Math 5040–1 Stochastic Processes & Simulation

Davar Khoshnevisan University of Utah

Generation of Discrete Random Variables

Just about every programming language and environment has a "randomnumber" generator. This means that it has a routine for simulating a Unif(0,1) random variable; that is a continuous random variable with density function f(x) = 1 if $0 \le x \le 1$ and f(x) = 0 for other values of x. Throughout, I assume that we know how to generate a Unif(0,1) random variable U, using an existing computer program.¹ Our present goal is to use this knowledge to simulate a discrete random variable with a prescribed mass function f.

1. Bernoulli samples

Recall that a Bernoulli(p) random variable X takes the values 1 and 0 with respective probabilities p and 1 - p. We can think of this as the outcome of a coin toss: X = 1 means that we tossed heads; and X = 0 refers to tails.

Let U be a Unif(0,1) random variable, and define $X = \mathbf{1}_{\{U \leq p\}}$, where $\mathbf{1}_A$ denotes the indicator of an event A [i.e., it is one if A occurs; and zero otherwise]. The possible values of X are zero and one. Because X = 1 if and only if $U \leq p$,

$$\mathsf{P}\{X=1\}=\mathsf{P}\{U\leqslant \mathfrak{p}\}=\int_0^\mathfrak{p}\,dx=\mathfrak{p}.$$

In other words, X is a Bernoulli(p) sample.

¹One might ask, how is *that* done? That is a a good question, which is the subject for a quite different course.

In algorithmic terms, this method translates to the following: If $U \le p$ then X := 1; else if $p < U \le 1$ then X := 0.

2. More general discrete distributions

Now let us try to simulate a random variable with mass function

$$f(x) = \begin{cases} p_0 & \text{if } x = x_0, \\ p_1 & \text{if } x = x_1, \\ \vdots, \end{cases}$$

where $0 \le p_j \le 1$ for all $j \ge 0$, and $p_0 + p_1 + \cdots = 1$. That is, the possible values of X ought to be x_0, x_1, \ldots with respective probabilities p_0, p_1, \ldots . We extend the algorithm of the previous subsection as follows: If $U \le p_0$ then $X := x_0$; else if $p_0 < U \le p_0 + p_1$ then $X := x_1$; else if $p_0 + p_1 < U \le p_0 + p_1 + p_2$ then $X := x_2$, etc. At the kth stage, where $k \ge 1$ is integral, this algorithm performs the following query:

Is
$$p_0 + \cdots + p_{k-1} < U \leq p_0 + \cdots + p_k$$
?
If so, then set $X := x_k$; else, proceed to stage $k + 1$.

Here is the pseudo-code:

```
    Generate a Unif(0,1) random variable U.
    If U <= p0 then set X = x0 and stop.</li>
    Else set k=1, PrevSum = p0, and Sum = p0 + p1.
    If PrevSum <= U < Sum then set X = xk and stop.</li>
    Else, set k = k+1, PrevSum = Sum, and Sum = Sum + pk;
then goto Step 4.
```

[You should check that this does the job.]

Question 1. Could it be that this algorithm never stops?

Fortunately, the answer is "no." In order to see this let N denote the time that the algorithm stops; $N = \infty$ is a distinct possibility at this point. Now we can observe that for all integers $k \ge 1$,

$$\begin{split} \mathsf{P}\{\mathsf{N} > \mathsf{k}\} &= \mathsf{P}\{\text{the algorithm does not stop after the kth stage}\}\\ &= \mathsf{P}\{\mathsf{U} > \mathsf{p}_0 + \dots + \mathsf{p}_{\mathsf{k}-1}\} = 1 - \mathsf{P}\{\mathsf{U} \leqslant \mathsf{p}_0 + \dots + \mathsf{p}_{\mathsf{k}-1}\}\\ &= 1 - \sum_{j=0}^{\mathsf{k}-1} \mathsf{p}_j = \sum_{j=\mathsf{k}}^{\infty} \mathsf{p}_j. \end{split}$$
(1)

And so $P{N = \infty} = \lim_{k\to\infty} P{N > k} = 0.$

2.1. Discrete-uniform samples. Suppose we wish to simulate a random variable X that is distributed uniformly on $\{1, ..., n\}$ for a positive integer n that is fixed. For all j = 1, ..., n, the jth stage of our algorithm tells us to set

$$X = j$$
 if $\frac{j-1}{n} < U \leq \frac{j}{n}$.

The condition on U is equivalent to $j - 1 < nU \le j$, and this means that $j = 1 + \lfloor nU \rfloor$, where $\lfloor x \rfloor$ denotes the greatest integer $\le x$. The preceding can be streamlined into a one-line description as follows:

 $X := 1 + \lfloor nU \rfloor$ is distributed uniformly on $\{1, \ldots, n\}$.

Exercise 1. Recall the Geometric(p) mass function is given by the following: $f(j) = p(1-p)^{j-1}$ if j = 0, 1, 2, ... and f(j) = 0 otherwise. Prove the following:

 $X := 1 + \left\lfloor \frac{\ln U}{\ln(1-p)} \right\rfloor$ has the Geometric(p) mass function.

2.2. Binomial samples. The Binomial(n,p) mass function is given by

$$f(x) = \begin{cases} \binom{n}{x} p^{x} (1-p)^{n-x} & \text{if } x = 0, \dots, n, \\ 0 & \text{otherwise.} \end{cases}$$

In the jargon of our algorithm, $x_0 = 0, x_1 = 1, ..., x_n = n$; and $p_j = {n \choose j} p^j (1-p)^{n-j}$. Note that $p_0 = p^n$ and

$$\frac{p_{j+1}}{p_j} = \frac{n-j}{j} \times \frac{p}{1-p}.$$

Using this, check that the following alogrithm produces a Binomial(n,p) simulation:

- 1. Generate a Unif(0,1) random variable U.
- 2. Set M = p/(1-p), j=0, P = qⁿ, and Sum = P.
- 3. If $U \le Sum$, then set X = j and stop.
- 4. Else set j=j+1, P = ((n-j)/j * M) * P, and Sum = Sum + P; then go to Step 3.

Question 2. At most how long does this algorithm take before it stops?

Exercise 2. Prove that if X = Binomial(n, p), then $X = I_1 + \cdots + I_n$ where the I_j 's are independent Bernoulli(p)'s. Use this to prescribe an alternative algorithm for simulating X.

2.3. Poisson samples. The Poisson(λ) mass function is given by

$$f(x) = \begin{cases} \frac{e^{-\lambda}\lambda^{x}}{x!} & \text{if } x = 0, 1, \dots, \\\\ 0 & \text{otherwise.} \end{cases}$$

In the jargon of our algorithm, $x_0 = 0, x_1 = 1, ...$; and $p_j = e^{-\lambda} \lambda^j / j!$. Note that $p_0 = \exp(-\lambda)$ and

$$\frac{p_{j+1}}{p_j} = \frac{\lambda}{j+1}.$$

Using this, check that the following algorithm produces a $Poisson(\lambda)$ simulation:

- 1. Generate a Unif(0,1) random variable U.
- 2. Set j = 0, $P = \exp(-\text{lambda})$, and Sum = P.
- 3. If U <= Sum, then set X = j and stop.
- 4. Else set P = (lambda / (j+1)) * P and Sum = Sum + P; then go to Step 3.

Question 3. How long before this algorithm stops?

The answer requires first the following result.

Exercise 3. Prove that if $V \ge 1$ is integral, then $EV = \sum_{k=1}^{\infty} P\{V \ge k\}$. [Hint: Start by writing the sum as $\sum_{k=1}^{\infty} \sum_{j=k}^{\infty} P\{V = j\}$ and then interchanging the double sum.]

In order to answer Question 3, recall the definition of N, and apply Exercise 3 to find that

$$EV = \sum_{k=1}^{\infty} P\{N \ge k\} = \sum_{k=1}^{\infty} P\{N > k-1\} = \sum_{i=0}^{\infty} P\{N > i\}.$$

Thanks to this and equation (1) on page 2,

$$\mathsf{EV} = \sum_{i=0}^{\infty} \sum_{j=i}^{\infty} \frac{e^{-\lambda} \lambda^j}{j!} = \sum_{j=0}^{\infty} \sum_{i=0}^{j} \frac{e^{-\lambda} \lambda^j}{j!} = \sum_{j=0}^{\infty} (j+1) \frac{e^{-\lambda} \lambda^j}{j!}$$

We split up j + 1 as follows:

$$EV = \sum_{j=0}^{\infty} j \frac{e^{-\lambda} \lambda^j}{j!} + \sum_{j=0}^{\infty} \frac{e^{-\lambda} \lambda^j}{j!}$$
$$= \sum_{j=1}^{\infty} j p_j + \sum_{j=0}^{\infty} p_j = \lambda + 1.$$

I have used the fact that the expectation of a $Poisson(\lambda)$ is λ . In summary, we expect to stop "after $\lambda + 1$ steps."

3. Monte Carlo simulation

Now I describe the "Monte Carlo method," which is a popular application of simulation: Suppose we need to know the value of $E{h(X)}$ where h is a function and X a random variable. There are many complicated examples wherein this expectation cannot be computed analytically. Then we can some times resort to simulation as follows: Simulate $X_1, X_2, ...$ [independent random variables] from the same distribution as X. By the law of large numbers,

$$\frac{1}{N}\sum_{j=1}^N h(X_j) \approx E\{h(X)\} \qquad \text{with high probability if N is large}.$$

Therefore, if we want to simulate $P{X \in A}$ for a set A, then we simulate independent random variables $X_1, X_2, ...$ from the same distribution as that of X, and then use the preceding with $h(x) := \mathbf{1}{x \in A}$ to find that

$$\frac{\#\{1 \le i \le N : X_i \in A\}}{N} \approx P\{X \in A\} \quad \text{with high probability if N is large.}$$

Exercise 4. Let $X = \text{Binomial}(10, \frac{1}{2})$. Simulate, using N = 1000 random variables, $P\{X = k\}$ for all k = 0, ..., 10. Verify the accuracy of your simulation by comparing your simulation results to the exact results.

Exercise 5. Simulate $P{20 \le X \le 24}$ where X = Poisson(4).

Exercise 6 (The CLT). Let $\{X_{i,j}\}_{i,j=1}^{\infty}$ be a double–array of independent random variables, all with common mass function

$$f(x) = \begin{cases} \frac{1}{2} & \text{if } x = 1 \text{ or } x = -1, \\ \\ 0 & \text{otherwise.} \end{cases}$$

Let $S_{n,j} := X_{1,j} + X_{2,j} + \cdots + X_{n,j}$, where n is large. Suppose m is another large integer. Explain (in clear heuristic terms) why

$$\frac{\#\left\{1 \le j \le m : a < S_{n,j} \le b\right\}}{m} \approx \frac{1}{\sqrt{2\pi}} \int_{a}^{b} e^{-x^{2}/2} dx \qquad \text{with high probability}$$

Use this simulation method to estimate $(2\pi)^{-1/2} \int_{1}^{2} \exp(-x^{2}/2) dx$.

Discrete Markov Chains

1. Introduction

A stochastic [or random] process is a collection $\{X_n\}_{n=0}^{\infty}$ of random variables. They might take values in very abstract spaces [e.g., $P\{X_1 = cow\} = \frac{1}{2} = P\{X_1 = horse\}$].

Let S denote a finite or countable set of distinct elements. Let $X := \{X_n\}_{n=0}^{\infty}$ be a stochastic process with values in S. Frequently, we think of n as "time," and X_n as the "state" of the process at time n.

Definition 1. We say that X is a *Markov chain* on S if

 $P\{X_{n+1} = a_{n+1} \mid X_0 = x_0, \dots, X_n = a_n\} = P\{X_1 = a_{n+1} \mid X_0 = a_n\}, (2)$

for all integers $n \ge 0$ and every $a_0, \ldots, a_{n+1} \in S$. Equation (2) is called the *Markov property*.

In order to understand what this means, we should think about how we would simulate the time-evolution of the random process X:

- We start with some initial random variable X₀.
- Given that $X_0 = a_0$, we simulate X_1 according to the mass function $f(x) = P\{X_1 = x \mid X_0 = a_0\}.$
- ...
- Suppose we have simulated X₀,..., X_n. Given that X₀ = a₀,..., X_n = a_n, then we simulate X_{n+1} according to the *same* mass function f that was used earlier.

It should be clear that we ought to try to understand a Markov chain based on the properties its *transition probabilities*; these are the collection of probabilities

 $\mathsf{P}_{\mathsf{x},\mathsf{y}} := \mathsf{P}\{\mathsf{X}_1 = \mathsf{y} \mid \mathsf{X}_0 = \mathsf{x}\} \qquad \text{for all } \mathsf{x},\mathsf{y} \in \mathsf{S}.$

We can think of the collection of these transition probabilities as a matrix **P** whose (x, y) coordinate is $P_{x,y}$. We call **P** the *transition matrix* of the Markov chain X. This definition makes sense also when S is infinite. But one has to be much more careful when one deals with infinite matrices.

1.1. A simple weather-forecasting model (Ross, p. 182). Consider the following overly-simplified model for weather changes: If it rains today, then regardless of the weather of the previous days, tomorrow will be rainy with probability α ; if it is dry today, then regardless of the weather of the previous days, tomorrow will be rainy with probability β . Here, $\delta := \{0, 1\}$ where state "0" refers to "rain" and "1" to "dry." Our Markov chain will take the values zero and one according to the transition matrix

$$\mathbf{P} = \begin{pmatrix} \alpha & 1-\alpha \\ \beta & 1-\beta \end{pmatrix}.$$

Exercise 1. Simulate this Markov chain. We will soon see that the following limits exist:

$$\pi_{\mathfrak{Y}} := \lim_{n \to \infty} P\{X_n = \mathfrak{y} \mid X_0 = \mathfrak{x}\} \qquad \text{for } \mathfrak{y}, \mathfrak{x} \in \{0, 1\},$$

and π does not depend on x. Apply this fact to compute π_0 and π_1 via Monte Carlo simulation. These are the respective probabilities of rainy–versus–dry days in the "long run."

1.2. The simple walk. The simple [random] walk on **Z** is the Markov chain whose transitions are described as

$$\mathsf{P}_{\mathsf{x},\mathsf{y}} = \begin{cases} \frac{1}{2} & \text{if } \mathsf{y} = \mathsf{x} + 1 \text{ or } \mathsf{y} = \mathsf{x} - 1, \\ \\ 0 & \text{otherwise.} \end{cases}$$

That is, at any given time, we go to the left or right of our present position with probability $\frac{1}{2}$, independently of the how we arrived at our present position.

More generally, a simple walk on [the vertices of] a graph **G** moves to each of its current neighbors with equal probability, at all times.

Exercise 2. Let $X := \{X_n\}_{n=0}^{\infty}$ be the simple walk on \mathbb{Z} , and suppose $X_0 = 0$ [with probability one]. For every integer x let T_x denote the first time n such that $X_n = x$. Use Monte Carlo simulation to convince yourself that $P\{T_1 < T_{-1}\} = \frac{1}{2}$. Can you prove that this actually holds? [It does.]

Exercise 3. Let X denote the simple walk on **Z** with $X_0 = 0$.

- (1) Prove that $Y_n := X_n X_{n-1}$ $[n \ge 1]$ defines a collection of independent random variables with $P\{Y_n = 1\} = P\{Y_n = -1\} = \frac{1}{2}$.
- (2) Prove that X_n/n goes to zero in probability; that is, for all $\lambda > 0$,

$$\lim_{n\to\infty} \mathsf{P}\left\{\left|\frac{X_n}{n}\right|>\lambda\right\}=0.$$

(3) Use Monte Carlo simulation to verify this phenomenon.

2. The Chapman–Kolmogorov equations

By using the transition matrix **P** of the Markov chain X, we can compute all sorts of probabilities. For instance, suppose we want the distribution of X₂, given that the initial value of the chain is $X_0 = a$ for some constant $a \in S$ such that $P{X_0 = a} > 0$. We apply the law of total probabilities to find this as follows:

$$\begin{split} & P\{X_2 = b \mid X_0 = a\} \\ &= \frac{P\{X_0 = a , X_2 = b\}}{P\{X_0 = a\}} \\ &= \frac{1}{P\{X_0 = a\}} \sum_{c \in S} P\{X_0 = a , X_1 = c , X_2 = b\} \\ &= \frac{1}{P\{X_0 = a\}} \sum_{c \in S} P\{X_2 = b \mid X_0 = a , X_1 = c\} \times P\{X_0 = a , X_1 = c\} \\ &= \frac{1}{P\{X_0 = a\}} \sum_{c \in S} P_{c,b} \times P\{X_0 = a , X_1 = c\}. \end{split}$$

Another round of conditioning shows us that

$$\mathsf{P}\{X_0=a\text{ , }X_1=c\}=\mathsf{P}\{X_0=a\}\times\mathsf{P}_{a,c}.$$

Thus,

$$P\{X_2 = b \mid X_0 = a\} = \sum_{c \in S} P_{a,c} P_{c,b} = P_{a,b}^2,$$

where $P_{a,b}^2$ denotes the (a, b) element of the matrix $\mathbf{P}^2 := \mathbf{P}\mathbf{P}$. The following is only slightly more general, and is proved similarly.

Theorem 1. For all integers $n \ge 0$, and all $a, b \in S$,

$$P\{X_n = b \mid X_0 = a\} = P_{a,b}^n,$$

where $P_{a,b}^n$ represents the (a, b) coordinate of the matrix $\mathbf{P}^n := \mathbf{P} \cdots \mathbf{P}$ [n times], where $\mathbf{P}^0 := \mathbf{I}$ denotes the identity matrix.

In summary, $P_{a,b}^n$ is the probability that the Markov chain X goes from a to b in n [time] steps.

Exercise 4. Prove that for all integers $n, k \ge 0$, and $a, b \in S$,

$$P\{X_{n+k} = b \mid X_k = a\} = P\{X_n = b \mid X_0 = a\} = P_{a,b}^n.$$

Here is a consequence of all of this:

$$\mathsf{P}_{a,b}^{n+m} = \sum_{c \in \mathbb{S}} \mathsf{P}_{a,c}^{n} \mathsf{P}_{c,b}^{m}$$

The collection of all these equations—as we vary n, m, a, and b—is called the *Chapman–Kolmogorov equations*; it turns out to have many useful consequences.

2.1. Simplified weather forecasting. Consider the simplified weather forecasting problem (§1.1, page 8), with $\alpha = \frac{1}{2}$ and $\beta = \frac{1}{4}$. The transition matrix is given by the following:

$$\mathbf{P} = \begin{pmatrix} 1/2 & 1/2 \\ 1/4 & 3/4 \end{pmatrix}.$$

Our present goal is to compute $\lim_{n\to\infty} P_{x,y}^n$; that is, the long-run probability of making a transition from state x to state y.

One can easily compute

$$\mathbf{P}^2 = \begin{pmatrix} 3/8 & 5/8\\ 5/16 & 11/16 \end{pmatrix}.$$

And with enough patience \mathbf{P}^3 . But how does one compute $\lim_{n\to\infty} \mathbf{P}^n$? Or is it even clear that the limit exists?

Exercise 5. Verify, numerically, that

$$\lim_{n \to \infty} \mathbf{P}^{n} = \begin{pmatrix} 1/3 & 2/3 \\ 1/3 & 2/3 \end{pmatrix}.$$
 (3)

Additionally, make sure that you understand the following interpretation of (3): Regardless of whether or not we start with a rainy or dry day, after a very long time any given day is rainy with probability $\approx 1/3$ and dry with probability $\approx 2/3$. A heuristic interpretation of the latter remark is that it is going to rain about one-third of the time!

And now we return to do some honest mathematics. The remainder of this discussion requires a little bit of linear algebra.

Here is a method that works quite generally: Let $\mathbf{v} := (1/\sqrt{5}, 2/\sqrt{5})$ and $\mathbf{w} := (1/\sqrt{2}, -1/\sqrt{2})$. Then, $\mathbf{vP} = \mathbf{v}$ and $\mathbf{wP} = \frac{1}{4}\mathbf{w}$. That is, \mathbf{v} and \mathbf{w} are the two left-eigenvectors of \mathbf{P} , and correspond respectively to the eigenvalues 1 and 1/4. Note that **v** and **w** have been normalized to have unit length. More significantly, **v** and **w** together span all of \mathbf{R}^2 . That is, every 2-dimensional vector **u** can be written as follows:

$$\mathbf{u} = \mathbf{a}\mathbf{v} + \mathbf{b}\mathbf{w},\tag{4}$$

with

$$a = \frac{\sqrt{5}}{3}(u_1 + u_2)$$
 and $b = \frac{\sqrt{2}}{3}(2u_1 - u_2)$.

[You need to check all of these computations!] Now we can right-multiply both sides of (4) by \mathbf{P}^n to find that

$$\mathbf{u}\mathbf{P}^{n} = a\mathbf{v}\mathbf{P}^{n} + b\mathbf{w}\mathbf{P}^{n}.$$

Induction reveals that $\mathbf{vP}^n = \mathbf{v}$ and $\mathbf{wP}^n = (1/4)^n \mathbf{w}$ for all integers $n \ge 1$. Consequently,

$$\mathbf{uP}^n = \mathbf{av} + \frac{\mathbf{b}}{4^n}\mathbf{w},$$

whence it follows that

$$\lim_{n\to\infty} \mathbf{u}\mathbf{P}^n = \mathbf{a}\mathbf{v} = \frac{\sqrt{5}}{3} \left(\mathbf{u}_1 + \mathbf{u}_2\right)\mathbf{v} = \mathbf{u} \begin{pmatrix} 1/3 & 2/3 \\ 1/3 & 2/3 \end{pmatrix}.$$

[Check by plugging in the explicit value of \mathbf{v} etc.] This verifies (3) (p. 10).

Exercise 6 (Harder). Prove that if

$$\mathbf{P} = \begin{pmatrix} \alpha & 1-\alpha \\ \beta & 1-\beta \end{pmatrix},$$

then

$$\lim_{n \to \infty} \mathsf{P}^n_{0,0} = \lim_{n \to \infty} \mathsf{P}^n_{1,0} = \frac{\beta}{1 - \alpha + \beta} \quad \text{and} \quad \lim_{n \to \infty} \mathsf{P}^n_{0,1} = \lim_{n \to \infty} \mathsf{P}^n_{1,1} = \frac{1 - \alpha}{1 - \alpha + \beta}$$

Conclude, in words, that the long-run proportion of rainy days is equal to $\beta/(1-\alpha+\beta)$.

Exercise 7. Let **P** denote the transition matrix of a Markov chain on a finite state space *S*.

- (1) Prove that P1 = 1 where 1 is a vector of all ones. That is, $\lambda = 1$ is a right-eigenvalue of **P** with right-eigenvector **1**.
- (2) Use the preceding to prove that λ = 1 is also a left-eigenvalue of **P**, and the corresponding eigenvector **v** solves **vP** = **v**.
- (3) Suppose that there exists a unique left-eigenvector **v** for **P** such that $v_j > 0$ for all j. Prove that in that case, $\lim_{n\to\infty} P_{a,b}^n$ exists for all $b \in S$ and does not depend on a.

Exercise 8. (1) Prove that the following is the transition matrix of a Markov chain with values in $S := \{0, 1, 2\}$:

$$\mathbf{P} := \begin{pmatrix} \alpha & 1 - \alpha & 0 \\ \beta & 1 - \beta & 0 \\ 0 & 0 & 1 \end{pmatrix},$$

where $0 < \alpha, \beta < 1$.

- (2) How many left-eigenvectors correspond to the left-eigenvalue $\lambda = 1$? Do any of these eigenvectors have positive coordinates?
- (3) Does $\lim_{n\to\infty} P^n_{a,b}$ exist? If so, then can you compute it for all $a, b \in \{0, 1, 2\}$?

Exercise 9 (Computer exercise). Consider the transition matrix

$$\mathbf{P} := egin{pmatrix} 0 & 1/2 & 1/2 \ 1/2 & 0 & 1/2 \ 1/2 & 1/2 & 0 \end{pmatrix}.$$

Describe the behavior of \mathbf{P}^n for large values of n.

Module 3

Generation of Continuous Random Variables

1. The inverse-transform method

This is the most basic method for generating continuous random variables that have "nice" densities.

Suppose F is the distribution function of a continuous random variable with a proper inverse F^{-1} .

Theorem 1. If U = Unif(0, 1), then $X := F^{-1}(U)$ is a sample from F.

Proof. We compute the distribution function of X:

$$\mathsf{P}\{\mathsf{X} \leqslant \mathsf{x}\} = \mathsf{P}\{\mathsf{F}^{-1}(\mathsf{U}) \leqslant \mathsf{x}\} = \mathsf{P}\{\mathsf{U} \leqslant \mathsf{F}(\mathsf{x})\},\$$

since F is increasing. Note that y = F(x) is a number between zero and one. Since $P\{U \le y\} = y$ for such y's, it follows that $P\{X \le x\} = F(x)$ for all x. This has the desired effect.

1.1. Exponential samples. Recall that X is $Exponential(\lambda)$ if its density is given by

$$f(x) = \begin{cases} \lambda e^{-\lambda x} & \text{if } x \ge 0, \\ 0 & \text{otherwise} \end{cases}$$

13

The distribution function is given, for all $x \ge 0$, as follows:

$$F(\mathbf{x}) := \int_{-\infty}^{\mathbf{x}} \lambda e^{-\lambda \mathbf{y}} \, \mathrm{d}\mathbf{y} = 1 - e^{-\lambda \mathbf{x}}.$$

If 0 < y < 1 and y = F(x), then $y = 1 - e^{-\lambda x}$. Therefore, we solve for x to find that $x = (1/\lambda) \ln(1-y)$. That is,

$$\mathsf{F}^{-1}(\mathsf{y}) = -\frac{1}{\lambda}\ln(1-\mathsf{y}) \qquad \text{if } 0 < \mathsf{y} < 1.$$

In particular, if U = Unif(0, 1), then $X := (1/\lambda) \ln(1-U)$ is an Exponential(λ) random variable. This can be simplified further slightly. Note that V := 1 - U is also a Unif(0, 1) sample. So, in order to generate a Exponential(λ) random variable X, we first generate a Unif(0, 1) random variable V, then set

$$X:=-\frac{1}{\lambda}\ln V.$$

Our discussion implies that X has the Exponential(λ) distribution.

Exercise 1 (Gamma densities). If α and λ are positive and fixed, then the following is a probability density:

$$f(\mathbf{x}) := \begin{cases} \frac{\lambda^{\alpha}}{\Gamma(\alpha)} \mathbf{x}^{\alpha-1} e^{-\lambda \mathbf{x}} & \text{if } \mathbf{x} > 0, \\ \\ 0 & \text{otherwise,} \end{cases}$$

where Γ denotes the *Gamma function* which, I recall, is

$$\Gamma(\mathbf{t}) := \int_0^\infty \mathbf{x}^{\mathbf{t}-1} e^{-\mathbf{x}} \, \mathrm{d}\mathbf{x} \qquad \text{for all } \mathbf{t} > 0. \tag{5}$$

Show that if $X = \text{Gamma}(k, \lambda)$ for an *integer* $k \ge 1$, then $X = T_1 + \cdots + T_k$ where the T_j 's are independent Exponential(λ)'s. Use this to describe, carefully and in detail, a method for simulating $\text{Gamma}(\alpha, \lambda)$ in the case that $\alpha \ge 1$ is integral.

[Hint: Moment generating functions.]

1.2. Paréto samples. A random variable X is said to have a *Paréto* density with parameter $\alpha > 0$ if

$$P\{X > x\} = x^{-\alpha} \qquad \text{for all } x \ge 1,$$

and $P{X > x} = 1$ if x < m.

Exercise 2 (Easy). Compute the Paréto(α) density function.

The distribution function F of X is described as follows: $F(x) = 1 - x^{-\alpha}$ if $x \ge 1$ and F(x) = 0 if x < 1. If 0 < y < 1 satisfies y = F(x) for some x, then x has to be at last 1 [why?] and $y = 1 - x^{-\alpha}$. Solve for x to find that $x = (1 - y)^{-1/\alpha}$. That is,

$$F^{-1}(y) = (1-y)^{-1/\alpha} \qquad \text{if } 0 < y < 1.$$

Because 1 - U = Unif(0, 1), it follows that $U^{-1/\alpha} = \text{Paréto}(\alpha)$.

Exercise 3 (Weibull density). Compute the density of $X := T^{1/\alpha}$, where $T = \text{Exponential}(\lambda)$ and $\alpha, \lambda > 0$. Explain how you would simulate X.

Exercise 4 (Cauchy density). Show that if U = Unif(0, 1), then $C := \tan\{\pi(U - \frac{1}{2})\}$ has the following density function:

$$\mathsf{f}(\mathsf{x}) = \frac{1}{\pi(1+\mathsf{x}^2)} \qquad \text{for } -\infty < \mathsf{x} < \infty.$$

Exercise 5 (Rayleigh density). A random variable X is said to have a *Rayleigh density* if $X \ge 0$, and

$$P{X > x} = e^{-x^2}$$
 for $x > 0$.

Explain in detail how you would simulate from a Rayleigh density.

Exercise 6 (Beta $(\frac{1}{2}, \frac{1}{2})$ density). Consider the density function

$$f(x) := \begin{cases} \frac{1}{\pi \sqrt{x(1-x)}} & \text{if } 0 < x < 1, \\\\ 0 & \text{otherwise.} \end{cases}$$

Show that if U = Unif(0, 1), then $Y := \sin^2(\pi \{U - \frac{1}{2}\})$ has density f. [Suggestion: First consider $X := \sin(\pi \{U - \frac{1}{2}\})$ and then $Y := X^2$.]

2. The acceptance-rejection method

Some times the distribution function, and hence its inverse, are hard to compute. In some such cases, one can employ the so-called acceptance–rejection method. This is an iterative method which frequently converges rapidly.

Consider two density functions f and g that satisfy the following "domination condition" for a finite constant c:

$$f(x) \leq cg(x)$$
 for all x. (6)

We suppose we know how to sample from g; and propose to use that fact in order to simulate from f. **Exercise 7** (Easy). Prove that $c \ge 1$.

Let $Y_1, Y_2, ...$ be an independent sequence of random variables with density function g, and $U_1, U_2, ...$ an independent sequence of Unif(0, 1) random variables, totally independent of the Y's. Define a random variable N to be the smallest $k \ge 1$ such that

$$U_k \leqslant \frac{f(Y_k)}{cg(Y_k)}.$$
(7)

That is, if the preceding condition holds, then we accept Y_k as the simulated value of X.

Theorem 2. We have $P\{N < \infty\} = 1$ and EN = c. Moreover, $X := Y_N$ is a continuous random variable with density function f.

Proof. First, we make a few observations:

• Let A denote the collection of all points y such that g(y) = 0. Then

$$P\{g(Y_k) = 0\} = P\{Y_k \in A\} = \int_A g(z) \, dz = 0.$$

Therefore, (7) is well defined with probability one.

• For every integer $k \ge 1$,

$$\begin{split} \mathsf{P}\left\{\mathsf{U}_{\mathsf{k}} \leqslant \frac{\mathsf{f}(\mathsf{Y}_{\mathsf{k}})}{\mathsf{cg}(\mathsf{Y}_{\mathsf{k}})}\right\} &= \int_{-\infty}^{\infty} \mathsf{P}\left\{\mathsf{U}_{\mathsf{k}} \leqslant \frac{\mathsf{f}(z)}{\mathsf{cg}(z)}\right\} \mathfrak{g}(z) \, \mathrm{d}z \\ &= \int_{-\infty}^{\infty} \frac{\mathsf{f}(z)}{\mathsf{cg}(z)} \mathfrak{g}(z) \, \mathrm{d}z = \frac{1}{\mathsf{c}} \int_{-\infty}^{\infty} \mathsf{f}(z) \, \mathrm{d}z = \frac{1}{\mathsf{c}}. \end{split}$$

• Therefore, N = Geometric(1/c). In particular, $P\{N < \infty\} = 1$. In fact, we also have EN = c.

In order to conclude the proof, it suffices to show that $P{Y_N \leq x} = \int_{-\infty}^{x} f(z) dz$ for all x. Note that we have established already that Y_N is well-defined, since $N < \infty$.

We compute:

$$\begin{split} \mathsf{P}\{\mathsf{Y}_{\mathsf{N}} \leqslant \mathsf{x}\} &= \sum_{k=1}^{\infty} \mathsf{P}\{\mathsf{Y}_{k} \leqslant \mathsf{x}, \mathsf{N} = k\} \\ &= \sum_{k=1}^{\infty} \int_{-\infty}^{\mathsf{x}} \mathsf{P}\{\mathsf{N} = k \mid \mathsf{Y}_{k} = z\} \, \mathsf{g}(z) \, \mathsf{d}z. \end{split}$$

Given that $Y_k = z$, the conditional probability of N = k is

$$\prod_{j=1}^{k-1} \mathsf{P}\left\{\mathsf{U}_{j} > \frac{\mathsf{f}(\mathsf{Y}_{j})}{\mathsf{cg}(\mathsf{Y}_{j})}\right\} \times \mathsf{P}\left\{\mathsf{U}_{k} \leqslant \frac{\mathsf{f}(z)}{\mathsf{cg}(z)}\right\} = \left(1 - \frac{1}{\mathsf{c}}\right)^{k-1} \times \frac{\mathsf{f}(z)}{\mathsf{cg}(z)}.$$

Therefore,

$$P\{Y_{N} \leq x\} = \sum_{k=1}^{\infty} \int_{-\infty}^{x} \left(1 - \frac{1}{c}\right)^{k-1} \frac{f(z)}{cg(z)} g(z) dz$$
$$= \int_{-\infty}^{x} f(z) dz,$$

because $\sum_{k=1}^{\infty} r^{k-1} = (1-r)^{-1}$ for 0 < r < 1. Differentiate both sides of the preceding to find that $f_{Y_N}(x) = f_{Y_1}(x)$.

Check that the following produces a simulation of a random variable from f, using random variables from g [and some extra uniforms]:

- 1. Generate a Unif(0,1) random variable U.
- 2. Generate a random variable Y from g.
- 3. If $U \le f(Y)/cg(Y)$, then set X = Y and stop.
- 4. Else, go to to Step 1.

2.1. Normal samples. Suppose we wish to simulate from the standard-normal density f:

$$\mathsf{f}(\mathsf{x}) := \frac{1}{\sqrt{2\pi}} e^{-\mathsf{x}^2/2}.$$

Consider the "double-exponential" density g:

$$g(\mathbf{x}) := \frac{1}{2}e^{-|\mathbf{x}|}.$$

Clearly,

$$\frac{f(\mathbf{x})}{g(\mathbf{x})} = \sqrt{\frac{2}{\pi}} \exp\left\{-\frac{\mathbf{x}^2}{2} + |\mathbf{x}|\right\} := \sqrt{\frac{2}{\pi}} e^{h(\mathbf{x})}.$$

The function h is clearly symmetric about zero. Moreover, if x > 0, then h'(x) = -x + 1 and h''(x) = -1. Therefore, h is maximized—on the positive axis—at x = 1 and $\max_{x>0} h(x) = h(1) = 1/2$. By symmetry, $\max_{x<0} h(x) = h(-1) = 1/2$, as well. Because h(0) = 0, we find that $\max_x h(x) = 1/2$, and hence

$$\max_{\mathbf{x}} \frac{\mathbf{f}(\mathbf{x})}{\mathbf{g}(\mathbf{x})} = \sqrt{\frac{2e}{\pi}}.$$

That is, (6) holds with $c = \sqrt{2e/c}$.

It remains to know how one can sample from g. But that is not hard. Let $G(x) := \int_{-\infty}^{x} g(z) dz$ define the distribution function for g. If $x \leq 0$, then

$$G(x) = \frac{1}{2} \int_{-\infty}^{x} e^{z} dz = \frac{1}{2} e^{x}.$$

And if x > 0, then by the symmetry of g,

$$G(\mathbf{x}) = \frac{1}{2} + \int_0^x g(z) \, dz = \frac{1}{2} \left(1 + \int_0^x e^{-z} \, dz \right) = 1 - \frac{1}{2} e^{-x}.$$

Note:

- If $0 < y \leq \frac{1}{2}$ and G(x) = y, then $\frac{1}{2}e^x = y$ whence $x = \ln(2y)$. That is, $G^{-1}(y) = \ln(2y)$ if $0 \leq y \leq \frac{1}{2}$.
- If $\frac{1}{2} < y < 1$ and G(x) = y, then $1 \frac{1}{2}e^{-x} = y$ whence $G^{-1}(y) = -\ln(2(1-y))$.

To summarize,

$$G^{-1}(y) = \begin{cases} ln(2y) & \text{if } 0 < y \leqslant \frac{1}{2}, \\ \\ - ln(2(1-y)) & \text{if } \frac{1}{2} < y < 1. \end{cases}$$

Therefore, in order to generate a random variable Y from g we first generate a Unif(0,1) random variable U, and then define $Y = G^{-1}(U)$. The acceptance–rejection method can now be applied; this yields a sample from the standard-normal density f.

Exercise 8. Prove that if Z = N(0, 1), $a \in \mathbf{R}$, and b > 0, then $X := a + b^{1/2}Z$ is N(a, b). Apply this to describe, in detail and carefully, how one can simulate a $N(\mu, \sigma^2)$.

2.2. Beta samples. Choose and fix two constants α , $\beta > 0$. The *beta density* with parameters α and β is:

$$f(x) = \begin{cases} \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha - 1} (1 - x)^{\beta - 1} & \text{if } 0 < x < 1, \\ \\ 0 & \text{otherwise,} \end{cases}$$

where Γ is the Gamma function; see (5) on page 14. [I will take for granted that $\int_0^1 f(x) dx = 1$, though proving that requires work.] You should check that the Beta(1,1) density is the same thing as Unif(0,1). Now suppose $\alpha, \beta \ge 1$ and define g to be the Unif(0,1) density. Then

$$\mathsf{f}(x) \leqslant \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \mathfrak{g}(x) \qquad \text{if } 0 < x < 1.$$

That is, equation (6) on page 15 holds with $c = \Gamma(\alpha + \beta) / \Gamma(\alpha) \Gamma(\beta)$.

Exercise 9 (Beta density). Let f denote the Beta(α , β) density with 1 > α , $\beta > \frac{1}{2}$. Let g denote the Beta($\frac{1}{2}$, $\frac{1}{2}$) density and recall that $\Gamma(1/2) = \sqrt{\pi}$. First verify that (6) on page 15 holds with c := $\pi\Gamma(\alpha + \beta)/\Gamma(\alpha)\Gamma(\beta)$. Then explain, clearly and in detail, how one can simulate from f.

[Hint: Consult Exercise 6 on page 15.]