Math 5090-001, Fall 2009

Solutions to Assignment 4

Chapter 12, Problem 9. (a) If the variances are unknown but equal, then we use the pooled-
variance method [see part 3 of Theorem 12.3.5 on p. 403]: The test is
to reject Hy when

>t (a/2) (M1 +n2 — 2).

Now, for our data,
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Therefore, for our data set,
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Since t;_(q/2)(n1 +n2 —2) = t0.95(16) ~ 1.746. Because 1.998 > 1.746,

we reject Hy at level a = 0.1.

(b) If we use Welch’s approximation (11.5.13) on page 380, then we

reject Hy when
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In our data set,
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This is greater than 1.746, so we reject Hy in this way, as well. Note

that in this case, we are not assuming a priori that o1 = os.
(c) If we know that this is in fact paired data with Sp = 9 and
n=mn; =ng =9, then we use (11.5.17) from page 381 to find that we
reject Hy when
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For our data set, ~ ~
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This is greater than 1.86. So we reject in the paired-sample case.

(d) According to Theorem 12.3.4 of page 402, we reject Hy if
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But for our data set F' = 36/45 = 0.8. Therefore, we do not reject Hp.

(e) We need to compute
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Therefore,
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Therefore, the power is 0.1 against H, : o7 /05 = 1.33.



Chapter 12, Problem 31. First of all, note that this is not a Paréto distribution, but related
closely to one. A second notable remark is that the parameter space
has to be the collection of all 6 > 0.

Now, the GLR tells us to reject when A is large, where
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where 0 is the MLE for 6 [restricted to 6 # ).

Next, we find the MLE by maximizing the following likelihood function
over 0 # 6y:
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Equivalently, we maximize log £(6) = nlog 0+ (6—1) Z?:l log X [this
is the the log-likelihood]. Now,
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Therefore, the MLE is
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This is sensible because 0 < X; < 1, so that log X; < 0. This is also
the MLE among all 6 # 6, since P{6 = 6y} = 0 [0 has a pdf]. Plug



to find that
) -
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Because 0 is a fixed positive constant, we reject when
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is large. L.e., reject when
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is small.

Next we want to do asymptotics [this portion is not graded] for n — oo.
Since 1/ 0 is the average of n i.i.d. random variables, it is approximately

normal with mean
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and variance
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Therefore, under Hy,
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Now we return to the test. First, by Taylor—-McLaurin expansion,
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Or equivalently,
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Since 6 ~ 6, [under Hy] with high probab., it follows from a 2-term
Taylor expansion of the log that
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Therefore, (1) implies that
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That is, 2n)\y is approximately a central x?(1). So approximately:
Reject Hy when 2nXs < x2(1).

An Aside on the MLE. Let g(x) := 1/z to find from Taylor expan-

sion that
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Since the right-most bracketed term is asymptotically normal with

mean zero and variance (nf3)~!, we find that

Jn (é - 90) ~ —N(0,62) = N(0, 62).



