
Math 5080–1

Solutions to homework 6

July 6, 2012

# 22 (a). The likelihood function is

L(µ) = (18π)−n/2 exp

− 1

18

n∑
j=1

(Xj − µ)2

 .

Therefore,

lnL(µ) = −n
2

log(18π)− 1

18

n∑
j=1

(Xj − µ)2.

It derivative is

∂

∂µ
lnL(µ) =

1

9

n∑
j=1

(Xj − µ) =
n

9
X̄ − nµ

9
.

Therefore, if T is any unbiased estimator of µ, then

Var(T ) ≥ 1

Var

(
∂

∂µ
lnL(µ)

) =
1

(n2/81)Var(X̄)
=

1

(n2/81)× (9/n)
=

9

n
.

# 22 (b). Yes. It is unbiased and achieves the CRLB.

# 22 (c). x0.95 is the 95th percentile if and only if

0.95 = P {X1 ≤ x0.95} = Φ

(
x0.95 − µ

3

)
⇒ x0.95 − µ

3
= 1.645⇒ x0.95 = 4.935+µ.

By the MLE principle, the MLE of x0.95 is

x̂0.95 = 4.935 + X̄ ⇒ Ex̂0.95 = 4.935 + µ = x0.95.

Moreover, basic properties of variances ensure that

Varx̂0.95 = Var
(
4.935 + X̄

)
= Var(X̄) =

9

n
= CRLB!
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Therefore, the MLE of x0.95 is UMVUE.

# 24 (a). We use the MGF table of the back cover to see that

Eθ̂ = Ee−X = MX(−1) = exp
(
µ(e−1 − 1)

)
= θe

−1−1 6= θ.

Therefore, θ̂ is biased.

# 24 (b). We observe that θ̃ = u(X) can also be written as I{X = 0}. There-
fore, Eθ̃ = P{X = 0} = e−µ.

# 24 (c). We have

Var(θ̂) = E
(
e−2X

)
−
[
E
(
e−X

)]2
= MX(−2)− [MX(−1)]

2

= exp
(
µ
(
e−2 − 1

))
− exp

(
2µ
(
e−1 − 1

))
= e−2µ

[
eµ(e−2+1) − e2µ/e

]
,

and
Bias(θ̂) = Eθ̂ − θ = exp

(
µ
(
e−1 − 1

))
− e−µ = e−µ

[
eµ/e − 1

]
.

Therefore,

MSE(θ̂) = Bias2 + Var

= e−2µ
[
eµ/e − 1

]2
+ e−2µ

[
eµ(e−2+1) − e2µ/e

]
= e−2µ

[
eµ(e−2+1) + 1− 2eµ/e

]
Also, because (θ̃)2 = θ̃,

MSE(θ̃) = Var(θ̃) = Eθ̃ −
(
Eθ̃
)2

= e−µ − e−2µ = e−2µ (eµ − 1) .

The ratio is

R(µ) :=
MSE(θ̂)

MSE(θ̃)
=
eµ(e−2+1) + 1− 2eµ/e

eµ − 1
.

In particular,

R(1) =
ee

−2+1 + 1− 2e1/e

e− 1
≈ 0.7117 < 1,

and

R(2) =
e2(e−2+1) + 1− 2e2/e

e2 − 1
≈ 1.0912 > 1.

Therefore, θ̂ is better than θ̃ when µ = 1, and worse when µ = 2.
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# 28 (a). First,

Var(θ̂1) = Var(X̄) =
Var(X1)

n
=
θ2

n
.

Next,

Var(θ̂2) =

(
n

n+ 1

)2

·Var(X̄) =

(
n

n+ 1

)2

· Var(X1)

n
=

nθ2

(n+ 1)2
.

# 28 (b). E(θ̂1) = E(X̄) = θ and E(θ̂2) = nθ/(n + 1). Therefore, θ̂1 is
unbiased, and

Bias(θ̂2) =
nθ

n+ 1
− θ = − θ

n+ 1
.

Consequently,

MSE(θ̂1) =
θ2

n
, MSE(θ̂2) =

nθ2

(n+ 1)2
+

θ2

(n+ 1)2
=

θ2

n+ 1
.

# 28 (c). Because n/(n + 1) < 1, Var(θ̂1) is always greater than Var(θ̂2).
There is no need to consider special values of n.

# 28 (d). No need to consider special values of n: θ̂2 is always better than θ̂1,
though it is biased.

# 28 (e). Not covered.

# 34 (a). The likelihood function is

L(p) = pn(1− p)nX̄ ⇒ lnL(p) = n ln p+ nX̄ log(1− p).

Differentiate:
∂

∂p
lnL(p) =

n

p
− nX̄

1− p
,

and set it equal to zero to see that p̂ must solve

1

p̂
=

X̄

1− p̂
⇒ p̂ =

1

1 + X̄
.

# 34 (b). We apply the MLE principle:

θ̂ =
1− p̂
p̂

=
1− (1 + X̄)−1

(1 + X̄)−1
= X̄.

# 34 (c). Note that θ = τ(p), where τ(p) = (1− p)/p. In particular,

τ ′(p) = −1/p2.
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Also,

Var

(
∂

∂p
lnL(p)

)
=

(
n

1− p

)2

Var(X̄) =
nVar(X1)

(1− p)2
=

n

p2(1− p)
,

since the variance of a GEOM(p) is (1− p)/p2. Therefore, the CRLB is

[τ ′(p)]2

n
p2(1−p)

=
p−4

n
p2(1−p)

=
(1− p)
np2

.

# 34 (d). No. The MLE is biased, as can be seen from the following calculation:

Eθ̂ = E(X̄) = E(X1) =
1

p
6= 1− p

p
for all 0 < p < 1.

# 34 (e). No. Its bias does not converge to zero as n→∞. Indeed,

Bias(θ̂) =
1

p
− 1− p

p
= 1,

no matter the value of p!

# 34 (f). E(X̄) = 1/p, as we saw earlier. Also, Var(X̄) = Var(X1)/n =
(1− p)/(p2n). Therefore, by the CLT,

X̄ − (1/p)√
(1− p)/(p2n)

d−→ N(0 , 1).

Equivalently,
√
n

(
X̄ − 1

p

)
d−→ N

(
0 ,

1− p
p2

)
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