Math 5090-001, Fall 2009

Solutions to Assignment 1

Chapter 11, Problem 1. (a) The $100(1-\alpha) \%$ confidence interval is

$$
\bar{X} \pm z_{1-(\alpha / 2)} \frac{\sigma}{\sqrt{n}}=19.3 \pm z_{1-(\alpha / 2)} \frac{3}{4} .
$$

We want $1-\alpha=0.9$ confidence interval; so $z_{1-(\alpha / 2)} \approx 1.645$. So the confidence intervals is 19.3 ± 1.23375; that is, $(18.06625,20.53375)$, approximately.
(b) The lower confidence interval for μ is

$$
\bar{X}-z_{\alpha} \frac{\sigma}{\sqrt{n}} \approx 19.3-1.285 \frac{3}{4}=18.33625 .
$$

The upper confidence interval for μ is

$$
\bar{X}+z_{\alpha} \frac{\sigma}{\sqrt{n}} \approx 19.3+1.285 \frac{3}{4}=20.26375
$$

(c) The length of the confidence interval (11.2.7) is

$$
\lambda=2 z_{1-(\alpha / 2)} \frac{\sigma}{\sqrt{n}} .
$$

Solve for n to obtain

$$
n=\left(\frac{2 z_{1-(\alpha / 2)} \sigma}{\lambda}\right)^{2}=\frac{4 z_{1-(\alpha / 2)}^{2} \sigma^{2}}{\lambda^{2}}
$$

If we want to ensure that $\lambda=2$, then we need

$$
n \approx \frac{4(1.645)^{2} 9}{4}=24.354225 .
$$

Since n has to be an integer, it follows that the requisite n is 25 or more.
(d) We have the confidence interval [see (11.3.5)]

$$
\bar{X} \pm t_{1-(\alpha / 2)}(n-1) \frac{S}{\sqrt{n}} \approx 19.3 \pm 1.753 \frac{\sqrt{10.24}}{4}=(17.8976,20.7024)
$$

(e) We apply (11.3.6) to obtain

$$
\left(\frac{(n-1) S^{2}}{\chi_{1-(\alpha / 2)}^{2}(n-1)}, \frac{(n-1) S^{2}}{\chi_{\alpha / 2}^{2}(n-1)}\right) \approx\left(\frac{15 \times 10.24}{32.8}, \frac{15 \times 10.24}{4.6}\right) \approx(4.683,33.391)
$$

Chapter 11, Problem 5. (a) First of all, recall that the density function of every X_{j} is

$$
f(x, \eta)= \begin{cases}e^{-(x-\eta)} & \text { if } x>\eta \\ 0 & \text { if } x \leq \eta\end{cases}
$$

Now we use a trick from Math 5080 to compute the density of $Q:=$ $X_{1: n}-\eta$. Namely, we first compute $F_{Q}(a)$, and then differentiate with respect to a. Here are the details: For all $a>0$,

$$
\begin{aligned}
F_{Q}(a) & =1-P\left\{X_{1: n}-\eta>a\right\} \\
& =1-P\left\{X_{1}>a+\eta, \cdots, X_{n}>a+\eta\right\} \\
& =1-\left(P\left\{X_{1}>a+\eta\right\}\right)^{n} .
\end{aligned}
$$

Because

$$
P\left\{X_{1}>a+\eta\right\}=\int_{a+\eta}^{\infty} e^{-(x-\eta)} d x=e^{-a}
$$

it follows that

$$
F_{Q}(a)= \begin{cases}1-e^{-n a} & \text { if } a>0 \\ 0 & \text { if } a \leq 0\end{cases}
$$

In particular, Q is distributed as $\operatorname{EXP}(1 / n)$, a distribution that does not depend on the parameter η.
(b) From part (a) we know that for all $a>0, P\{Q \leq a\}=1-e^{n a}$.

Let q_{1} be the value of a that makes this probability $(1-\gamma) / 2$; that is,

$$
1-e^{-n q_{1}}=\frac{1-\gamma}{2} \Rightarrow e^{-n q_{1}}=\frac{1+\gamma}{2} \Rightarrow q_{1}=-\frac{1}{n} \log \left(\frac{1+\gamma}{2}\right)
$$

Thus, $P\left\{Q \leq q_{1}\right\}=(1-\gamma) / 2[=\alpha / 2]$. This is not silly because it is possible to check that $q_{1}>0$ for $0<\gamma<1$.

Also let us find $q_{2}>0$ such that $P\left\{Q \geq q_{2}\right\}=(1-\gamma) / 2$ as follows:

$$
\frac{1-\gamma}{2}=P\left\{Q \geq q_{2}\right\}=1-F_{Q}\left(q_{2}\right)=e^{-n q_{2}}
$$

Consequently,

$$
q_{2}=-\frac{1}{n} \log \left(\frac{1-\gamma}{2}\right)
$$

[This too is >0.] Now, with q_{1} and q_{2} as above: $P\left\{q_{1} \leq Q \leq q_{2}\right\}=\gamma$; but " $q_{1} \leq Q \leq q_{2}$ " is the same statement as " $q_{1} \leq X_{1: n}-\eta \leq q_{2}$," which is in turn the same as " $X_{1: n}-q_{2} \leq \eta \leq X_{1: n}-q_{1}$." That is, the confidence interval that we seek is

$$
\left(X_{1: n}+\frac{1}{n} \log \left(\frac{1-\gamma}{2}\right), X_{1: n}+\frac{1}{n} \log \left(\frac{1+\gamma}{2}\right)\right) .
$$

(c) I am not sure what θ is in this problem. But it is irrelevant information, in any event. "A 90% confidence interval" implies that $\gamma=0.9$, whence the CI is the following [thanks to part (b)]:

$$
\left(162+\frac{1}{19} \log \left(\frac{0.1}{2}\right), 162+\frac{1}{19} \log \left(\frac{1.9}{2}\right)\right) \approx(161.84233,161.9973)
$$

Chapter 11, Problem 8. (a) Note that

$$
P\left\{X_{n: n} \leq \theta \leq 2 X_{n: n}\right\}=P\left\{\frac{\theta}{2} \leq X_{n: n} \leq \theta\right\}=F_{X_{n: n}}(\theta)-F_{X_{n: n}}(\theta / 2)
$$

Because

$$
F_{X_{n: n}}(a)=P\left\{X_{1} \leq a, \ldots, X_{n} \leq a\right\}=\left(P\left\{X_{1} \leq a\right\}\right)^{n}=\left(\frac{a}{\theta}\right)^{n}
$$

it follows that

$$
P\left\{X_{n: n} \leq \theta \leq 2 X_{n: n}\right\}=1-2^{-n}
$$

(b) More generally, but still as in part (a), for all $c>1$,

$$
P\left\{X_{n: n} \leq \theta \leq c X_{n: n}\right\}=1-c^{-n}
$$

To find the correct c, set the preceding equal to $1-\alpha$:

$$
1-c^{-n}=1-\alpha \Rightarrow c^{-n}=\alpha \Rightarrow c=\alpha^{-1 / n}
$$

That is, $\left(X_{n: n}, \alpha^{-1 / n} X_{n: n}\right)$ is a $100(1-\alpha) \%$ confidence interval for θ.
Chapter 11, Problem 14. (a) Since $X \sim \operatorname{POI}(100 \lambda)$, we want to apply Theorem 11.4.3. Note that

$$
G(s, \lambda)=\sum_{j=0}^{s} e^{-100 \lambda} \frac{(100 \lambda)^{j}}{j!}
$$

Now $E X=100 \lambda$, and we have observed X to be 5 . So a rough guess for λ is something like $\lambda \approx 0.05$. In other words, any reasonable statistical method is likely to produce a value of λ_{U} in the interval $I:=(0,1)$. This is an important observation:

Suppose we could find an increasing function h_{1} such that $G\left(h_{1}(\lambda), \lambda\right)=$ 0.025 for all λ close to zero. Then Theorem 11.4.3 tells us to solve for λ_{U} that solves $h_{1}(\lambda)=5$, and that λ_{U} is a conservative upper 95% confidence limit for λ. In other words, if h_{1} were decreasing, then we solve $G\left(5, \lambda_{U}\right)=0.025$; i.e.,

$$
0.025=\sum_{j=0}^{5} e^{-100 \lambda_{U}} \frac{\left(100 \lambda_{U}\right)^{j}}{j!}
$$

And this tells us (see Table 2, page 602 of your text) that

$$
10 \leq 100 \lambda_{U} \leq 15
$$

So certainly 15 is a conservative upper 95% confidence limit for the mean number 100 λ of defects in this case.

This is the correct answer; it remains to verify the stated monotonicity of h_{1}. That, in turn, follows if we could show that $G(s, \lambda)$ is decreasing in λ for all s fixed (why?). This requires only a direct computation:

$$
\begin{aligned}
\frac{d}{d \lambda} G(s, \lambda) & =\sum_{j=0}^{s} e^{-100 \lambda} \frac{(100 \lambda)^{j}}{j!}\left(\frac{j}{\lambda}-100\right) \\
& =e^{-100 \lambda}\left(\sum_{j=0}^{s} \frac{(100 \lambda)^{j}}{j!} \frac{j}{\lambda}-100 \sum_{j=0}^{s} \frac{(100 \lambda)^{j}}{j!}\right) \\
& =e^{-100 \lambda}\left(\sum_{j=1}^{s} \frac{(100 \lambda)^{j}}{j!} \frac{j}{\lambda}-100 \sum_{j=0}^{s} \frac{(100 \lambda)^{j}}{j!}\right) \\
& =e^{-100 \lambda}\left(\sum_{j=1}^{s} \frac{(100 \lambda)^{j}}{(j-1)!} \frac{1}{\lambda}-100 \sum_{j=0}^{s} \frac{(100 \lambda)^{j}}{j!}\right) \\
& =e^{-100 \lambda}\left(100 \lambda \sum_{j=1}^{s} \frac{(100 \lambda)^{j-1}}{(j-1)!} \frac{1}{\lambda}-100 \sum_{j=0}^{s} \frac{(100 \lambda)^{j}}{j!}\right) \\
& =-e^{-100 \lambda} \frac{(100 \lambda)^{s}}{s!} \leq 0 .
\end{aligned}
$$

(b) This is as in (a), but we want a CI for λ and not 100λ this time; also, $X=15$ is the observed value. That is, find λ_{U} such that

$$
0.025=\sum_{j=0}^{15} e^{-100 \lambda_{U}} \frac{\left(100 \lambda_{U}\right)^{j}}{j!}
$$

And Table 2 yields only that $\lambda_{U} \gg 15$.

