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Module 1

Generation of Discrete
Random Variables

Just about every programming language and environment has a “random-
number” generator. This means that it has a routine for simulating a
Unif(0 , 1) random variable; that is a continuous random variable with
density function f(x) = 1 if 0 6 x 6 1 and f(x) = 0 for other values
of x. Throughout, I assume that we know how to generate a Unif(0 , 1)

random variable U, using an existing computer program.1 Our present
goal is to use this knowledge to simulate a discrete random variable with
a prescribed mass function f.

1. Bernoulli samples

Recall that a Bernoulli(p) random variable X takes the values 1 and 0 with
respective probabilities p and 1 − p. We can think of this as the outcome
of a coin toss: X = 1 means that we tossed heads; and X = 0 refers to tails.

Let U be a Unif(0 , 1) random variable, and define X = 1{U6p}, where
1A denotes the indicator of an event A [i.e., it is one if A occurs; and zero
otherwise]. The possible values of X are zero and one. Because X = 1 if
and only if U 6 p,

P{X = 1} = P{U 6 p} =

∫p
0
dx = p.

In other words, X is a Bernoulli(p) sample.

1One might ask, how is that done? That is a a good question, which is the subject for a quite
different course.
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2 1. Generation of Discrete Random Variables

In algorithmic terms, this method translates to the following: If U 6 p
then X := 1; else if p < U 6 1 then X := 0.

2. More general discrete distributions

Now let us try to simulate a random variable with mass function

f(x) =


p0 if x = x0,
p1 if x = x1,
... ,

where 0 6 pj 6 1 for all j > 0, and p0 + p1 + · · · = 1. That is, the
possible values of X ought to be x0, x1, . . . with respective probabilities
p0,p1, . . . . We extend the algorithm of the previous subsection as follows:
If U 6 p0 then X := x0; else if p0 < U 6 p0 + p1 then X := x1; else if
p0 + p1 < U 6 p0 + p1 + p2 then X := x2, etc. At the kth stage, where k > 1
is integral, this algorithm performs the following query:∥∥∥∥∥ Is p0 + · · ·+ pk−1 < U 6 p0 + · · ·+ pk?

If so, then set X := xk; else, proceed to stage k+ 1.

Here is the pseudo-code:

1. Generate a Unif(0,1) random variable U.
2. If U <= p0 then set X = x0 and stop.
3. Else set k=1, PrevSum = p0, and Sum = p0 + p1.
4. If PrevSum <= U < Sum then set X = xk and stop.
5. Else, set k = k+1, PrevSum = Sum, and Sum = Sum + pk;

then goto Step 4.

[You should check that this does the job.]

Question 1. Could it be that this algorithm never stops?

Fortunately, the answer is “no.” In order to see this let N denote the
time that the algorithm stops; N =∞ is a distinct possibility at this point.
Now we can observe that for all integers k > 1,

P{N > k} = P {the algorithm does not stop after the kth stage}

= P {U > p0 + · · ·+ pk−1} = 1 − P {U 6 p0 + · · ·+ pk−1}

= 1 −

k−1∑
j=0

pj =

∞∑
j=k

pj.
(1)

And so P{N =∞} = limk→∞ P{N > k} = 0.
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2.1. Discrete-uniform samples. Suppose we wish to simulate a random
variable X that is distributed uniformly on {1 , . . . ,n} for a positive integer
n that is fixed. For all j = 1, . . . ,n, the jth stage of our algorithm tells us to
set

X = j if
j− 1
n

< U 6
j

n
.

The condition on U is equivalent to j − 1 < nU 6 j, and this means that
j = 1 + bnUc, where bxc denotes the greatest integer 6 x. The preceding
can be streamlined into a one-line description as follows:

X := 1 + bnUc is distributed uniformly on {1 , . . . ,n}.

Exercise 1. Recall the Geometric(p) mass function is given by the follow-
ing: f(j) = p(1 − p)j−1 if j = 0, 1, 2, . . . and f(j) = 0 otherwise. Prove the
following:

X := 1 +

⌊
lnU

ln(1 − p)

⌋
has the Geometric(p) mass function.

2.2. Binomial samples. The Binomial(n ,p) mass function is given by

f(x) =


(
n

x

)
px(1 − p)n−x if x = 0, . . . ,n,

0 otherwise.

In the jargon of our algorithm, x0 = 0, x1 = 1, . . . , xn = n; and pj =(
n
j

)
pj(1 − p)n−j. Note that p0 = pn and

pj+1

pj
=
n− j

j
× p

1 − p
.

Using this, check that the following alogrithm produces a Binomial(n ,p)
simulation:

1. Generate a Unif(0,1) random variable U.
2. Set M = p/(1-p), j=0, P = q^n, and Sum = P.
3. If U <= Sum, then set X = j and stop.
4. Else set j=j+1, P = ( (n-j)/j * M ) * P, and Sum = Sum + P;

then go to Step 3.

Question 2. At most how long does this algorithm take before it stops?

Exercise 2. Prove that if X = Binomial(n ,p), then X = I1 + · · ·+ In where
the Ij’s are independent Bernoulli(p)’s. Use this to prescribe an alternative
algorithm for simulating X.
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2.3. Poisson samples. The Poisson(λ) mass function is given by

f(x) =


e−λλx

x!
if x = 0, 1, . . . ,

0 otherwise.

In the jargon of our algorithm, x0 = 0, x1 = 1, . . . ; and pj = e−λλj/j!. Note
that p0 = exp(−λ) and

pj+1

pj
=

λ

j+ 1
.

Using this, check that the following algorithm produces a Poisson(λ) sim-
ulation:

1. Generate a Unif(0,1) random variable U.
2. Set j = 0, P = exp(-lambda), and Sum = P.
3. If U <= Sum, then set X = j and stop.
4. Else set P = ( lambda / (j+1) ) * P and Sum = Sum + P;

then go to Step 3.

Question 3. How long before this algorithm stops?

The answer requires first the following result.

Exercise 3. Prove that if V > 1 is integral, then EV =
∑∞
k=1 P{V > k}.

[Hint: Start by writing the sum as
∑∞
k=1
∑∞
j=k P{V = j} and then inter-

changing the double sum.]

In order to answer Question 3, recall the definition of N, and apply
Exercise 3 to find that

EV =

∞∑
k=1

P{N > k} =

∞∑
k=1

P{N > k− 1} =

∞∑
i=0

P{N > i}.

Thanks to this and equation (1) on page 2,

EV =

∞∑
i=0

∞∑
j=i

e−λλj

j!
=

∞∑
j=0

j∑
i=0

e−λλj

j!
=

∞∑
j=0

(j+ 1)
e−λλj

j!
.

We split up j+ 1 as follows:

EV =

∞∑
j=0

j
e−λλj

j!
+

∞∑
j=0

e−λλj

j!

=

∞∑
j=1

jpj +

∞∑
j=0

pj = λ+ 1.
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I have used the fact that the expectation of a Poisson(λ) is λ. In summary,
we expect to stop “after λ+ 1 steps.”

3. Monte Carlo simulation

Now I describe the “Monte Carlo method,” which is a popular application
of simulation: Suppose we need to know the value of E{h(X)} where h is a
function and X a random variable. There are many complicated examples
wherein this expectation cannot be computed analytically. Then we can
some times resort to simulation as follows: Simulate X1,X2, . . . [indepen-
dent random variables] from the same distribution as X. By the law of
large numbers,

1
N

N∑
j=1

h(Xj) ≈ E{h(X)} with high probability if N is large.

Therefore, if we want to simulate P{X ∈ A} for a set A, then we simulate
independent random variables X1,X2, . . . from the same distribution as
that of X, and then use the preceding with h(x) := 1{x ∈ A} to find that

# {1 6 i 6 N : Xi ∈ A}

N
≈ P{X ∈ A} with high probability if N is large.

Exercise 4. Let X = Binomial(10 , 1
2). Simulate, using N = 1000 random

variables, P{X = k} for all k = 0 , . . . , 10. Verify the accuracy of your
simulation by comparing your simulation results to the exact results.

Exercise 5. Simulate P{20 6 X 6 24} where X = Poisson(4).

Exercise 6 (The CLT). Let {Xi,j}
∞
i,j=1 be a double–array of independent ran-

dom variables, all with common mass function

f(x) =


1
2

if x = 1 or x = −1,

0 otherwise.

Let Sn,j := X1,j + X2,j + · · · + Xn,j, where n is large. Suppose m is another
large integer. Explain (in clear heuristic terms) why

#
{

1 6 j 6 m : a < Sn,j 6 b
}

m
≈ 1√

2π

∫b
a
e−x2/2 dx with high probability.

Use this simulation method to estimate (2π)−1/2
∫2

1 exp(−x2/2)dx.





Module 2

Discrete Markov Chains

1. Introduction

A stochastic [or random] process is a collection {Xn}∞n=0 of random variables.
They might take values in very abstract spaces [e.g., P{X1 = cow} = 1

2 =

P{X1 = horse}].
Let S denote a finite or countable set of distinct elements. Let X :=

{Xn}∞n=0 be a stochastic process with values in S. Frequently, we think of
n as “time,” and Xn as the “state” of the process at time n.

Definition 1. We say that X is a Markov chain on S if

P {Xn+1 = an+1 | X0 = x0 , . . . ,Xn = an} = P {X1 = an+1 | X0 = an} , (2)

for all integers n > 0 and every a0, . . . ,an+1 ∈ S. Equation (2) is called the
Markov property.

In order to understand what this means, we should think about how
we would simulate the time-evolution of the random process X:

• We start with some initial random variable X0.

• Given that X0 = a0, we simulate X1 according to the mass function
f(x) = P{X1 = x |X0 = a0}.

• . . .

• Suppose we have simulated X0, . . . ,Xn. Given that X0 = a0, . . . ,Xn =

an, then we simulate Xn+1 according to the same mass function f
that was used earlier.

It should be clear that we ought to try to understand a Markov chain
based on the properties its transition probabilities; these are the collection of
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8 2. Discrete Markov Chains

probabilities

Px,y := P {X1 = y | X0 = x} for all x,y ∈ S.

We can think of the collection of these transition probabillities as a matrix
P whose (x ,y) coordinate is Px,y. We call P the transition matrix of the
Markov chain X. This definition makes sense also when S is infinite. But
one has to be much more careful when one deals with infinite matrices.

1.1. A simple weather-forecasting model (Ross, p. 182). Consider the fol-
lowing overly-simplified model for weather changes: If it rains today, then
regardless of the weather of the previous days, tomorrow will be rainy
with probability α; if it is dry today, then regardless of the weather of the
previous days, tomorrow will be rainy with probability β. Here, S := {0 , 1}

where state “0” refers to “rain” and “1” to “dry.” Our Markov chain will
take the values zero and one according to the transition matrix

P =

(
α 1 − α

β 1 − β

)
.

Exercise 1. Simulate this Markov chain. We will soon see that the follow-
ing limits exist:

πy := lim
n→∞P {Xn = y | X0 = x} for y, x ∈ {0 , 1},

and π does not depend on x. Apply this fact to compute π0 and π1 via
Monte Carlo simulation. These are the respective probabilities of rainy–
versus–dry days in the “long run.”

1.2. The simple walk. The simple [random] walk on Z is the Markov
chain whose transitions are described as

Px,y =


1
2

if y = x+ 1 or y = x− 1,

0 otherwise.

That is, at any given time, we go to the left or right of our present position
with probability 1

2 , independently of the how we arrived at our present
position.

More generally, a simple walk on [the vertices of] a graph G moves to
each of its current neighbors with equal probability, at all times.

Exercise 2. Let X := {Xn}∞n=0 be the simple walk on Z, and suppose X0 = 0
[with probability one]. For every integer x let Tx denote the first time n
such that Xn = x. Use Monte Carlo simulation to convince yourself that
P{T1 < T−1} = 1

2 . Can you prove that this actually holds? [It does.]
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Exercise 3. Let X denote the simple walk on Z with X0 = 0.

(1) Prove that Yn := Xn − Xn−1 [n > 1] defines a collection of inde-
pendent random variables with P{Yn = 1} = P{Yn = −1} = 1

2 .
(2) Prove that Xn/n goes to zero in probability; that is, for all λ > 0,

lim
n→∞P

{∣∣∣∣Xnn
∣∣∣∣ > λ} = 0.

(3) Use Monte Carlo simulation to verify this phenomenon.

2. The Chapman–Kolmogorov equations

By using the transition matrix P of the Markov chain X, we can compute
all sorts of probabilities. For instance, suppose we want the distribution
of X2, given that the initial value of the chain is X0 = a for some constant
a ∈ S such that P{X0 = a} > 0. We apply the law of total probabilities to
find this as follows:

P{X2 = b |X0 = a}

=
P{X0 = a , X2 = b}

P{X0 = a}

=
1

P{X0 = a}

∑
c∈S

P{X0 = a , X1 = c , X2 = b}

=
1

P{X0 = a}

∑
c∈S

P {X2 = b | X0 = a , X1 = c}× P{X0 = a , X1 = c}

=
1

P{X0 = a}

∑
c∈S

Pc,b × P{X0 = a , X1 = c}.

Another round of conditioning shows us that

P{X0 = a , X1 = c} = P{X0 = a}× Pa,c.

Thus,
P{X2 = b |X0 = a} =

∑
c∈S

Pa,cPc,b = P2
a,b,

where P2
a,b denotes the (a ,b) element of the matrix P2 := PP. The follow-

ing is only slightly more general, and is proved similarly.

Theorem 1. For all integers n > 0, and all a,b ∈ S,

P{Xn = b |X0 = a} = Pna,b,

where Pna,b represents the (a ,b) coordinate of the matrix Pn := P · · ·P [n times],
where P0 := I denotes the identity matrix.
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In summary, Pna,b is the probability that the Markov chain X goes from
a to b in n [time] steps.

Exercise 4. Prove that for all integers n,k > 0, and a,b ∈ S,

P{Xn+k = b |Xk = a} = P{Xn = b |X0 = a} = Pna,b.

Here is a consequence of all of this:

Pn+m
a,b =

∑
c∈S

Pna,cP
m
c,b.

The collection of all these equations—as we vary n, m, a, and b—is called
the Chapman–Kolmogorov equations; it turns out to have many useful conse-
quences.

2.1. Simplified weather forecasting. Consider the simplified weather fore-
casting problem (§1.1, page 8), with α = 1

2 and β = 1
4 . The transition matrix

is given by the following:

P =

(
1/2 1/2
1/4 3/4

)
.

Our present goal is to compute limn→∞ Pnx,y; that is, the long-run proba-
bility of making a transition from state x to state y.

One can easily compute

P2 =

(
3/8 5/8
5/16 11/16

)
.

And with enough patience P3. But how does one compute limn→∞ Pn?
Or is it even clear that the limit exists?

Exercise 5. Verify, numerically, that

lim
n→∞Pn =

(
1/3 2/3
1/3 2/3

)
. (3)

Additionally, make sure that you understand the following interpretation
of (3): Regardless of whether or not we start with a rainy or dry day, after
a very long time any given day is rainy with probability ≈ 1/3 and dry
with probability ≈ 2/3. A heuristic interpretation of the latter remark is
that it is going to rain about one-third of the time!

And now we return to do some honest mathematics. The remainder
of this discussion requires a little bit of linear algebra.

Here is a method that works quite generally: Let v := (1/
√

5 , 2/
√

5)

and w := (1/
√

2 , −1/
√

2). Then, vP = v and wP = 1
4 w. That is, v and

w are the two left-eigenvectors of P, and correspond respectively to the
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eigenvalues 1 and 1/4. Note that v and w have been normalized to have
unit length. More significantly, v and w together span all of R2. That is,
every 2-dimensional vector u can be written as follows:

u = av + bw, (4)

with

a =

√
5

3
(u1 + u2) and b =

√
2

3
(2u1 − u2) .

[You need to check all of these computations!] Now we can right-multiply
both sides of (4) by Pn to find that

uPn = avPn + bwPn.

Induction reveals that vPn = v and wPn = (1/4)nw for all integers n > 1.
Consequently,

uPn = av +
b

4n
w,

whence it follows that

lim
n→∞uPn = av =

√
5

3
(u1 + u2) v = u

(
1/3 2/3
1/3 2/3

)
.

[Check by plugging in the explicit value of v etc.] This verifies (3) (p. 10).

Exercise 6 (Harder). Prove that if

P =

(
α 1 − α

β 1 − β

)
,

then

lim
n→∞Pn0,0 = lim

n→∞Pn1,0 =
β

1 − α+ β
and lim

n→∞Pn0,1 = lim
n→∞Pn1,1 =

1 − α

1 − α+ β
.

Conclude, in words, that the long-run proportion of rainy days is equal to
β/(1 − α+ β).

Exercise 7. Let P denote the transition matrix of a Markov chain on a finite
state space S.

(1) Prove that P1 = 1 where 1 is a vector of all ones. That is, λ = 1 is
a right-eigenvalue of P with right-eigenvector 1.

(2) Use the preceding to prove that λ = 1 is also a left-eigenvalue of
P, and the corresponding eigenvector v solves vP = v.

(3) Suppose that there exists a unique left-eigenvector v for P such
that vj > 0 for all j. Prove that in that case, limn→∞ Pna,b exists for
all b ∈ S and does not depend on a.
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Exercise 8. (1) Prove that the following is the transition matrix of a
Markov chain with values in S := {0 , 1 , 2}:

P :=

α 1 − α 0
β 1 − β 0
0 0 1

 ,

where 0 < α,β < 1.
(2) How many left-eigenvectors correspond to the left-eigenvalue λ =

1? Do any of these eigenvectors have positive coordinates?
(3) Does limn→∞ Pna,b exist? If so, then can you compute it for all

a,b ∈ {0 , 1 , 2}?

Exercise 9 (Computer exercise). Consider the transition matrix

P :=

 0 1/2 1/2
1/2 0 1/2
1/2 1/2 0

 .

Describe the behavior of Pn for large values of n.



Module 3

Generation of
Continuous Random
Variables

1. The inverse-transform method

This is the most basic method for generating continuous random variables
that have “nice” densities.

Suppose F is the distribution function of a continuous random variable
with a proper inverse F−1.

Theorem 1. If U = Unif(0 , 1), then X := F−1(U) is a sample from F.

Proof. We compute the distribution function of X:

P{X 6 x} = P
{
F−1(U) 6 x

}
= P{U 6 F(x)},

since F is increasing. Note that y = F(x) is a number between zero and
one. Since P{U 6 y} = y for such y’s, it follows that P{X 6 x} = F(x) for all
x. This has the desired effect. �

1.1. Exponential samples. Recall that X is Exponential(λ) if its density is
given by

f(x) =

{
λe−λx if x > 0,
0 otherwise.

13
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The distribution function is given, for all x > 0, as follows:

F(x) :=

∫x
−∞ λe−λy dy = 1 − e−λx.

If 0 < y < 1 and y = F(x), then y = 1 − e−λx. Therefore, we solve for x to
find that x = (1/λ) ln(1 − y). That is,

F−1(y) = −
1
λ

ln(1 − y) if 0 < y < 1.

In particular, ifU = Unif(0 , 1), then X := (1/λ) ln(1−U) is an Exponential(λ)
random variable. This can be simplified further slightly. Note that V :=

1 −U is also a Unif(0 , 1) sample. So, in order to generate a Exponential(λ)
random variable X, we first generate a Unif(0 , 1) random variable V , then
set

X := −
1
λ

lnV .

Our discussion implies that X has the Exponential(λ) distribution.

Exercise 1 (Gamma densities). If α and λ are positive and fixed, then the
following is a probability density:

f(x) :=


λα

Γ(α)
xα−1e−λx if x > 0,

0 otherwise,

where Γ denotes the Gamma function which, I recall, is

Γ(t) :=

∫∞
0
xt−1e−x dx for all t > 0. (5)

Show that if X = Gamma(k , λ) for an integer k > 1, then X = T1 + · · · + Tk
where the Tj’s are independent Exponential(λ)’s. Use this to describe,
carefully and in detail, a method for simulating Gamma(α , λ) in the case
that α > 1 is integral.
[Hint: Moment generating functions.]

1.2. Paréto samples. A random variable X is said to have a Paréto density
with parameter α > 0 if

P{X > x} = x−α for all x > 1,

and P{X > x} = 1 if x < m.

Exercise 2 (Easy). Compute the Paréto(α) density function.
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The distribution function F of X is described as follows: F(x) = 1−x−α

if x > 1 and F(x) = 0 if x < 1. If 0 < y < 1 satisfies y = F(x) for some x,
then x has to be at last 1 [why?] and y = 1 − x−α. Solve for x to find that
x = (1 − y)−1/α. That is,

F−1(y) = (1 − y)−1/α if 0 < y < 1.

Because 1 −U = Unif(0 , 1), it follows that U−1/α = Paréto(α).

Exercise 3 (Weibull density). Compute the density of X := T 1/α, where
T = Exponential(λ) and α, λ > 0. Explain how you would simulate X.

Exercise 4 (Cauchy density). Show that if U = Unif(0 , 1), then C :=

tan{π(U− 1
2)} has the following density function:

f(x) =
1

π(1 + x2)
for −∞ < x <∞.

Exercise 5 (Rayleigh density). A random variable X is said to have a
Rayleigh density if X > 0, and

P{X > x} = e−x2
for x > 0.

Explain in detail how you would simulate from a Rayleigh density.

Exercise 6 (Beta( 1
2 , 1

2) density). Consider the density function

f(x) :=


1

π
√
x(1 − x)

if 0 < x < 1,

0 otherwise.

Show that if U = Unif(0 , 1), then Y := sin2(π{U− 1
2 }) has density f.

[Suggestion: First consider X := sin(π{U− 1
2 }) and then Y := X2.]

2. The acceptance–rejection method

Some times the distribution function, and hence its inverse, are hard to
compute. In some such cases, one can employ the so-called acceptance–
rejection method. This is an iterative method which frequently converges
rapidly.

Consider two density functions f and g that satisfy the following “dom-
ination condition” for a finite constant c:

f(x) 6 cg(x) for all x. (6)

We suppose we know how to sample from g; and propose to use that fact
in order to simulate from f.
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Exercise 7 (Easy). Prove that c > 1.

Let Y1, Y2, . . . be an independent sequence of random variables with
density function g, and U1,U2, . . . an independent sequence of Unif(0 , 1)

random variables, totally independent of the Y’s. Define a random variable
N to be the smallest k > 1 such that

Uk 6
f(Yk)

cg(Yk)
. (7)

That is, if the preceding condition holds, then we accept Yk as the simu-
lated value of X.

Theorem 2. We have P{N < ∞} = 1 and EN = c. Moreover, X := YN is a
continuous random variable with density function f.

Proof. First, we make a few observations:

• Let A denote the collection of all points y such that g(y) = 0.
Then

P{g(Yk) = 0} = P{Yk ∈ A} =

∫
A
g(z)dz = 0.

Therefore, (7) is well defined with probability one.

• For every integer k > 1,

P

{
Uk 6

f(Yk)

cg(Yk)

}
=

∫∞
−∞ P

{
Uk 6

f(z)

cg(z)

}
g(z)dz

=

∫∞
−∞

f(z)

cg(z)
g(z)dz =

1
c

∫∞
−∞ f(z)dz =

1
c

.

• Therefore, N = Geometric(1/c). In particular, P{N < ∞} = 1. In
fact, we also have EN = c.

In order to conclude the proof, it suffices to show that P{YN 6 x} =∫x
−∞ f(z)dz for all x. Note that we have established already that YN is

well-defined, since N <∞.
We compute:

P{YN 6 x} =

∞∑
k=1

P{Yk 6 x,N = k}

=

∞∑
k=1

∫x
−∞ P {N = k | Yk = z}g(z)dz.
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Given that Yk = z, the conditional probability of N = k is

k−1∏
j=1

P

{
Uj >

f(Yj)

cg(Yj)

}
× P
{
Uk 6

f(z)

cg(z)

}
=

(
1 −

1
c

)k−1

× f(z)

cg(z)
.

Therefore,

P{YN 6 x} =

∞∑
k=1

∫x
−∞
(

1 −
1
c

)k−1
f(z)

cg(z)
g(z)dz

=

∫x
−∞ f(z)dz,

because
∑∞
k=1 r

k−1 = (1 − r)−1 for 0 < r < 1. Differentiate both sides of
the preceding to find that fYN(x) = fY1(x). �

Check that the following produces a simulation of a random variable
from f, using random variables from g [and some extra uniforms]:

1. Generate a Unif(0,1) random variable U.
2. Generate a random variable Y from g.
3. If U <= f(Y)/cg(Y), then set X = Y and stop.
4. Else, go to to Step 1.

2.1. Normal samples. Suppose we wish to simulate from the standard-
normal density f:

f(x) :=
1√
2π
e−x2/2.

Consider the “double-exponential” density g:

g(x) :=
1
2
e−|x|.

Clearly,

f(x)

g(x)
=

√
2
π

exp
{

−
x2

2
+ |x|

}
:=

√
2
π
eh(x).

The function h is clearly symmetric about zero. Moreover, if x > 0, then
h ′(x) = −x + 1 and h ′′(x) = −1. Therefore, h is maximized—on the
positive axis—at x = 1 and maxx>0 h(x) = h(1) = 1/2. By symmetry,
maxx<0 h(x) = h(−1) = 1/2, as well. Because h(0) = 0, we find that
maxx h(x) = 1/2, and hence

max
x

f(x)

g(x)
=

√
2e
π

.

That is, (6) holds with c =
√

2e/c.
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It remains to know how one can sample from g. But that is not hard.
Let G(x) :=

∫x
−∞ g(z)dz define the distribution function for g. If x 6 0,

then

G(x) =
1
2

∫x
−∞ ez dz =

1
2
ex.

And if x > 0, then by the symmetry of g,

G(x) =
1
2

+

∫x
0
g(z)dz =

1
2

(
1 +

∫x
0
e−z dz

)
= 1 −

1
2
e−x.

Note:

• If 0 < y 6 1
2 and G(x) = y, then 1

2e
x = y whence x = ln(2y). That

is, G−1(y) = ln(2y) if 0 6 y 6 1
2 .

• If 1
2 < y < 1 and G(x) = y, then 1 − 1

2e
−x = y whence G−1(y) =

− ln(2(1 − y)).

To summarize,

G−1(y) =


ln(2y) if 0 < y 6 1

2 ,

− ln(2(1 − y)) if 1
2 < y < 1.

Therefore, in order to generate a random variable Y from g we first gener-
ate a Unif(0 , 1) random variable U, and then define Y = G−1(U). The
acceptance–rejection method can now be applied; this yields a sample
from the standard-normal density f.

Exercise 8. Prove that if Z = N(0 , 1), a ∈ R, and b > 0, then X := a+b1/2Z

is N(a ,b). Apply this to describe, in detail and carefully, how one can
simulate a N(µ ,σ2).

2.2. Beta samples. Choose and fix two constants α,β > 0. The beta density
with parameters α and β is:

f(x) =


Γ(α+ β)

Γ(α)Γ(β)
xα−1(1 − x)β−1 if 0 < x < 1,

0 otherwise,

where Γ is the Gamma function; see (5) on page 14. [I will take for granted
that

∫1
0 f(x)dx = 1, though proving that requires work.] You should check

that the Beta(1 , 1) density is the same thing as Unif(0 , 1). Now suppose
α,β > 1 and define g to be the Unif(0 , 1) density. Then

f(x) 6
Γ(α+ β)

Γ(α)Γ(β)
=
Γ(α+ β)

Γ(α)Γ(β)
g(x) if 0 < x < 1.
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That is, equation (6) on page 15 holds with c = Γ(α+ β)/Γ(α)Γ(β).

Exercise 9 (Beta density). Let f denote the Beta(α ,β) density with 1 >
α,β > 1

2 . Let g denote the Beta( 1
2 , 1

2) density and recall that Γ(1/2) =
√
π.

First verify that (6) on page 15 holds with c := πΓ(α + β)/Γ(α)Γ(β). Then
explain, clearly and in detail, how one can simulate from f.
[Hint: Consult Exercise 6 on page 15.]


