Math 5090-001, Fall 2009

Solutions to Assignment 2

Chapter 11, Problem 17. (a) The cdf of $X \sim \operatorname{GEO}(p)$ is

$$
G(s ; p)=\sum_{j=1}^{s} p(1-p)^{j-1}=p \sum_{i=0}^{s-1}(1-p)^{i}=p\left[\frac{1-(1-p)^{s}}{1-(1-p)}\right]=1-(1-p)^{s}
$$

for $s=1,2, \ldots$ Viewed as a function of $p, G(s ; p)$ is increasing for every integer $s=1,2, \ldots$ In fact,

$$
\frac{\partial}{\partial p} G(s ; p)=s(1-p)^{s-1} \geq 0
$$

Therefore, the functions h_{1} and h_{2} of Theorem 11.4.3 are decreasing. A conservative one-sided $100(1-\alpha) \%$ lower CI for p is $\left(\theta_{L}, 1\right]$, where we find θ_{L} by solving $G\left(X ; \theta_{L}\right)=\alpha$. That is, find θ_{L} such that

$$
1-\left(1-\theta_{L}\right)^{X}=\alpha \quad \Leftrightarrow \quad \theta_{L}=1-(1-\alpha)^{1 / X}
$$

(b) The answer becomes $\theta_{L}=1-0.9^{1 / 5} \approx 0.02085$. So the confidence interval is $\approx(0.029,1]$.
(c) The sum of n independent $\operatorname{GEO}(p)$'s is negative binomial; i.e.,

$$
G(s ; p)=\sum_{k=n}^{s}\binom{k-1}{n-1} p^{n}(1-p)^{k-n}
$$

for $s \geq n$, an integer. If s is fixed, then

$$
\frac{\partial}{\partial p} G(s ; p)=\sum_{k=n}^{s}\binom{k-1}{n-1}\left\{n p^{n-1}(1-p)^{k-n}+(k-n) p^{n}(1-p)^{k-n-1}\right\} \geq 0
$$

So, once again, $G(s, p)$ increases with p, for every fixed integer $s \geq n$. And h_{1} and h_{2} are decreasing; so the CI is $\left(\theta_{L}, 1\right]$, where θ_{L} is the solution to $G\left(S ; \theta_{L}\right)=\alpha$, where $S:=X_{1}+\cdots+X_{n}$ is the sum of the n i.i.d. geometrics.

Chapter 11, Problem 27. (a) [I graded only this part.] The length of the CI is

$$
\left\{\Phi^{-1}\left(\alpha_{1}\right)-\Phi^{-1}\left(1-\alpha_{2}\right)\right\} \cdot \frac{\sigma}{\sqrt{n}}
$$

Our goal is to minimize the preceding function of $\alpha_{1}, \alpha_{2} \geq 0$, subject to $\alpha_{1}+\alpha_{2}=\alpha$. Equivalently, we must minimize

$$
h\left(\alpha_{1}, \alpha-\alpha_{1}\right):=\Phi^{-1}\left(\alpha_{1}\right)-\Phi^{-1}\left(1-\alpha+\alpha_{1}\right) \quad \text { over all } \alpha_{1} \in(0,1) .
$$

Now, elementary calculus tells us that

$$
\begin{aligned}
\frac{\partial}{\partial \alpha_{1}} h\left(\alpha_{1}, \alpha-\alpha_{1}\right) & =\frac{\partial}{\partial \alpha_{1}} \Phi^{-1}\left(\alpha_{1}\right)-\frac{\partial}{\partial \alpha_{1}} \Phi^{-1}\left(1-\alpha+\alpha_{1}\right) \\
& =\frac{1}{\phi\left(\Phi^{-1}\left(\alpha_{1}\right)\right)}-\frac{1}{\phi\left(\Phi^{-1}\left(1-\alpha+\alpha_{1}\right)\right)}
\end{aligned}
$$

where ϕ is the $\mathrm{N}(0,1)$ density function. Set the preceding to zero to find that the optimal choice of α_{1} solves

$$
\phi\left(\Phi^{-1}\left(\alpha_{1}\right)\right)=\phi\left(\Phi^{-1}\left(1-\alpha+\alpha_{1}\right)\right) .
$$

Inspect the curve ϕ to see that if $\phi(a)=\phi(b)$ and $a \neq b$, then $a=-b$, necessarily! This means that

$$
\Phi^{-1}\left(\alpha_{1}\right)=-\Phi^{-1}\left(1-\alpha+\alpha_{1}\right) .
$$

In other words [check the graph of Φ], $\alpha_{1}=\alpha-\alpha_{1}$, and hence $\alpha_{1}=$ $\alpha / 2$. In order to complete this computation, you need to show that the second derivative of $h\left(\alpha_{1}, \alpha-\alpha_{1}\right)$ [with respect to α_{1}] is positive at $\alpha_{1}=\alpha / 2$. I will let you do this yourself.
(b) Yes; replace σ by S and $\Phi^{-1}\left(\alpha_{j}\right)$ by $F^{-1}\left(\alpha_{j}\right)$, where F denotes the cdf of a t distribution with $n-1 \mathrm{df}$. In this way, we find that the optimal α_{1} solves

$$
F^{\prime}\left(F^{-1}\left(\alpha_{1}\right)\right)=F^{\prime}\left(F^{-1}\left(1-\alpha+\alpha_{1}\right)\right) .
$$

Since the shape of F is similar to Φ, it has the same properties, and so $\alpha_{1}=\alpha / 2$ follows from the same considerations as before [you should check the details!].
(c) Because $E\left(S^{2}\right)=\sigma^{2}$, the expected length of the general form of the CI (11.3.6) is

$$
2(n-1) \sigma^{2}\left[\frac{1}{q_{1}}-\frac{1}{q_{2}}\right]
$$

where $F\left(q_{1}\right)=\alpha_{1}$ and

$$
F\left(q_{2}\right)=\alpha_{2}=1-\alpha+\alpha_{1}=\text { constant }+F\left(q_{1}\right),
$$

and F is the cdf of a $\chi^{2}(n-1)$. Let $f:=F^{\prime}$, as usual. We can differentiate $(\star)\left[d / d q_{1}\right]$ to find that

$$
f\left(q_{2}\right) \frac{d q_{2}}{d q_{1}}=f\left(q_{1}\right) \quad \Rightarrow \quad \frac{d q_{2}}{d q_{1}}=\frac{f\left(q_{1}\right)}{f\left(q_{2}\right)} .
$$

But the expected length is proportional to

$$
h\left(q_{1}, q_{2}\right)=\frac{1}{q_{1}}-\frac{1}{q_{2}} ;
$$

in fact, we saw that the constant of proportionality is $2(n-1) \sigma^{2}$. Want to set $\partial h / \partial q_{1}=0$;

$$
\frac{\partial h}{\partial q_{1}}=-\frac{1}{q_{1}^{2}}+\frac{1}{q_{2}^{2}} \frac{d q_{2}}{d q_{1}}=-\frac{1}{q_{1}^{2}}+\frac{1}{q_{2}^{2}} \frac{f\left(q_{1}\right)}{f\left(q_{2}\right)}
$$

Set this equal to zero to find that the optimal choice must solve

$$
\frac{q_{2}^{2}}{q_{1}^{2}}=\frac{f\left(q_{1}\right)}{f\left(q_{2}\right)}
$$

If the equal-tailed answer did this for all $\alpha \in(0,1 / 2)$, then f would have to be symmetric; and it is not.

Chapter 11, Problem 30. (a) Since \bar{X}_{n} is asymptotically $\mathrm{N}(\mu, \mu / n)$ and $g(\mu)=\sqrt{\mu}$, it follows that $c=\sqrt{\mu}$ and $g^{\prime}(\mu)=1 /(2 \sqrt{\mu})$. Therefore, $\left|c g^{\prime}(\mu)\right|^{2}$ is a constant
[namely, 1/4] and so g is a variance-stabilizing transformation. And by Theorem 7.7.6 (p. 249),

$$
\sqrt{\bar{X}_{n}} \stackrel{d}{\approx} \mathrm{~N}\left(\sqrt{\mu}, \frac{1}{4 n}\right) .
$$

(b) We know that for n large,

$$
P\left\{\left|\sqrt{\bar{X}_{n}}-\sqrt{\mu}\right| \leq \frac{z_{1-(\alpha / 2)}}{2 \sqrt{n}}\right\} \approx 1-\alpha .
$$

Therefore, an approx. $100(1-\alpha) \%$ CI for $\sqrt{\mu}$ is

$$
\left(\sqrt{\bar{X}_{n}}-\frac{z_{1-(\alpha / 2)}}{2 \sqrt{n}}, \sqrt{\bar{X}_{n}}+\frac{z_{1-(\alpha / 2)}}{2 \sqrt{n}}\right)
$$

and for μ, it translates to

$$
\left(\left|\sqrt{\bar{X}_{n}}-\frac{z_{1-(\alpha / 2)}}{2 \sqrt{n}}\right|^{2},\left|\sqrt{\bar{X}_{n}}+\frac{z_{1-(\alpha / 2)}}{2 \sqrt{n}}\right|^{2}\right)
$$

(c) By the central limit theorem,

$$
\frac{\sqrt{n}\left[\bar{X}_{n}-\theta\right]}{\theta} \xrightarrow{d} \mathrm{~N}(0,1) .
$$

So, $c(\theta)=\theta$, and we seek to find a function $g(\theta)$ such that $\left|c(\theta) g^{\prime}(\theta)\right|^{2}=$ $\theta^{2}\left|g^{\prime}(\theta)\right|^{2}$ is a constant. Set $g(\theta):=\ln \theta$ to see that indeed $\theta^{2}\left|g^{\prime}(\theta)\right|^{2}=$ 1. Theorem 7.7.6 (p. 249) then tells us that

$$
\sqrt{n}\left[\ln \bar{X}_{n}-\ln \theta\right] \xrightarrow{d} \mathrm{~N}(0,1) .
$$

So an approximate $100(1-\alpha) \%$ CI for $\ln \theta$ is

$$
\left(\ln \bar{X}_{n}-\frac{z_{1-(\alpha / 2)}}{\sqrt{n}}, \ln \bar{X}_{n}+\frac{z_{1-(\alpha / 2)}}{\sqrt{n}}\right) .
$$

And an approximate $100(1-\alpha) \% \mathrm{CI}$ for θ is

$$
\left(\bar{X}_{n} \mathrm{e}^{-Q}, \bar{X}_{n} \mathrm{e}^{Q}\right) .
$$

where $Q:=z_{1-(\alpha / 2)} / \sqrt{n}$.

