Math 5090-001, Fall 2009

Solutions to Assignment 10
Chapter 15, Problem 25. We know:

$$
\hat{\sigma}^{2}=\frac{(\boldsymbol{Y}-\boldsymbol{X} \hat{\boldsymbol{\beta}})^{\prime}(\boldsymbol{Y}-\boldsymbol{X} \hat{\boldsymbol{\beta}})}{n} \quad\left[\text { which is }=\frac{1}{n}\|\boldsymbol{Y}-\boldsymbol{X} \hat{\boldsymbol{\beta}}\|^{2}\right] .
$$

Since $(\boldsymbol{Y}-\boldsymbol{X} \hat{\boldsymbol{\beta}})^{\prime}=\boldsymbol{Y}^{\prime}-(\boldsymbol{X} \hat{\boldsymbol{\beta}})^{\prime}$, we can write the numerator of $\hat{\sigma}^{2}$ as

$$
\begin{aligned}
\boldsymbol{Y}^{\prime} \boldsymbol{Y}-\boldsymbol{Y}^{\prime} \boldsymbol{X} \hat{\boldsymbol{\beta}}-(\boldsymbol{X} \hat{\boldsymbol{\beta}})^{\prime} \boldsymbol{Y}+(\boldsymbol{X} \hat{\boldsymbol{\beta}})^{\prime}(\boldsymbol{X} \hat{\boldsymbol{\beta}}) & =\boldsymbol{Y}^{\prime} \boldsymbol{Y}-\boldsymbol{Y}^{\prime} \boldsymbol{X} \hat{\boldsymbol{\beta}}-\hat{\boldsymbol{\beta}}^{\prime} \boldsymbol{X}^{\prime} \boldsymbol{Y}+\hat{\boldsymbol{\beta}}^{\prime} \boldsymbol{X}^{\prime} \boldsymbol{X} \hat{\boldsymbol{\beta}} \\
& =\boldsymbol{Y}^{\prime} \boldsymbol{Y}-\boldsymbol{Y}^{\prime} \boldsymbol{X} \hat{\boldsymbol{\beta}}-\left(\boldsymbol{Y}^{\prime} \boldsymbol{X} \hat{\boldsymbol{\beta}}\right)^{\prime}+\hat{\boldsymbol{\beta}}^{\prime} \boldsymbol{X}^{\prime} \boldsymbol{X} \hat{\boldsymbol{\beta}} \\
& =\boldsymbol{Y}^{\prime} \boldsymbol{Y}-2 \boldsymbol{Y}^{\prime} \boldsymbol{X} \hat{\boldsymbol{\beta}}+\hat{\boldsymbol{\beta}}^{\prime} \boldsymbol{X}^{\prime} \boldsymbol{X} \hat{\boldsymbol{\beta}}
\end{aligned}
$$

[The last line holds because all of these terms are scalars. In particular, $\boldsymbol{Y}^{\prime} \boldsymbol{X} \hat{\boldsymbol{\beta}}$ is a scalar. So it is equal to its own transpose.] Plug in $\hat{\boldsymbol{\beta}}=$ $\left(\boldsymbol{X}^{\prime} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\prime} \boldsymbol{Y}$ in this to obtain:

$$
\begin{aligned}
\boldsymbol{Y}^{\prime} \boldsymbol{X} \hat{\boldsymbol{\beta}} & =\boldsymbol{Y}^{\prime} \boldsymbol{X}\left(\boldsymbol{X}^{\prime} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\prime} \boldsymbol{Y} ; \quad \text { and } \\
\hat{\boldsymbol{\beta}}^{\prime} \boldsymbol{X}^{\prime} \boldsymbol{X} \hat{\boldsymbol{\beta}} & =\boldsymbol{Y}^{\prime} \boldsymbol{X}\left(\boldsymbol{X}^{\prime} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\prime} \boldsymbol{X}\left(\boldsymbol{X}^{\prime} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\prime} \boldsymbol{Y} \\
& =\boldsymbol{Y}^{\prime} \boldsymbol{X} \hat{\boldsymbol{\beta}}
\end{aligned}
$$

Therefore, the numerator of $\hat{\sigma}^{2}$ is $\boldsymbol{Y}^{\prime} \boldsymbol{Y}-\boldsymbol{Y}^{\prime} \boldsymbol{X} \hat{\boldsymbol{\beta}}=\boldsymbol{Y}^{\prime}(\boldsymbol{Y}-\boldsymbol{X} \hat{\boldsymbol{\beta}})$. Divide this by n to finish.

