Math 5090-001, Fall 2009

Solutions to Assignment 5

Chapter 12, Problem 10. The company sizes are very large [$n_{1}=n_{2}=200$ each]. Therefore, we can use an approximate [large-sample] test for $H_{0}: p_{1}=p_{2}$ versus $H_{a}: p_{1} \neq p_{2}$ at level $\alpha=0.05$.

Let \hat{p}_{1} and \hat{p}_{2} denote respectively the proportion of nondefectives in the samples from company 1 and 2 . [In our sample, $\hat{p}_{1}=180 / 400$ and $\left.\hat{p}_{2}=190 / 400\right]$.

Since $n_{1}=n_{2}=200$ is large, we apply large-sample asymptotics and reject when

$$
Z:=\frac{\left|\hat{p}_{1}-\hat{p}_{2}\right|}{\sqrt{\left(n_{1} \hat{p}_{1}+n_{2} \hat{p}_{2}\right)\left(1-\frac{n_{1} \hat{p}_{1}+n_{2} \hat{p}_{2}}{n_{1}+n_{2}}\right)}} \approx 1.898 \quad \text { is }>z_{1-(\alpha / 2)}=1.96
$$

So we do not reject H_{0} at $\alpha=0.05$.
Chapter 12, Problem 11. (a) We compute the likelihood ratio test according to the NeymannPearson lemma. Namely, we reject H_{0} if the likelihood under H_{0} is much less than that under H_{a}; that is, when

$$
L=\frac{\theta_{0} X_{1}^{\theta_{0}-1}}{\theta_{1} X_{1}^{\theta_{1}-1}}=\frac{1}{2 X_{1}} \quad \text { is small. }
$$

Since $X_{1}>0, L$ is small if and only if X_{1} is large. So we reject when $X_{1}>c$. In order to find c, we set

$$
0.05=\alpha=\mathrm{P}\left\{X_{1}>c \mid \theta=1\right\}=\int_{c}^{1} \mathrm{~d} x=1-c
$$

Therefore, $c=0.95$, and we reject H_{0} when $X_{1}>0.95$.
(b) The power again H_{a} is

$$
\mathrm{P}\left\{X_{1}>0.95 \mid \theta=2\right\}=\int_{0.95}^{1} 2 x \mathrm{~d} x=1-0.95^{2}=0.0975
$$

(c) As before, we reject when L is small, where

$$
L=\frac{\theta_{0}^{n} X_{1}^{\theta_{0}-1} \cdots X_{n}^{\theta_{0}-1}}{\theta_{1}^{n} X_{1}^{\theta_{1}-1} \cdots X_{n}^{\theta_{1}-1}}=\frac{1}{2^{n} X_{1} \cdots X_{n}} \quad \text { is small. }
$$

Equivalently, reject H_{0} when $X_{1} \cdots X_{n}=\exp \left\{\sum_{j=1}^{n} \ln X_{j}\right\}$ is large. Yet equivalently, we reject H_{0} when $\frac{1}{n} \sum_{j=1}^{n} \ln X_{j}$ is large. It is more convenient to work with positive numbers; therefore,

$$
\text { we reject } H_{0} \text { when }-\sum_{j=1}^{n} \ln X_{j}<c \text {. }
$$

Therefore, we need to find the distribution of $-\sum_{j=1}^{n} \ln X_{j}$ under H_{0}. Note that the moment generating function of $-2 \ln X_{1}$, under H_{0}, is easy to find:

$$
\begin{aligned}
M(t) & =\mathrm{E}\left(\mathrm{e}^{-2 t \ln X_{1}}\right)=\mathrm{E}\left(\frac{1}{X_{1}^{2 t}}\right)=\int_{0}^{1} x^{-2 t} \mathrm{~d} x \\
& = \begin{cases}\frac{1}{1-2 t} & \text { if } t<1 / 2 \\
\infty & \text { otherwise }\end{cases}
\end{aligned}
$$

That is, under $H_{0},-2 \ln X_{1} \sim \chi^{2}(2)$; and hence $-2 \sum_{j=1}^{n} \ln X_{j} \sim$ $\chi^{2}(2 n)$. So,

$$
\alpha=\mathrm{P}\left\{-2 \sum_{j=1}^{n} \ln X_{j}<2 c \mid \theta=1\right\}=\mathrm{P}\left\{\chi^{2}(2 n)<2 c\right\}
$$

and hence $2 c=\chi_{\alpha}^{2}(2 n)$. In other words,
we reject H_{0} when $-\sum_{j=1}^{n} \ln X_{j}<\frac{1}{2} \chi_{\alpha}^{2}(2 n)$.

Chapter 12, Problem 15. The N-P lemma tells us that we should reject H_{0} when

$$
L:=\frac{f\left(\boldsymbol{X} ; \theta_{0}\right)}{f\left(\boldsymbol{X} ; \theta_{1}\right)}<c .
$$

According to the factorization theorem [p. 339], the sufficiency of S implies that we can write

$$
L=\frac{g\left(S ; \theta_{0}\right) h(\boldsymbol{X})}{g\left(S ; \theta_{1}\right) h(\boldsymbol{X})}=\frac{g\left(S ; \theta_{0}\right)}{g\left(S ; \theta_{1}\right)} .
$$

Therefore, we reject when the latter-which depends through the data only via S-is small.

Chapter 12, Problem 16. The likelihood ratio, for H_{0} against $H_{a}: \theta=\theta_{a}$-where $\theta_{a}>\theta_{0}$-is

$$
L:=\left(\frac{\theta_{a}}{\theta_{0}}\right)^{n} \exp \left\{-\left(\frac{1}{\theta_{0}}-\frac{1}{\theta_{a}}\right) \sum_{j=1}^{n} X_{j}^{3}\right\}<c .
$$

This is a monotone likelihood ratio [Definition 12.7.2, p. 413] with $t(\boldsymbol{X}):=\sum_{j=1}^{n} X_{j}^{3}$. Therefore [Theorem 12.7.1, p. 414], the UMP test for $H_{0}: \theta=\theta_{0}$ versus $H_{a}: \theta>\theta_{0}$ is:

$$
\text { Reject } H_{0} \text { when } \sum_{j=1}^{n} X_{j}^{3}>c
$$

And of course c is computed via:

$$
\alpha=\mathrm{P}\left\{\sum_{j=1}^{n} X_{j}^{3}>c \mid \theta=\theta_{0}\right\} .
$$

So, let us compute c via distribution theory: First of all, for all $a>0$,

$$
F_{2 X_{1}^{3}}(a)=\mathrm{P}\left\{2 X_{1}^{3} \leq a\right\}=\mathrm{P}\left\{X_{1} \leq(a / 2)^{1 / 3}\right\}=F_{X_{1}}\left((a / 2)^{1 / 3}\right) .
$$

And $F_{2 X_{1}^{3}}(a)=0$ if $a \leq 0$. Differentiate $[\mathrm{d} / \mathrm{d} a]$:

$$
f_{2 X^{3}}(a)=f_{X_{1}}\left((a / 2)^{1 / 3}\right) \times \frac{\mathrm{d}}{\mathrm{~d} a}\left((a / 2)^{1 / 3}\right)=\frac{1}{2 \theta} \mathrm{e}^{-x /(2 \theta)} \quad \text { for } a>0 .
$$

In other words, $2 X_{1}^{3}, \ldots, 2 X_{n}^{3}$ are i.i.d. $\operatorname{EXP}(2 \theta)$'s. Equivalently, the sequence $2 X_{1}^{3} / \theta, \ldots 2 X_{n}^{3} / \theta$ is one of all i.i.d. $\operatorname{EXP}(2)$'s; and these exponentials are the same as $\chi^{2}(2)^{\prime}$'s [check MGFs in the back of the front cover]. This means that $\left(2 / \theta_{0}\right) \sum_{j=1}^{n} X_{j}^{3} \sim \chi^{2}(2 n)$ under H_{0}. So we can write

$$
\alpha=\mathrm{P}\left\{\left.\frac{2}{\theta_{0}} \sum_{j=1}^{n} X_{j}^{3}>\frac{2 c}{\theta_{0}} \right\rvert\, \theta=\theta_{0}\right\}=\mathrm{P}\left\{\chi^{2}(2 n)>\frac{2 c}{\theta_{0}}\right\} .
$$

And this means that $\left(2 / \theta_{0}\right)=\chi_{1-\alpha}^{2}(2 n)$. In other words:

$$
\text { Reject } H_{0} \text { when } \sum_{j=1}^{n} X_{j}^{3}>\frac{1}{2} \theta_{0} \chi_{1-\alpha}^{2}(2 n) .
$$

