Math 5080–1 Solutions to homework 8

July 26, 2012

17 (a) The PDF in question is

$$f(x) = e^{-(x-\eta)}I\{x > \eta\}$$

This is a range-dependent exponential class with $q_1(\eta) = \eta$, $q_2(\eta) = \infty$, $c(\eta) = e^{\eta}$, $h(x) = e^{-x}$. Part 3 of Theorem 10.4.5 (p. 350) tells us that $X_{1:n}$ is complete sufficient for η .

17 (b) Recall from the solution to Exercise 4 that $E(X_{1:n}) = \eta + (1/n)$. Therefore, $X_{1:n} - (1/n)$ is an unbiased estimator that is based on a complete sufficient statistic. Thanks to Lehmann-Scheffé, it is UMVUE for η .

17 (c) Let us first find an exact expression for the *p*th percentile x_p in terms of η : We want x_p to solve

$$p = P\{X_1 < x_p\} = \int_{\eta}^{x_p} e^{-(x-\eta)} \, dx = 1 - e^{-(x_p - \eta)}.$$

That is,

$$x_p = \eta - \ln(1 - p).$$

For the UMVUE \hat{x}_p of x_p , we look at a function S of $X_{1:n}$ that is unbiased [i.e., we want $E(\hat{x}_p) = \eta - \ln(1-p)$]. By the result of (b),

$$\hat{x}_p := X_{1:n} - \frac{1}{n} - \ln(1-p)$$

does the job.

19. The problem is that if $\mu = 0$, then N(0,0) has to be zero with probability one. Therefore, Θ has to be defined as the collection of all μ such that $\mu \neq 0$; i.e., $\Theta = (-\infty, 0) \cup (0, \infty)$. This does not have the right form [it is not an interval].

21(a) Here,

$$f(x,p) = p^{x}(1-p)^{1-x}I\{x=0,1\}.$$

We can write this as

$$f(x,p) = (1-p)\left(\frac{p}{1-p}\right)^x I\{x=0,1\} = (1-p)e^{q_1(p)t_1(x)}I\{x=0,1\}$$

where $q_1(p) = \ln(p/(1-p))$ and $t_1(x) = x$. This is a REC. Therefore, Theorem 10.4.2 implies that $\sum_{i=1}^{n} t_1(X_i) = \sum_{i=1}^{n} X_i$ is complete and sufficient for p. We know from general theory that if

$$S := \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2 = \frac{1}{n-1} \sum_{i=1}^{n} X_i^2 - \frac{n}{n-1} (\bar{X})^2,$$

then E(S) = p(1-p). Because $X_i = 0$ or 1, $\sum_{i=1}^n X_i^2$, for this particular example. Therefore,

$$S = \frac{1}{n-1} \sum_{i=1}^{n} X_i - \frac{n}{n-1} (\bar{X})^2 = \frac{n}{n-1} \bar{X} (1-\bar{X})$$

is both unbiased and a function of the complete sufficient statistic. Therefore, S is UMVUE for p(1-p).

21 (b) We may use S from part (a), and recall that $E(S) = p(1-p) = p - p^2 = E(\bar{X}) - p^2$. Therefore, if we define

$$\tilde{S} := \bar{X} - S,$$

then $E\tilde{S} = p - p(1-p) = p^2$. Since \tilde{S} is a function of $\sum_{i=1}^n X_i$, it is UMVUE for p^2 . We can simplify \tilde{S} further as follows:

$$\tilde{S} = \bar{X} - \frac{n}{n-1}\bar{X}(1-\bar{X}) = \bar{X}\left[1 - \frac{1-\bar{X}}{n-1}\right] = \bar{X} \cdot \frac{n+\bar{X}}{n-1}$$