Math 5090-001, Fall 2009

Solutions to Assignment 6

Chapter 12, Problem 38. We have, for a $\operatorname{Poiss}(\mu), H_{0}: \mu=1$ versus $H_{a}: \mu=2$. In general,

$$
f(x ; \mu)=\frac{\mathrm{e}^{-\mu} \mu^{x}}{x!} \quad \text { for } x=0,1, \ldots
$$

(a) The SPRT depends on likelihood ratios:

$$
\lambda_{m}=\frac{f\left(X_{1} ; 1\right) \cdots f\left(X_{m} ; 1\right)}{f\left(X_{1} ; 2\right) \cdots f\left(X_{m} ; 2\right)}=\mathrm{e}^{m} 2^{-S_{m}}
$$

where $S_{m}:=X_{1}+\cdots+X_{m}$. Therefore, if $\bar{X}_{m}:=S_{m} / m$, then $k_{0}<\lambda_{m}<k_{1} \quad$ if and only if $\quad-\log _{2}\left(\mathrm{e} k_{1}\right)<\bar{X}_{m}<-\log _{2}\left(\mathrm{e} k_{0}\right)$,
where " $\log _{2}$ " denotes logarithm in base 2. Now proceed as in SPRT.
(b) We know from $\S 12.10$ that a reasonable estimate is
$\mathrm{E}\left(N \mid H_{a}\right) \approx \frac{(1-\beta) \ln [\alpha /(1-\beta)]+\beta \ln [(1-\alpha) / \beta]}{\mathrm{E}\left(Z \mid H_{a}\right)}=\frac{0.08 \ln (1 / 8)+0.02 \ln (9 / 2)}{\mathrm{E}\left(Z \mid H_{a}\right)} ;$
it suffices to compute $\mathrm{E}\left(Z \mid H_{a}\right)$. Recall that

$$
Z=\ln f(X ; 1)-\ln f(X ; 2)=1-X \ln 2
$$

Therefore, $\mathrm{E}\left(Z \mid H_{a}\right)=1-2 \ln 2 \approx-0.3862944$, and hence $\mathrm{E}\left(N \mid H_{a}\right) \approx$ 11.4297, which ought to be interpreted conservatively as 12.

