Math 5090-001, Fall 2009

Solutions to Assignment 4

Chapter 12, Problem 9. (a) If the variances are unknown but equal, then we use the pooledvariance method [see part 3 of Theorem 12.3 .5 on p. 403]: The test is to reject H_{0} when

$$
\frac{|\bar{Y}-\bar{X}|}{S_{p} \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}} \geq t_{1-(\alpha / 2)}\left(n_{1}+n_{2}-2\right)
$$

Now, for our data,
$S_{p}=\sqrt{\frac{\left(n_{1}-1\right) S_{1}^{2}+\left(n_{2}-1\right) S_{2}^{2}}{n_{1}+n_{2}-2}}=\sqrt{\frac{(8 \times 36)+(8 \times 45)}{9+9-2}}=\sqrt{40.5} \approx 6.36396$.
Therefore, for our data set,

$$
\frac{|\bar{Y}-\bar{X}|}{S_{p} \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}}=\frac{|10-16|}{6.3696 \times \sqrt{\frac{1}{9}+\frac{1}{9}}} \approx 1.998
$$

Since $t_{1-(\alpha / 2)}\left(n_{1}+n_{2}-2\right)=t_{0.95}(16) \approx 1.746$. Because $1.998>1.746$, we reject H_{0} at level $\alpha=0.1$.
(b) If we use Welch's approximation (11.5.13) on page 380 , then we reject H_{0} when

$$
\frac{|\bar{Y}-\bar{X}|}{\sqrt{\frac{S_{1}^{2}}{n_{1}}+\frac{S_{2}^{2}}{n_{2}}}}>t_{0.95}(\nu)
$$

where
$\nu=\frac{\left(\frac{S_{1}^{2}}{n_{1}}+\frac{S_{2}^{2}}{n_{2}}\right)^{2}}{\left[\frac{\left(S_{1}^{2} / n_{1}\right)^{2}}{\left(n_{1}-1\right)}+\frac{\left(S_{2}^{2} / n_{2}\right)^{2}}{\left(n_{2}-1\right)}\right]}=\frac{\left(\frac{36}{9}+\frac{45}{9}\right)^{2}}{\left[\frac{(36 / 9)^{2}}{8}+\frac{(45 / 9)^{2}}{8}\right]} \approx 16 \Rightarrow t_{0.95}(\nu) \approx 1.746$.
In our data set,

$$
\frac{|\bar{Y}-\bar{X}|}{\sqrt{\frac{S_{1}^{2}}{n_{1}}+\frac{S_{2}^{2}}{n_{2}}}}=\frac{|10-16|}{\sqrt{\frac{36}{9}+\frac{45}{9}}}=2
$$

This is greater than 1.746 , so we reject H_{0} in this way, as well. Note that in this case, we are not assuming a priori that $\sigma_{1}=\sigma_{2}$.
(c) If we know that this is in fact paired data with $S_{D}=9$ and $n=n_{1}=n_{2}=9$, then we use (11.5.17) from page 381 to find that we reject H_{0} when

$$
\frac{|\bar{Y}-\bar{X}|}{S_{D} / \sqrt{n}}>t_{0.95}(n-1) \approx 1.86
$$

For our data set,

$$
\frac{|\bar{Y}-\bar{X}|}{S_{D} / \sqrt{n}}=\frac{|10-16|}{\sqrt{81} / \sqrt{9}}=2 .
$$

This is greater than 1.86. So we reject in the paired-sample case.
(d) According to Theorem 12.3.4 of page 402, we reject H_{0} if

$$
F=\frac{S_{1}^{2}}{S_{2}^{2}}>f_{1-\alpha}\left(n_{1}-1, n_{2}-1\right)=f_{0.95}(8,8) \approx 3.44
$$

But for our data set $F=36 / 45=0.8$. Therefore, we do not reject H_{0}.
(e) We need to compute

$$
\text { power at } 1.33=\mathrm{P}\left\{\frac{S_{1}^{2}}{S_{2}^{2}}>3.44 \left\lvert\, \frac{\sigma_{1}^{2}}{\sigma_{2}^{2}}=1.33\right.\right\} .
$$

If $\sigma_{1}^{2} / \sigma_{2}^{2}=1.33$, then

$$
F:=\frac{S_{1}^{2} / \sigma_{1}^{2}}{S_{2}^{2} / \sigma_{2}^{2}}=\frac{S_{1}^{2}}{S_{2}^{2}} \cdot \frac{1}{1.33}, \quad \text { and } F \sim F(8,8) .
$$

Therefore,
power at $1.33=\mathrm{P}\left\{F \times 1.33>3.44 \left\lvert\, \frac{\sigma_{1}^{2}}{\sigma_{2}^{2}}=1.33\right.\right\}=\mathrm{P}\{F(8,8)>\underbrace{\frac{3.44}{1.33}}_{\approx 2.59}\}$.
Therefore, the power is 0.1 against $H_{a}: \sigma_{1}^{2} / \sigma_{2}^{2}=1.33$.

Chapter 12, Problem 31. First of all, note that this is not a Paréto distribution, but related closely to one. A second notable remark is that the parameter space has to be the collection of all $\theta>0$.

Now, the GLR tells us to reject when λ is large, where

$$
\begin{aligned}
\lambda & :=\frac{f\left(\boldsymbol{X} ; \theta_{0}\right)}{\max _{\theta \neq \theta_{0}} f(\boldsymbol{X} ; \theta)}=\frac{\theta_{0}^{n} \prod_{j=1}^{n} X_{j}^{\theta_{0}-1}}{\hat{\theta}^{n} \prod_{j=1}^{n} X_{j}^{\hat{\theta}-1}} \\
& =\left(\frac{\theta_{0}}{\hat{\theta}}\right)^{n} \exp \left\{\left(\theta_{0}-\hat{\theta}\right) \sum_{j=1}^{n} \log X_{j}\right\} \\
& =\exp \left\{\left(\theta_{0}-\hat{\theta}\right) \sum_{j=1}^{n} \log X_{j}+n \log \left(\frac{\theta_{0}}{\hat{\theta}}\right)\right\},
\end{aligned}
$$

where $\hat{\theta}$ is the MLE for θ [restricted to $\theta \neq \theta_{0}$].
Next, we find the MLE by maximizing the following likelihood function over $\theta \neq \theta_{0}$:

$$
\mathcal{L}(\theta):=\theta^{n} \prod_{j=1}^{n} X_{j}^{\theta-1}=\exp \left\{n \log \theta+(\theta-1) \sum_{j=1}^{n} \log X_{j}\right\} .
$$

Equivalently, we maximize $\log \mathcal{L}(\theta)=n \log \theta+(\theta-1) \sum_{j=1}^{n} \log X_{j}$ [this is the the log-likelihood]. Now,

$$
\frac{\mathrm{d}}{\mathrm{~d} \theta} \log \mathcal{L}(\theta)=\frac{n}{\theta}+\sum_{j=1}^{n} \log X_{j}, \quad \frac{\mathrm{~d}^{2}}{\mathrm{~d} \theta^{2}} \log \mathcal{L}(\theta)=-\frac{n}{\theta^{2}}<0
$$

Therefore, the MLE is

$$
\hat{\theta}=-\frac{n}{\sum_{j=1}^{n} \log X_{j}} .
$$

This is sensible because $0<X_{j}<1$, so that $\log X_{j}<0$. This is also the MLE among all $\theta \neq \theta_{0}$, since $\operatorname{P}\left\{\hat{\theta}=\theta_{0}\right\}=0[\hat{\theta}$ has a pdf]. Plug
to find that

$$
\lambda=\exp \left\{-n\left(\frac{\theta_{0}}{\hat{\theta}}-1\right)+n \log \left(\theta_{0} / \hat{\theta}\right)\right\} .
$$

Because θ_{0} is a fixed positive constant, we reject when

$$
\lambda_{1}:=-n\left[\left(\frac{\theta_{0}}{\hat{\theta}}-1\right)-\log \left(\theta_{0} / \hat{\theta}\right)\right]
$$

is large. I.e., reject when

$$
\lambda_{2}:=\left(\frac{\theta_{0}}{\hat{\theta}}-1\right)-\log \left(\theta_{0} / \hat{\theta}\right)
$$

is small.
Next we want to do asymptotics [this portion is not graded] for $n \rightarrow \infty$. Since $1 / \hat{\theta}$ is the average of n i.i.d. random variables, it is approximately normal with mean

$$
\begin{aligned}
\mu & :=-\mathrm{E} \log X_{1}=-\theta \int_{0}^{1} \log (x) x^{\theta-1} d x=\theta \int_{0}^{\infty} y e^{-\theta y} d y \quad[y:=-\log x] \\
& =\frac{1}{\theta}
\end{aligned}
$$

and variance

$$
\begin{aligned}
\frac{1}{n} \operatorname{Var}\left(\log X_{1}\right) & =\frac{1}{n}\left\{\mathrm{E}\left(\left|\log X_{1}\right|^{2}\right)-\frac{1}{\theta^{2}}\right\}=\frac{1}{n}\left\{\theta \int_{0}^{1}(\log x)^{2} x^{\theta-1} d x-\frac{1}{\theta^{2}}\right\} \\
& =\frac{1}{n}\left\{\theta \int_{0}^{\infty} y^{2} e^{-\theta y} d y-\frac{1}{\theta^{2}}\right\}=\frac{1}{n \theta^{2}}
\end{aligned}
$$

Therefore, under H_{0},

$$
\sqrt{n} \theta_{0}\left(\frac{1}{\hat{\theta}}-\frac{1}{\theta_{0}}\right) \approx \mathrm{N}(0,1)
$$

And this is another way of saying that

$$
\begin{equation*}
\frac{\theta_{0}}{\hat{\theta}}-1 \approx \frac{1}{\sqrt{n}} \mathrm{~N}(0,1) \tag{1}
\end{equation*}
$$

Now we return to the test. First, by Taylor-McLaurin expansion,

$$
\ln v \approx(v-1)-\frac{1}{2}(v-1)^{2} \quad \text { for } v \approx 1
$$

Or equivalently,

$$
v-1-\log v \approx \frac{1}{2}(v-1)^{2} .
$$

Since $\hat{\theta} \approx \theta_{0}$ [under H_{0}] with high probab., it follows from a 2-term Taylor expansion of the log that

$$
\lambda_{2} \approx \frac{1}{2}\left(\frac{\theta_{0}}{\hat{\theta}}-1\right)^{2}
$$

Therefore, (1) implies that

$$
\lambda_{2} \approx \frac{1}{2 n} \chi^{2}(1)
$$

That is, $2 n \lambda_{2}$ is approximately a central $\chi^{2}(1)$. So approximately: Reject H_{0} when $2 n \lambda_{2} \leq \chi_{\alpha}^{2}(1)$.

An Aside on the MLE. Let $g(x):=1 / x$ to find from Taylor expansion that

$$
\hat{\theta}-\theta_{0}=g(1 / \hat{\theta})-g\left(1 / \theta_{0}\right) \approx\left(\frac{1}{\hat{\theta}}-\frac{1}{\theta_{0}}\right) g^{\prime}\left(1 / \theta_{0}\right)=-\theta_{0}^{2}\left(\frac{1}{\hat{\theta}}-\frac{1}{\theta_{0}}\right) .
$$

Since the right-most bracketed term is asymptotically normal with mean zero and variance $\left(n \theta_{0}^{2}\right)^{-1}$, we find that

$$
\sqrt{n}\left(\hat{\theta}-\theta_{0}\right) \approx-\mathrm{N}\left(0, \theta_{0}^{2}\right)=\mathrm{N}\left(0, \theta_{0}^{2}\right) .
$$

