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1 Introduction

The basic problem in density estimation is this: Suppose X1, . . . , Xn is an
independent sample from a density function f that is unknown. In many
cases, f is unknown only because it depends on unknown parameter(s). In
such cases, we proceed by using methods that we have discussed earlier in
Math 5080–5090. For example, if X1, . . . , Xn ∼ N(µ , σ2), then the density
is

f(x) =
1

σ
√

2π
exp

(
−(x− µ)2

2σ2

)
.

And we estimate f by

f̂(x) =
1

σ̂
√

2π
exp

(
−(x− µ̂)2

2σ̂2

)
,

where µ̂ = X̄n and σ̂2 = (1/n)
∑n

i=1(Xi − X̄n)2 are the usual MLEs for µ
and σ [or you can use S2 in place of σ̂2, as well].

Here, we are studying the more interesting case that f is unknown. In
this more general case, there are several different approaches to density
estimation. We shall concentrate our efforts on the socalled “kernel density
estimators.” But for now, let us begin with a commonly-used first approach:
The histogram.

1.1 The Histogram

A standard histogram of data X1, . . . , Xn starts with agreeing on a point
x0—called the origin—and a positive number ε—called bandwidth. Then,
we define bins Bj for all integers j = 0,±1,±2, . . . as follows:

Bj := [x0 + jh , x0 + (j + 1)h] .

The ensuing histogram is the plot of the density estimator,

f̂(x) :=
1
nε

n∑
j=1

I {Xj is in the same bin as x} .
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Note that for all x ∈ Bk, f̂(x) is equal to (1/h) times the fraction of the
data that falls in bin k. The bandwidth ε is a “smoothing parameter.” As
ε is increased, the plot of f̂ becomes “smoother,” and conversely as ε is
decreased, f̂ starts to look “rougher.” Fine-tuning ε is generally something
that one does manually. This is a skill that is honed by being thoughtful
and after some experimentation.
Warnings:

1. Generally the graph of f̂ is also very sensitive to our choice of x0.

2. The resulting picture/histogram is jagged by design. More often than
not, density estimation is needed to decide on the “shape” of f . In
such cases, it is more helpful to have a “smooth” function estimator.

3. There are estimators of f that have better mathematical properties
than the histogram.

Example 1 Consider the following hypothetical data set:

1, 1, 2, 3, 4, 4, 4, 2, 1.5, 1.4, 2.3, 4.8.

Here, n = 12. Suppose we set x0 := 0 and h := 1.5. Then, the bins of
interest are

[0 , 1.5), [1.5 , 3), [3 , 4.5), [4.5 , 6).

Therefore,

f̂(x) =
1
18
×



3 if 0 ≤ x < 1.5,

4 if 1.5 ≤ x < 3,

4, if 3 ≤ x < 4.5,

1, if 4.5 ≤ x < 6,

=



1/6 if 0 ≤ x < 1.5,

2/9 if 1.5 ≤ x < 3,

2/9, if 3 ≤ x < 4.5,

1/18, if 4.5 ≤ x < 6.
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Figure 1: Histogram of the data of Example 1.
Three breaks (automatic).

In order to see how changing x0 can change the picture consider instead
x0 = 1. Then,

f̂(x) =
1
18
×


4 if 1 ≤ x < 2.5,

4, if 2.5 ≤ x < 4,

1, if 4 ≤ x < 5.5.

The preceding example showcases the problem with the choice of the
origin: By changing x0 even a little bit we can change the entire shape of
f̂ . Nevertheless, the histogram can be a useful (i.e., fast) starting-point for
the data analyst. For instance, in R, you first type the expression
“X = c(1,1,2,3,4,4,4,2,1.5,1.4,2.3,4.8)”
to get X to denote the data vector of the previous example. Then, you type
“hist(X)” to produce Figure 1. The R command hist has several param-
eters that you can use to fine-tune your histogram plotting. For instance,
the command “hist(X,breaks=6)” produces Figure 2. [Figure 1 can be
produced also with “hist(X,breaks=3).”]
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Figure 2: Histogram of the data of Example 1.
Six breaks (manual).

1.2 The Kernel Density Estimator

Kernel density estimators are smooth substitutes for histograms. We start
with a heuristic argument: If ε is a small number, and if f is continuous at
x, then

f(x) ≈ 1
2ε

P{x− ε < X < x+ ε}.

Here, X ∼ f , of course. On the other hand, by the law of large numbers, if
n is large then with very high probability,

P{x− ε < X < x+ ε} ≈ 1
n

n∑
j=1

I {x− ε < Xj < x+ ε} .
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Therefore, we can consider the density estimator

f̂(x) :=
1

2nε

n∑
j=1

I {x− ε < Xj < x+ ε} ,

=
1
n

n∑
j=1

I{|Xj − x| ≤ ε}
2ε

=
1
n

n∑
j=1

1
ε
w

(
x−Xj

ε

)
,

where w is the “kernel,”

w(x) :=
1
2
I{|x| ≤ 1}.

This definition of f̂(x) yields a variant of the histogram. In order to obtain
a smoother estimator, note that if ε is small then

wε(x) :=
1
ε
w

(
x−Xj

ε

)
is approximately a “delta function at Xj” That is: (1) wε is highly peaked
at Xj , and (2) the area under wε is fixed to be one. So our strategy is
to replace the role of w by a smoother function so that a smoother delta
function is obtained.

So now consider a “kernel” K. It is a function such that K(x) ≥ 0 and∫∞
−∞K(x) dx = 1. Then, define

f̂(x) :=
1
nε

n∑
j=1

K

(
x−Xj

ε

)
.

The parameter ε is used to tune the estimator. It is alternatively called the
window width, the bandwidth, and/or the smoothing parameter. Roughly
speaking, the kernel desnity estimator puts a smooth but concentrated
“bump function” over each observation, and then averages over the bumps.
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Figure 3: Histogram of the variable “GD”.
Thirty breaks.

2 Kernel Density Estimation in One Dimension

Recall that X1, . . . , Xn are i.i.d. with density function f . We choose and
fix a probability density function K and a binwidth ε, and then define our
kernel density estimate as

f̂(x) :=
1
nε

n∑
j=1

K

(
x−Xj

ε

)
, −∞ < x <∞.

Before we start our analysis, let us see how kernel density estimators
looks for a certain data set whose variable I call “GD.” In order to have
a reasonable starting point, I have drawn up the histogram of the data.
This appears in Figure 3. The number of breaks was 30. This number was
obtained after a little experimentation.

Figures 4, 5, and 6 depict three different kernel density estimates of the
unknown density f . They are all based on the same dataset.

1. Figure 4 shows the kernel density estimator of “GD” with bandwidth
ε := 0.5 and K := the double-exponential density; i.e., K(x) = 1

2e
−|x|.

The density K is plotted in Figure 7.
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Figure 4: Kernel density estimate using DE
(ε = 0.5).
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Figure 5: Kernel density estimate using N(0 , 1)
(ε = 0.5).
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Figure 6: Kernel density estimate using N(0 , 1)
(ε = 0.1).

2. Figure 5 shows the kernel density estimator for the same bandwidth
(ε = 0.5), but now K := (2π)−1/2 exp(−x2/2) is the N(0 , 1) density.
The density K is plotted in Figure 8 for the purposes of comparison.

3. Figure 6 shows the kernel density estimator for the smaller bandwidth
ε = 0.1, but still K is still the N(0 , 1) density.

Before we analyse kernel density estimators in some depth, let us try and
understand the general notion of “smoothing,” which translates to the math-
ematical “convolution.” In actual practice, you raise ε in order to obtain
a smoother kernel density estimator; you lower ε to obtain a rougher one.
Figures 5 and 6 show this principle for the variable “GD.”

2.1 Convolutions

If f and g are two non-negative functions on R, then their convolution is
defined as

(f ∗ g)(x) :=
∫ ∞
−∞

f(y)g(x− y) dy,

provided that the integral exists, of course. A change of variables shows
that f ∗ g = g ∗ f , so that convolution is a symmetric operation. You have
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seen convolutions in undergraduate probability [Math 5010] already: If X
and Y are independent random variables with respective densities f and g,
then X + Y is a continuous random variable also, and its density is exactly
f ∗ g.

Quite generally, if f and g are probability densities then so is f ∗ g.
Indeed, (f ∗ g)(x) ≥ 0 and∫ ∞

−∞
(f ∗ g)(x) dx =

∫ ∞
−∞

∫ ∞
−∞

f(y)g(x− y) dy dx

=
∫ ∞
−∞

(∫ ∞
−∞

g(x− y) dx
)
f(y) dy

= 1,

after a change of the order of integration.
Quite generally, convolution is a “smoothing operation.” One way to

make this precise is this: Suppose f and g are probability densities; g is
continuously differentiable with a bounded derivative. Then, f ∗ g is also
differentiable and

(f ∗ g)′(x) =
∫ ∞
−∞

f(y)g′(x− y) dx.

The continuity and boundedness of g′ ensure that we can differentiate under
the integral sign. Similar remarks apply to the higher derivatives of f ∗ g,
etc.

In other words, if we start with a generic density function f and a smooth
one g, then f ∗g is in general not less smooth than g. By symmetry, it follows
that f ∗ g is at least as smooth as the smoother one of f and g.

2.2 Approximation to the Identity

Let K be a real-valued function on R such that K(x) ≥ 0 for all x ∈ R, and∫∞
−∞K(x) dx = 1. That is, K is a density function itself. But it is one that
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we choose according to taste, experience, etc. Define for all ε > 0,

Kε(x) :=
1
ε
K
(x
ε

)
.

For example, if K is the standard-normal density, then Kε is the N(0 , ε2)
density. In this case, Kε concentrates more and more around 0 as ε ↓ 0. This
property is valid more generally; e.g., if K “looks” like a normal, Cauchy,
etc.

Recall that K is a density function. This implies that Kε is a density
also. Indeed, Kε(x) ≥ 0, and∫ ∞

−∞
Kε(x) dx =

1
ε

∫ ∞
−∞

K
(x
ε

)
dx =

∫ ∞
−∞

K(y) dy = 1,

after a change of variables. The collection {Kε}h>0 of functions is some-
times called an approximation to the identity. The following justifies this
terminology.

Theorem 2 Let f be a density function. Suppose that either:

1. f is bounded; i.e., there exists B such that |f(x)| ≤ B for all x; or

2. K vanishes at infinity; i.e., limz→±∞K(z) = 0.

Then, whenever f is continuous in an open neighborhood of x ∈ R,

lim
ε→0

(Kε ∗ f)(x) = f(x).

In many applications, our kernel K is infinitely differentiable and van-
ishes at infinity. The preceding then proves that f can be approximated, at
all its “continuity points,” by an infinitely-differentiable function.

Theorem 2 really requires some form of smoothness on the part of f .
However, there are versions of this theorem that require nothing more than
the fact that f is a density. Here is one such version. Roughly speaking, it
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states that for “most” values of x ∈ R, (Kε ∗ f)(x) ≈ f(x) as h → 0. The
proof is similar to that of Theorem 2.

Theorem 3 Suppose f and K are density functions that satisfy the condi-
tions of Theorem 2. Then,

lim
ε→0

∫ ∞
−∞
|(Kε ∗ f) (x)− f(x)| dx = 0.

There is also a “uniform” version of this. Recall that f is uniformly
continuous if

lim
ε→0

max
x
|f(x+ ε)− f(x)| = 0.

Then, the following can also be proved along the lines of Theorem 2.

Theorem 4 Suppose f and K are density functions as in Theorem 2, and
f is uniformly continuous. Then, limε→0Kε ∗ f = f uniformly; i.e.,

lim
ε→0

max
x
|(Kε ∗ f) (x)− f(x)| = 0.

3 The Kernel Density Estimator

Now suppose X1, . . . , Xn are i.i.d. with density f . Choose and fix a band-
width ε > 0 (small), and define

f̂(x) :=
1
nε

n∑
j=1

K

(
x−Xj

ε

)

=
1
n

n∑
j=1

Kε(x−Xj).

13



We can easily compute the mean and variance of f̂(x), viz.,

Ef̂(x) = E [Kε(x−X1)]

=
∫ ∞
−∞

Kε(x− y)f(y) dy = (Kε ∗ f)(x);

Var f̂(x) =
1
n

Var (Kε(x−X1))

=
1
nε2

∫ ∞
−∞

∣∣∣∣K (x− yε
)∣∣∣∣2 f(y) dy − 1

n
|(Kε ∗ f)(x)|2

=
1
n

[
(K2

ε ∗ f)(x)− (Kε ∗ f)2(x)
]
,

where
K2
ε (z) := |Kε(z)|2 =

1
ε2

∣∣∣K (z
ε

)∣∣∣2 .
Now recall the mean-squared error :

MSE f̂(x) := E
[∣∣∣f̂(x)− f(x)

∣∣∣2] = Var f̂(x) +
∣∣∣Bias f̂(x)

∣∣∣2 .
The bias is

Bias f̂(x) = E
[
f̂(x)

]
− f(x) = (Kε ∗ f)(x)− f(x).

Thus, we note that for a relatively nice kernel K:

1. Var f̂(x)→ 0 as n→∞; whereas

2. Bias f̂(x)→ 0 as ε→ 0; see Theorem 2.

The question arises: Can we let ε = εn → 0 and n→∞ in such a way that
MSE f̂(x) → 0? We have seen that, in one form or another, all standard
density estimators have a sort of “bandwidth” parameter. Optimal choice of
the bandwidth is the single-most important question in density estimation,
and there are no absolute answers! We will study two concrete cases next.
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4 Asymptotically-Optimal Bandwidth Selection

Suppose the unknown density f is smooth (three bounded and continu-
ous derivatives, say!). Suppose also that K is symmetric [i.e., K(a) =
K(−a)] and vanishes at infinity. Then it turns out that we can “find” the
asymptotically-best value of the bandwidth ε = εn.

Several times in the future, we will appeal to Taylor’s formula in the
following form: For all ε small,

f(x− zε) ≈ f(x)− zεf ′(x) +
z2ε2

2
f ′′(x). (1)

4.1 Local Estimation

Suppose we are interested in estimating f “locally.” Say, we wish to know
f(x) for a fixed, given value of x.

We have seen already that

Bias f̂(x) = (Kε ∗ f)(x)− f(x)

=
1
ε

∫ ∞
−∞

K

(
x− u
ε

)
f(u) du− f(x)

=
∫ ∞
−∞

K(z)f(x− zε) dz − f(x).

Therefore, by (1),

Bias f̂(x) ≈
∫ ∞
−∞

K(z)
{
f(x)− zεf ′(x) +

z2ε2

2
f ′′(x)

}
dz − f(x)

= f(x)

=1, since K is a pdf︷ ︸︸ ︷∫ ∞
−∞

K(z) dz −εf ′(x)

=0, by symmetry︷ ︸︸ ︷∫ ∞
−∞

zK(z) dz

+
ε2

2
f ′′(x)

∫ ∞
−∞

z2K(z) dz − f(x).
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Simplify to obtain

Bias f̂(x) ≈ ε2

2
f ′′(x)

∫ ∞
−∞

z2K(z) dz

:=
ε2

2
f ′′(x)σ2

K .

(2)

Now we turn our attention to the variance of f̂(x). Recall that Var f̂(x) =
(K2

ε ∗ f)(x)− (Kε ∗ f)2(x). We begin by estimating the first term.

(
K2
ε ∗ f

)
(x) =

1
ε2

∫ ∞
−∞

∣∣∣∣K (x− uε
)∣∣∣∣2 f(u) du

=
1
ε

∫ ∞
−∞

K2(z)f(x− zε) dz

≈ 1
ε

∫ ∞
−∞

K2(z)
{
f(x)− zεf ′(x) +

z2ε2

2
f ′′(x)

}
dz

=
1
ε
f(x)

∫ ∞
−∞

K2(z) dz − f ′(x)
∫ ∞
−∞

zK2(z) dz

+
ε

2
f ′′(x)

∫ ∞
−∞

z2K2(z) dz

≈ 1
ε
f(x)

∫ ∞
−∞

K2(z) dz [the other terms are finite]

:=
1
ε
f(x)‖K‖22.

Because (Kε ∗ f)(x) ≈ f(x) (Theorem 2), this yields the following:1

Var f̂(x) ≈ 1
nε
f(x)‖K‖22.

Consequently, as ε = εn → 0 and n→∞,

MSE f̂(x) ≈ 1
nε
f(x)‖K‖22 +

ε4

4

∣∣f ′′(x)
∣∣2 σ4

K . (3)

1We are writing ‖g‖2
2 :=

R∞
−∞ g

2(z) dz and σ2
g :=

R∞
−∞ z

2g(z) dz for any reasonable
function g.
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Thus, we can choose ε = εn as the solution to the minimization problem:

min
ε

[
1
nε
f(x)‖K‖22 +

ε4

4

∣∣f ′′(x)
∣∣2 σ4

K

]
.

Let ψ(ε) denote the terms in brackets. Then,

ψ′(ε) = − 1
nε2

f(x)‖K‖22 + ε3
∣∣f ′′(x)

∣∣2 σ4
K .

Set ψ′ ≡ 0 to find the asymptotically-optimal value of ε:

εn :=
αfβK

n1/5
,

where

αf :=
(f(x))1/5

(f ′′(x))2/5
, and βK :=

‖K‖2/52

σ
4/5
K

=

(∫∞
−∞K

2(z) dz
)1/5

(∫∞
−∞ z

2K(z) dz
)2/5

. (4)

The asymptotically optimal MSE is obtained upon plugging in this εn into
(3). That is,

MSEopt f̂(x) ≈ 1
nεn

f(x)‖K‖22 +
ε4n
4
|f ′′(x)|2σ4

K

=
1

n4/5

[
f(x)‖K‖22
αfβK

+
1
4
α4
fβ

4
K |f ′′(x)|2σ4

K

]
=
‖K‖8/52 σ

4/5
K

n4/5

[
f(x)
αf

+
α4
f |f ′′(x)|2

4

]
.

Example 5 A commonly-used kernel is the double exponential density. It
is described by

K(x) :=
1
2
e−|x|.

See Figure 7 for a plot. By symmetry,

σ2
K =

∫ ∞
0

x2e−x dx = 2, ‖K‖22 =
1
2

∫ ∞
0

e−2x dx =
1
4
, βK =

4−1/5

22/5
=

1
24/5

.
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Figure 7: A plot of the double-exponential density.

Therefore,

εn =
C

n1/5
where C =

αf

24/5
.

Similarly,

MSEopt f̂(x) ≈ D

n4/5
where D =

1
21/5

[
f(x)
αf

+
|f ′′(x)|2α4

f

8

]
.

Example 6 Let τ > 0 be fixed. Then, the N(0 , τ2) density is another
commonly-used example; i.e.,

K(x) =
1

τ
√

2π
e−x

2/(2τ2).

See Figure 8. In this case, σ2
K =

∫∞
−∞ z

2K(z) dz = τ2, and

‖K‖22 =
1

2πτ2

∫ ∞
−∞

e−x
2/τ2

dx =
1

2πτ
×
√
π =

1
2τ
√
π
.

Consequently,

βK =
1

(2τ
√
π)1/5

. (5)
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Figure 8: A plot of the N(0 , 1) density.

This yields,

εn =
C

n1/5
, where C =

αf

(2τ
√
π)1/5

.

Similarly,

MSEopt f̂(x) ≈ D

n4/5
where D =

1

(2τ
√
π)4/5

[
f(x)
αf

+
τ4α4

f |f ′′(x)|2

4

]
.

4.2 Global Estimation

If we are interested in estimating f “globally,” then we need a more global
notion of mean-squared error. A useful and easy-to-use notion is the “mean-
integrated-squared error” or “MISE.” It is defined as

MISE f̂ := E
[∫ ∞
−∞

∣∣∣f̂(x)− f(x)
∣∣∣2 dx] .

It is easy to see that

MISE f̂ =
∫ ∞
−∞

MSE (f̂(x)) dx.
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Therefore, under the present smoothness assumptions,

MISE f̂ ≈ 1
nε

∫ ∞
−∞

K2(z) dz +
ε4

4

∫ ∞
−∞

∣∣f ′′(x)
∣∣2 dx · (∫ ∞

−∞
z2K(z) dz

)2

:=
1
nε
‖K‖22 +

ε4

4
‖f ′′‖22σ4

K . (6)

See (3). Set

ψ(ε) :=
1
nε
‖K‖22 +

ε4

4
‖f ′′‖22σ4

K ,

so that
ψ′(ε) = − 1

nε2
‖K‖22 + ε3‖f ′′‖22σ4

K .

Set ψ′ ≡ 0 to find the asymptotically optimal bandwidth size for the minimum-
MISE:

εn :=
C

n1/5
where C =

βK

‖f ′′‖2/52

. (7)

See (4) for the notation on βK . The asymptotically optimal MISE is ob-
tained upon plugging in this εn into (6). That is,

MISEopt f̂(x) ≈ 1
nεn
‖K‖22 +

ε4n
4
‖f ′′‖22σ4

K

=
D

n4/5
where D =

5
4
‖f ′′‖2/52 ‖K‖

8/5
2 σ

4/5
K .

(8)

Example 7 (Example 5, Continued) In the special case where K is the
double-exponential density,

εn =
C

n1/5
where C =

1

24/5‖f ′′‖2/52

. (9)

Also,

MISEopt f̂(x) ≈ D

n4/5
where D =

5
216/5

‖f ′′‖2/52 . (10)

Example 8 (Example 6, Continued) In the special case where K is the
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N(0 , τ2) density,

εn =
C

n1/5
where C =

1

(2τ
√
π)1/5 ‖f ′′‖2/52

. (11)

Also,

MISEopt f̂(x) ≈ D

n4/5
where D =

5
214/5π2/5

‖f ′′‖2/52 . (12)

5 Problems and Some Remedies for Kernel Den-

sity Estimators

The major drawback of the preceding computations is that εn depends on
f . Typically, one picks a related value of ε where the dependence on f is
replaced by a similar dependency, but on a known family of densities. But
there are other available methods as well. I will address two of them next.2

1. The Subjective Method: Choose various “sensible” values of ε (e.g., set
ε = cn−1/5 and vary c). Plot the resulting density estimators, and
choose the one whose general shape matches up best with your prior
belief. This can be an effective way to obtain a density estimate some
times.

2. Making References to Another Density: To be concrete, consider εn
for the global estimate. Thus, the optimal ε has the form, εn =
βK‖f ′′‖−2/5

2 n−1/5. Now replace ‖f ′′‖2/52 by ‖g′′‖2/52 for a nice den-
sity function g. A commonly-used example is g := N(0 , τ2) density.
Let

ϕ(x) =
1√
2π
e−x

2/2

denote the standard-normal density. Note that g(x) = τ−1ϕ(x/τ).
2We may note that by choosing K correctly, we can ensure that ‖K‖2

2 is small. In this
way we can reduce the size of MISEoptf̂ , for instance. But the stated problem with the
bandwidth is much more serious.
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Therefore, g′′(x) = τ−3ϕ′′(x/τ), whence it follows that

‖g‖22 =
1
τ6

∫ ∞
−∞

[
ϕ′′
(x
τ

)]2
dx

=
1
τ5

∫ ∞
−∞

[
ϕ′′(y)

]2
dy

=
1

2πτ5

∫ ∞
−∞

e−y
2 (
y2 − 1

)2
dy

=
3

8τ5
√
π
.

This is about 0.2115/τ5. So we can choose the bandwidth

ε := βK‖g′′‖−2/5
2 n−1/5; i.e.,

ε =
81/5π1/10

31/5
· τβK
n1/5

.

In order for us to actually be able to use this, we need to know τ .
But our replacement of f by g tacitly assumes that the variance of
the date is τ2; i.e., that τ2 =

∫∞
−∞ x

2 f(x) dx − (
∫∞
−∞ xf(x) dx)2. So

we can estimate τ2 by traditional methods, plug, and proceed to use
the resulting ε. If f is truly normal, then this method works very well.
Of course, you should also a normal density K as well in such cases.
However, if f is “far” from normal, then ‖f ′′‖2 tends to be a lot larger
than ‖g′′‖2. Therefore, our ε is much larger than the asymptotically
optimal εn. This results in oversmoothing.

6 Bias Reduction via Signed Estimators

One of the attractive features of kernel density estimators is the property
that they are themselves probability densities. In particular, they have the
positivity property, f̂(x) ≥ 0 for all x. If we did not need this to hold, then
we can get better results. In such a case the end-result needs to be examined
with extra care, but could still be useful.

So now we suppose that the kernel K has the following properties:
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• [Symmetry ] K(x) = K(−x) for all x;

•
∫∞
−∞K(x) dx = 1;

• µ2(K) = 0, where µ`(K) :=
∫∞
−∞ x

`K(x) dx;

• µ4(K) 6= 0.

Then, we proceed with a four-term Taylor series expansion: If ε is small
then we would expect that

f(x− εa) ≈ f(x)− εaf ′(x) +
ε2a2

2
f ′′(x)− ε3a3

6
f ′′′(x) +

ε4a4

24
f (iv)(x).

Therefore,

Bias f̂(x) = (Kε ∗ f)(x)− f(x)

=
∫ ∞
−∞

1
ε
K

(
x− u
ε

)
f(u) du− f(x)

=
∫ ∞
−∞

K(a)f(x− aε) da− f(x)

≈
∫ ∞
−∞

K(a)
[
f(x)− εaf ′(x) +

ε2a2

2
f ′′(x)− ε3a3

6
f ′′′(x) +

ε4a4

24
f (iv)(x)

]
da− f(x)

= µ4(K)
ε4

24
f (iv)(x).

Thus, the bias is of the order ε4. This is a substantial gain from before when
we insisted that K be a density function. In that case, the bias was of the
order ε2; see (2).

We continue as before and compute the asymptotic variance, as well:

(
K2
ε ∗ f

)
(x) =

1
ε2

∫ ∞
−∞

K2

(
x− u
ε

)
f(u) du

=
1
ε

∫ ∞
−∞

K2(a)f(x− aε) da.
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Then, we apply a Taylor expansion,

(
K2
ε ∗ f

)
(x) ≈ 1

ε

∫ ∞
−∞

K2(a)
[
f(x)− εaf ′(x) +

ε2a2

2
f ′′(x)

]
da

=
1
ε
f(x)

∫ ∞
−∞

K2(a) da

=
‖K‖22f(x)

ε
,

as before. Thus, as before,

Var f̂(x) =
1
n

[(
K2
ε ∗ f

)
(x)− (Kε ∗ f)2 (x)

]
≈ ‖K‖

2
2f(x)
nε

.

Therefore,

MSE f̂(x) ≈ ‖K‖
2
2f(x)
nε

+ µ2
4(K)

ε8

576

[
f (iv)(x)

]2
. (13)

Write this, as before, as ψ(ε), and compute

ψ′(ε) = −‖K‖
2
2f(x)
nε2

+ µ2
4(K)

ε7

72

[
f (iv)(x)

]2
.

Set ψ′(ε) ≡ 0 to find that there exist constants C, D, and E, such that
εn = Cn−1/9, MSE f̂(x) ≈ Dn−8/9, and MISE f̂ ≈ En−8/9. I will leave
up to you to work out the remaining details (e.g., compute C, D, and E).
Instead, let us state a few examples of kernels K that satisfy the assumptions
of this section.

Example 9 A classical example is

K(x) =

3
8(3− 5x2), if |x| < 1,

0, otherwise.

A few lines of calculations reveal that: (i)K is symmetric; (ii)
∫∞
−∞K(x) dx =

1; (iii)
∫∞
−∞ x

2K(x) dx = 0; and (iv) µ4(K) =
∫∞
−∞ x

4K(x) dx = −3/35 6= 0.
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Example 10 We obtain another family of classical examples, due to W.
R. Schucany and J. P. Sommers,3 by first choosing a (proper probability
density) kernel K, and then modifiying it as follows: Let ν > 1 be fixed,
and define

Kν(x) :=
(

ν2

ν2 − 1

)[
K(x)− 1

ν3
K
(x
ν

)]
.

Suppose K is symmetric and has four finite moments. Then, a few lines of
calculations reveal that the function Kν satisfies the conditions of the kernels
of this section. Namely: (i) Kν is symmetric; (ii)

∫∞
−∞Kν(x) dx = 1; (iii)∫∞

−∞ x
2Kν(x) dx = 0; and (iv) µ4(Kν) =

∫∞
−∞ x

4Kν(x) dx = −ν2µ4(Kν) 6= 0.
Schucany and Sommers recommend using values of ν that are > 1, but very
close to one.

7 Consistency

It turns out that under some conditions on ε, K, etc. the kernel density
estimator is consistent. That is, there is a sense in which f̂ ≈ f for n large.
I mention three important examples of this phenomenon:

1. Fix x ∈ R. Then, we want to know that under some reasonable condi-
tions, limn f̂(x) = f(x) in probability. This is “pointwise consistency.”

2. We want to know that under reasonable conditions, f̂ ≈ f in some
global sense. A strong case can be made for the so-called “L1 distance”
between f̂ and f . That is, we wish to know that under some natural
conditions, limn→∞

∫∞
−∞ |f̂(x) − f(x)| dx = 0 in probability. This is

“consistency in L1.”

3. For some applications (e.g., mode-finding), we need to know that
maxx |f̂(x) − f(x)| → 0 in probability. This is the case of “uniform
consistency.”

3W. R. Schucany and J. P. Sommers (1977), Improvement of kernel type density esti-
mators, JASA 72, 420–423.
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7.1 Consistency at a Point

In this subsection we study that case where we are estimating f(x) locally.
That is, we fix some point x ∈ R, and try to see if f̂(x) ≈ f(x) for large
values of n. For this to make sense we need to bandwidth ε to depend on n,
and go to zero as n → ∞. We shall write εn in place of ε, but this εn need
not be the asymptotically optimal one that was referred to earlier. This
notation will be adopted from here on.

The following is a stronger form of a classical consistency theorem of E.
Parzen.4

Theorem 11 (Parzen, 1962) Let us assume the following:

1. K vanishes at infinity, and
∫∞
−∞K

2(x) dx <∞;

2. εn → 0 as n→∞; and

3. nεn →∞ as n→∞.

Then, whenever f is continuous in an open neighborhood of x we have
f̂(x) P→ f(x), as n→∞.

Proof: Throughout, we choose and fix an x around which f is continuous.
Recall from page 13 that

Ef̂(x) = (Kεn ∗ f)(x),

Var f̂(x) =
1
n

[(
K2
εn ∗ f

)
(x)− (Kεn ∗ f)2 (x)

]
.

It might help to recall the notation on convolutions. In particular, we have

(
K2
εn ∗ f

)
(x) =

1
ε2n

∫ ∞
−∞

K2

(
x− y
εn

)
f(y) dy.

Note that K2
εn is really short-hand for (Kεn)2. Let G(x) := K2(x) to find

then that (
K2
εn ∗ f

)
(x) =

1
εn

(Gεn ∗ f) (x).

4E. Parzen (1962). On estimation of a probability density function and mode, Ann.
Math. Statist. 33, 1065–1076.
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Now, G(x)/
∫∞
−∞K

2(u) du is a probability density that vanishes at infinity.
Therefore, we can apply Theorem 2 to G to find that

(
K2
εn ∗ f

)
(x) ∼ f(x)

εn

∫ ∞
−∞

K2(u) du.

Another application of Theorem 2 shows that (Kεn ∗ f)(x)→ f(x). There-
fore,

Var f̂(x) ∼ 1
n

[
f(x)
εn

∫ ∞
−∞

K2(u) du− f(x)
]
∼ f(x)

nεn

∫ ∞
−∞

K2(u) du. (14)

Since nεn → 0, this proves that Var f̂(x) → 0 as n → ∞. Thanks to the
Chebyshev inequality,

f̂(x)− Ef̂(x) P→ 0.

But another application of Theorem 2 shows that limn→∞ Ef̂(x) = f(x),
because εn → 0. The theorem follows. �

Next, I state [without proof] a weaker formulation of a theorem of L.
Devroye.5 The following is a global counterpart of the local Theorem 11.

Theorem 12 (Devroye) Suppose K is bounded, εn → 0, and nεn →∞ as
n→∞. Then, as n→∞,∫ ∞

−∞

∣∣∣f̂(x)− f(x)
∣∣∣ dx P→ 0.

7.2 Uniform Consistency

Theorem 12 is a natural global-consistency theorem. But it falls short of
addressing an important application of density estimation to which we will
come in the next subsection. That is, estimating the mode of a density.
[This was one of the original motivations behind the theory of kernel density
estimation. See E. Parzen (1962), On estimation of a probability density

5L. Devroye (1983). The equivalence of weak, strong and complete convergence in
density estimation in L1 for kernel density estimates, Ann. Statis. 11, 896–904.
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function and mode, Ann. Math. Statist. 33, 1065–1076.] Here we address the
important issue of uniform consistency. That is, we seek to find reasonable
conditions under which maxx |f̂(x)− f(x)| converges to zero in probability.

First we recall a few facts from Fourier analysis. If h is an integrable
function [that is, if

∫∞
−∞ |h(x)| dx < ∞], then its Fourier transform is the

function Fh defined by

(Fh)(t) :=
∫ ∞
−∞

eitxh(x) dx for −∞ < t <∞.

Note that whenever h := f is a density function, and it is the case for us,
then,

(Ff)(t) = E
[
eitX1

]
, (15)

and so Ff is the socalled “characteristic function of X.” We need the
following deep fact from Fourier/harmonic analysis. In rough terms, the
following tells us that after multiplying by (2π)−1, the definition of Fh can
be formally inverted to yield a formula for ε in terms of its Fourier transform.

Theorem 13 (Inversion Theorem) If ε and Fh are integrable, then

h(x) =
1

2π

∫ ∞
−∞

e−itx(Fh)(t) dt for −∞ < x <∞.

The condition that h is integrable is very natural. For us, h is a probabil-
ity density, after all. However, it turns out that the absolute integrability of
Fh implies that h is uniformly continuous. So this can be a real restriction.

Now note that the Fourier transform of our kernel density estimate f̂ is

(F f̂)(t) =
∫ ∞
−∞

eitxf̂(x) dx

=
1
nεn

n∑
j=1

∫ ∞
−∞

eitxK

(
x−Xj

εn

)
dx

=
1
n

n∑
j=1

eitXj

∫ ∞
−∞

eiεntyK(y) dy,
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after an interchange of the sum with the integral. In other words, the Fourier
transform of f̂ can be written in terms of the Fourier transform of K as
follows:

(F f̂)(t) =
1
n

n∑
j=1

eitXj (FK)(εnt).

In particular, F f̂ is integrable as soon as FK is. If so, then the inversion
theorem (Theorem 13) tell us that

f̂(x) =
1

2π

∫ ∞
−∞

e−itx(F f̂)(t) dt

=
1

2πn

n∑
j=1

∫ ∞
−∞

eit(Xj−x)(FK)(εnt) dt

=
1

2π

∫ ∞
−∞

e−itx
1
n

n∑
j=1

eitXj (FK)(εnt) dt.

Take expectations also to find that

Ef̂(x) =
1

2π

∫ ∞
−∞

e−itxE
[
eitX1

]
(FK)(εnt) dt.

Therefore,

f̂(x)− Ef̂(x) =
1

2π

∫ ∞
−∞

e−itx (φn(t)− Eφn(t)) (FK)(εnt) dt,

where φn is the “empirical characteristic function,”

φn(t) :=
1
n

n∑
j=1

eitXj , for all t ∈ R.

Because |eitx| ≤ 1, the triangle inequality yields,

max
x

∣∣∣f̂(x)− Ef̂(x)
∣∣∣ ≤ 1

2π

∫ ∞
−∞
|φn(t)− Eφn(t)| · |(FK)(εnt)| dt. (16)

Take expectations and use the “Cauchy–Schwarz inequality,” E|Z| ≤
√

E(Z2)
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to find that

E
(

max
x

∣∣∣f̂(x)− Ef̂(x)
∣∣∣) ≤ 1

2π

∫ ∞
−∞

√
Varφn(t) |(FK)(εnt)| dt.

[Caution: When Z is complex-valued, by VarZ we really mean E(|Z−EZ|2).]
Now, we can write eitXj = cos(tXj) + i sin(tXj). Therefore (check!),

Var eitXj = Var cos(tXj) + Var sin(tXj) ≤ E
[
cos2(tXj) + sin2(tXj)

]
= 1.

Even it Z1, . . . , Zn are complex-valued, as long as they are i.i.d., Var
∑n

j=1 Zj =∑n
j=1 VarZj (why?). Therefore, Varφn(t) ≤ 1/n. It follows then that

E
(

max
x

∣∣∣f̂(x)− Ef̂(x)
∣∣∣) ≤ 1

2π
√
n

∫ ∞
−∞
|(FK)(εnt)| dt

=
1

2πεn
√
n

∫ ∞
−∞
|(FK)(s)| ds.

This and Chebyshev’s inequality together implies that if εn
√
n → ∞ then

maxx |f̂(x)−Ef̂(x)| → 0 in probability. Next we prove that if f is uniformly
continuous and εn → 0, then

max
x

∣∣∣Ef̂(x)− f(x)
∣∣∣→ 0, as n→∞. (17)

If this is the case, then we have proved the following celebrated theorem of
Parzen (1962).

Theorem 14 (Parzen) Suppose f is uniformly continuous, FK is inte-
grable, εn → 0, and εn

√
n→∞. Then,

max
x

∣∣∣f̂(x)− f(x)
∣∣∣ P→ 0, as n→∞.

Proof: It remains to verify (17). But this follows from Theorem 4 and the
fact that Ef̂(x) = (Kεn ∗ f)(x). �
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Remark 15 The condition that εn
√
n → ∞ can be improved (slightly

more) to the following:

εn

√
n

log n
→∞ as n→∞.

This improvement is due to M. Bertrand-Retali.6 But this requires more
advanced methods.

What does the integrability condition on FK mean? To start with,
the inversion theorem can be used to show that if

∫∞
−∞ |(FK)(t)| dt < ∞

then K is uniformly continuous. But the integrability of FK is a little bit
more stringent than the uniform continuity of K. This problem belongs
to a course in harmonic analysis. Therefore, rather than discussing this
issue further we show two useful classes of examples where this condition
is verified. Both are the examples that have made several appearances in
these notes thus far.

Remark 16 Suppose K is the N(0 , τ2) density, where τ > 0 is fixed. Then,
FK is the characteristic function of a N(0 , τ2) random variable; see (15).
We can compute it as easily as the MGF of a normal:

(FK)(t) = e−τ
2t2/2, for all t ∈ R.

Obviously, FK is integrable. In fact,∫ ∞
−∞
|(FK)(t)| dt =

∫ ∞
−∞

e−τ
2t2/2 dt =

√
2π/τ.

Remark 17 Suppose K(x) = 1
2e
−|x| is the double exponential density.

6M. Bertrand-Retali (1978). Convergence uniforme d’un estimateur de la densité par
la méthode de noyau, Rev. Roumaine Math. Pures. Appl. 23, 361–385.
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Then,

(FK)(t) =
1
2

∫ ∞
−∞

e−|x|+itx dx

=
1
2

∫ ∞
0

e−x+itx dx+
1
2

∫ 0

−∞
ex+itx dx

=
1
2

∫ ∞
0

e−x+itx dx+
1
2

∫ ∞
0

e−x−itx dx.

The first integral is the characteristic function of an exponential random
variable with mean one. Therefore, it is given by

∫∞
0 e−x+itx dx = 1/(1−it).

Plug −t in place to t to find the second integral:
∫∞
0 e−x−itx dx = 1/(1+ it).

Add and divide by two to find that

(FK)(t) =
1
2

[
1

1− it
+

1
1 + it

]
=

1
1 + t2

for −∞ < t <∞.

Evidently, this is integrable. In fact,∫ ∞
−∞
|(FK)(t)| dt =

∫ ∞
−∞

dt

1 + t2
= π.

8 Hunting for Modes

Let f be a density function on R. A mode for f is a position of a local
maximum. For example, Figure 9 depicts a density plot for the density
function

f(x) =
1
2
φ1(x) +

1
2
φ2(x),

where φ1 is the N(0 , 0.4) density and φ2 is the N(2 , 0.2) density function.
Because f has two local maxima, it has two modes: One is x = 0; and the
other is x = 2.

In general, the question is: How can we use data to estimate the mode(s)
of an unknown density function f? The answer is very simple now: If we
know that f̂ ≈ f uniformly (and with very high probability), then the
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Figure 9: An Example of Modes.

mode(s) of f̂ have to approximate those of f with high probability. This
requires an exercise in real analysis, and is omitted.
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