefore, "do not reject."

Chapter 13, Problem 14. (a) First of all, under H_0 , the pdf is $f(x) = 0.01 \exp(-0.01x)$ for $x \ge 0$. Therefore, $P\{a \le X < b\} = e^{-a} - e^{-b}$ whenever 0 < a < b.

I will test to see if the correct proportion fall in the 5 intervals $[0, 20], (20, 50], (50, 80], (80, 100], and (100, \infty)$. [We can't have too many more intervals, since the data size is only 40.]

	observed	expected
$0 \le x < 20$	8	7.25
$20 \le x < 50$	7	8.48
$50 \le x < 80$	9	6.28
$80 \le x < 100$	4	3.25
$x \ge 100$	12	14.7

Therefore,

$$\chi^2 = \frac{(8 - 7.25)^2}{7.25} + \dots + \frac{(12 - 14.7)^2}{14.7} \approx 2.$$

Based on a χ_4^2 , we have *P*-value ≈ 0.7 . No reason to reject.

(b) If $X = \text{EXP}(\mu)$ for some $\mu > 0$, then $\text{E}X = 1/\mu$. Therefore, we first estimate EX by $\bar{X}_{50} \approx 93.15$. Thus, we can test for H_0 : EXP(0.0107).

	observed	expected
$0 \le x < 20$	8	7.73
$20 \le x < 50$	7	8.89
$50 \le x < 80$	9	6.44
$80 \le x < 100$	4	3.27
$x \ge 100$	12	13.67

Therefore,

$$\chi^2 = \frac{(8 - 7.73)^2}{7.73} + \dots + \frac{(12 - 13.67)^2}{13.67} \approx 1.8.$$

Based on a χ_4^2 , we have *P*-value ≈ 0.78 . No reason to reject. [The *P*-value for (b) should be larger than the *P*-value for (a). Why?]