Spring 2009, Math 5050-1 Assignment 5

- 1. Choose and fix an integer n > 0. And recall that the simple random walk of time step size 1/n and space step size $1/\sqrt{n}$ is approximately Brownian motion from time 0 to time t [after linear interpolation of the path of the walk from time 0 to time nt]. Use this to simulate a Brownian motion from time 0 to time 1, using:
 - (a) n = 100;
 - (b) n = 200;
 - (c) n = 500.

In every case, plot the graph of (s, X_s) as a function of time $s \in [0, t]$.

2. Run 10,000 simulations of Brownian motion, using n = 500 [from time zero to time one]. Use this to estimate the probability that Brownian motion hits 0.001 before -0.003. Discuss if, and how well, your simulation estimate agrees with exact formulas.