Math 5090-001, Fall 2009

Solutions to Assignment 3

Chapter 12, Problem 1. (a) We want to find a and b such that

$$
P\{\bar{X} \leq a \mid \mu=20\}=P\{\bar{X} \geq b \mid \mu=20\}=0.05
$$

If $\mu=20$, then $\bar{X} \sim \mathrm{~N}\left(20, \sigma^{2}=1 / 16\right)$. Therefore,

$$
0.05=P\{\bar{X} \leq a \mid \mu=20\}=P\left\{\mathrm{~N}(0,1) \leq \frac{a-20}{1 / 4}\right\}
$$

Therefore,

$$
\frac{a-20}{1 / 4} \approx-1.645 \quad \Rightarrow \quad a \approx 19.58875
$$

Similarly,

$$
0.05=P\{\bar{X} \geq b \mid \mu=20\}=P\left\{\mathrm{~N}(0,1) \geq \frac{b-20}{1 / 4}\right\}
$$

Therefore,

$$
\frac{b-20}{1 / 4} \approx 1.645 \quad \Rightarrow \quad b \approx 20.41125
$$

(b) We are asked to find $\beta=P\{$ not reject $\mid \mu=21\}$ in both cases. For the critical region A :

$$
\beta=P\{\bar{X} \geq 19.58875 \mid \mu=21\}=P\left\{\mathrm{~N}(0,1) \geq \frac{19.58875-21}{1 / 4}\right\} \approx 1
$$

This is awful. And for the region B :
$\beta=P\{\bar{X} \leq 20.41125 \mid \mu=21\}=P\left\{\mathrm{~N}(0,1) \leq \frac{20.41125-21}{1 / 4}\right\} \approx 0.01$.
Excellent!
(c) We are asked to find $\beta=P\{$ not reject $\mid \mu=19\}$ in both cases. For
the critical region A :
$\beta=P\{\bar{X} \geq 19.58875 \mid \mu=19\}=P\left\{\mathrm{~N}(0,1) \geq \frac{19.58875-19}{1 / 4}\right\} \approx 0.01$.
This is excellent. And for the region B :
$\beta=P\{\bar{X} \leq 20.41125 \mid \mu=19\}=P\left\{\mathrm{~N}(0,1) \leq \frac{20.41125-19}{1 / 4}\right\} \approx 1$.
This is awful!
(d) We are asked to compute

$$
\begin{aligned}
\alpha & =1-P\{19.58875 \leq \bar{X} \leq 20.41125 \mid \mu=20\} \\
& =1-P\left\{\frac{19.58875-20}{1 / 4} \leq \mathrm{N}(0,1) \leq \frac{20.41125-20}{1 / 4}\right\} \\
& =1-P\{-1.645 \leq \mathrm{N}(0,1) \leq 1.645\} \\
& \approx 0.1 .
\end{aligned}
$$

(e) We are asked to find two probabilities: First,

$$
\begin{aligned}
P\{19.58875 \leq \bar{X} \leq 20.41125 \mid \mu=19\} & =P\left\{\frac{19.58875-19}{1 / 4} \leq \mathrm{N}(0,1) \leq \frac{20.41125-19}{1 / 4}\right\} \\
& =P\{2.355 \leq \mathrm{N}(0,1) \leq 5.645\} \\
& \approx 0.003 ;
\end{aligned}
$$

and then

$$
\begin{aligned}
P\{19.58875 \leq \bar{X} \leq 20.41125 \mid \mu=21\} & =P\left\{\frac{19.58875-21}{1 / 4} \leq \mathrm{N}(0,1) \leq \frac{20.41125-21}{1 / 4}\right\} \\
& =P\{-5.645 \leq \mathrm{N}(0,1) \leq-2.355\} \\
& \approx 0.003 .
\end{aligned}
$$

That is,

$$
P\{\text { not reject }||\mu-20|=1\} \approx 0.003 .
$$

Chapter 12, Problem 2. (a) We want

$$
\begin{aligned}
\alpha=P\{\text { reject } \mid \theta=2\} & =P\{\text { both the same color } \mid \theta=2\} \\
& =P\{\text { both white } \mid \theta=2\}+P\{\text { both black } \mid \theta=2\} \\
& =\frac{1}{4}+\frac{1}{4}=\frac{1}{2} .
\end{aligned}
$$

[This isn't a very good test, is it?]
(b) There are 4 situations: $\theta=0,1,3,4$.

$$
\begin{aligned}
P\{\text { not reject } \mid \theta=0\} & =0 \\
P\{\text { not reject } \mid \theta=1\} & =P\left\{W_{1} \cap B_{2}\right\}+P\left\{B_{1} \cap W_{2}\right\} \\
& =\left(\frac{1}{4} \times \frac{3}{4}\right)+\left(\frac{3}{4} \times \frac{1}{4}\right)=\frac{3}{8} . \\
P\{\text { not reject } \mid \theta=3\} & =\frac{3}{8} . \\
P\{\text { not reject } \mid \theta=4\} & =0 .
\end{aligned}
$$

(c) For α we want
$\alpha=P\{$ reject $\mid \theta=2\}=P\{$ both white $\mid \theta=2\}+P\{$ both black $\mid \theta=2\}$

$$
=\left(\frac{1}{2} \times \frac{1}{3}\right)+\left(\frac{1}{2} \times \frac{1}{3}\right)=\frac{1}{3} .
$$

For β there are 4 situations: $\theta=0,1,3,4$.

$$
\begin{aligned}
& P\{\text { not reject } \mid \theta=0\}=0 \\
& P\{\text { not reject } \mid \theta=1\}=\left(\frac{1}{4} \times 1\right)+\left(\frac{3}{4} \times \frac{1}{3}\right)=\frac{1}{2} \\
& P\{\text { not reject } \mid \theta=3\}=\frac{1}{2} \\
& P\{\text { not reject } \mid \theta=4\}=0 .
\end{aligned}
$$

Chapter 12, Problem 6. (a) We want to find c such that

$$
\begin{aligned}
\alpha & =P\left\{X_{1: n} \geq c \mid \eta=\eta_{0}\right\} \\
& =P\left\{X_{1} \geq c, \ldots, X_{n} \geq c \mid \eta=\eta_{0}\right\} \\
& =P\left\{X_{1} \geq c \mid \eta=\eta_{0}\right\} \times \cdots \times P\left\{X_{n} \geq c \mid \eta=\eta_{0}\right\} \\
& =\mathrm{e}^{-n\left(c-\eta_{0}\right)}
\end{aligned}
$$

Solve to get

$$
c=\eta_{0}+\frac{1}{n} \ln \left(\frac{1}{\alpha}\right) .
$$

(b) We are asked to compute the following for all $\eta_{1}>\eta_{0}$:

$$
\begin{aligned}
P\left\{X_{1: n} \leq c \mid \eta=\eta_{1}\right\} & =1-P\left\{X_{1: n} \geq c \mid \eta=\eta_{1}\right\} \\
& =1-e^{-n\left(c-\eta_{1}\right)} .
\end{aligned}
$$

But c solves $e^{-n\left(c-\eta_{0}\right)}=\alpha$. Therefore,

$$
\begin{aligned}
P\left\{X_{1: n} \leq c \mid \eta=\eta_{1}\right\} & =1-e^{-n\left(c-\eta_{0}\right)} e^{-n\left(\eta_{1}-\eta_{0}\right)} \\
& =1-\alpha e^{-n\left(\eta_{1}-\eta_{0}\right)}
\end{aligned}
$$

(c) We know from (b) that if $\eta=\eta_{1}$, then

$$
\beta=\alpha e^{-n\left(\eta_{1}-\eta_{0}\right)} \Rightarrow n=\frac{\ln (\alpha / \beta)}{\eta_{1}-\eta_{0}} .
$$

But this is typically not an integer. Therefore, we choose conservatively; i.e.,

$$
n \geq 1+\left\lfloor\frac{\ln (\alpha / \beta)}{\eta_{1}-\eta_{0}}\right\rfloor,
$$

where $\lfloor\cdots\rfloor$ denotes the lowest-integer part function.

