## Math 5040-1 final exam <br> Fall 2008

## Instructions:

- This exam is due Thursday December 18, to be returned in my mailbox only. Late exams or other methods of returning the exam are not accepted.
- You may not discuss this exam with other persons; this includes other students in this course. Failure to do this will result in a zero in this exam; further action might also be taken in accord with the university bylaws. By taking this exam you are agreeing that this represents your work alone.


## Problems:

1. (Theoretical problem) Suppose that the number of buses that arrive in a given bus depot follows a Poisson process with rate $\lambda=4$ [in units, "buses per hour"]. Suppose we have observed 10 buses in the first two hours. What is the probability that 5 of those arrived in the first hour?
2. (Theoretical problem) Consider a simple random walk on $S:=\{0,1,2,3,4\}$ with an absorbing barrier at 0 . Consider the following payoff function:

$$
f(k)=k^{2} \quad \text { for all } k \in S
$$

Compute the optimal strategy if:
(a) it costs nothing to play every time;
(b) it costs 5 dollars to play every time.
3. (Simulation problem) Simulate an inhomogeneous Poisson process up to time $t=10$, when the rate function is $\lambda(t)=(1+t)^{-1}$.

