Math 5040-1 Midterm Fall 2008

Instructions:

- This exam is due Wednesday October 29, in lecture. Late exams are not accepted.
- You may not discuss this exam with other persons; this includes other students in this course. Failure to do this will result in a zero in this exam; further action might also be taken in accord with the university bylaws. By taking this exam you are agreeing that this represents your work alone.

Problems:

1. (Theoretical problem) Let $X:=\left\{X_{n}\right\}_{n=0}^{\infty}$ denote a Markov chain on a finite state space S with transition matrix \mathbf{P}, and consider the stochastic process $Y:=\left\{Y_{n}\right\}_{n=0}^{\infty}$ defined by setting $Y_{k}:=X_{2 k}$. Is Y a Markov chain? Prove or disprove carefully.
2. (Theoretical problem) Consider a Markov chain $X:=\left\{X_{n}\right\}_{n=0}^{\infty}$ on the state space $S:=\{1,2,3\}$ with the following transition matrix:

$$
\mathbf{P}:=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right)
$$

And the initial probability distribution of X is $\bar{\phi}_{0}:=(1 / 3,1 / 3,1 / 3)$. For all integers $n \geq 0$ define the random variable Y_{n} to be the indicator of the event $\left\{X_{n} \neq 1\right\}$. That is, $Y_{n}:=0$ if $X_{n}=1$ and $Y_{n}:=1$ otherwise. Is $Y:=\left\{Y_{n}\right\}_{n=0}^{\infty}$ a Markov chain? Prove or disprove carefully.
3. (Simulation problem) A 52-card deck of card is thoroughly shuffled; then all of the cards are layed out in order [from left to right, say]. What is the probability that a King is set immediately next to an Ace?

