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Pkeface

This book has been written for a first course in probability and was developed
from lectures given at the University of Illinois during the last five years.
Most of the students have been juniors, seniors, and beginning graduates,
from the fields of mathematics, engineering and physics. The only formal
prerequisite is calculus, but an additional degree of mathematical maturity
may be helpful.

In talking about nondiscrete probability spaces, it is difficult to avoid
measure-theoretic concepts. However, to develop extensive formal machinery
from measure theory before going into probability (as is done in most
graduate programs in mathematics) would be inappropriate for the particular
audience to whom the book is addressed. Thus I have tried to suggest, when
possible, the underlying measure-theoretic ideas, while emphasizing the
probabilistic way of thinking, which is likely to be quite novel to anyone
studying this subject for the first time.

The major field of application considered in the book is statistics (Chapter
8). In addition, some of the problems suggest connections with the physical
sciences. Chapters 1 to 5, and Chapter 8 will serve as the basis for a one-
semester or a two-quarter course covering both probability and statistics.
If probability alone is to be considered, Chapter 8 may be replaced by
Chapter 6 and Chapter 7, as time permits. An asterisk before a section or
a problem indicates material that I have normally omitted (without loss of
continuity), either because it involves subject matter that many of the
students have not been exposed to (for example, complex variables) or
because it represents too concentrated a dosage of abstraction.

A word to the instructor about notation. In the most popular terminology,
P{X < z} is written for the probability that the random variable X assumes
a value less than or equal to the number . I tried this once in my class, and
I found that as the semester progressed, the capital X tended to become
smaller in the students’ written work, and the small z larger. The following
semester, I switched to the letter R for random variable, and this notation
is used throughout the book.
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vi PREFACE

Fairly detailed solutions to some of the probiems (and numerical answers
to others) are given at the end of the book.

I hope that the book will provide an introduction to more advanced
courses in probability and real analysis and that it makes the abstract ideas
to be encountered later more meaningful. I also hope that nonmathematics
majors who come in contact with probability theory in their own areas find
the book useful. A brief list of references, suitable for future study, is given
at the end of the book.

I am grateful to the many students and colleagues who have influenced my
own understanding of probability theory and thus contributed to this book.

I also thank Mrs. Dee Keel for her superb typing, and the staff of Wiley
for its continuing interest and assistance.

Urbana, Illinois, 1969 Robert B. Ash
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Basic Concepts

1.1 INTRODUCTION

The origin of probability theory lies in physical observations associated with
games of chance. It was found that if an “unbiased” coin is tossed independ-
ently » times, where 7 is very large, the relative frequency of heads, that is, the
ratio of the number of heads to the total number of tosses, is very likely to
be very close to 1/2. Similarly, if a card is drawn from-a perfectly shuffled
deck and then is replaced, the deck is reshuffled, and the process is repeated
over and over again, there is (in some sense) convergence of the relative
frequency of spades to 1/4. ,

In the card experiment there are 52 possible outcomes when a single card
is drawn. There is no reason to favor one outcome over another (the principle
of “insufficient reason’’ or of ““least astonishment’’), and so the early workers
in probability took as the probability of obtaining a spade the number of
favorable outcomes divided by the total number of outcomes, that is, 13/52
or 1/4.

This so-called ““classical definition’ of probability. (the probability of an
event is the number of outcomes favorable to the event, divided by the total
number of outcomes, where all outcomes are equally likely) is first of all
restrictive (it considers only experiments with a finite number of outcomes)
and, more seriously, circular (no matter how you look at it, “equally likely”
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2 BASIC CONCEPTS

essentially means “equally probable,” and thus we are using the concept of
probability to define probability itself). Thus we cannot use this idea as the
basis of a mathematical theory of probability; however, the early proba-
bilists were not prevented from deriving many valid and useful results.

Similarly, an attempt at a frequency definition of probability will cause
trouble. If S, is the number of occurrences of an event in » independent
performances of an experiment, we expect physically that the relative fre-
quency S,/n should coverge to a limit; however, we cannot assert that the
limit exists in a mathematical sense. In the case of the tossing of an unbiased
coin, we expect that S,/n — 1/2, but a conceivable outcome of the process is
that the coin will keep coming up heads forever. In other words it is possible
that S,/n — 1, or that S,/n — any number between O and 1, or that S,/n
has no limit at all.

In this chapter we introduce the concepts that are to be used in the con-
struction of a mathematical theory of probability. The first ingredient we
need is a set 2, called the sample space, representing the collection of possible
outcomes of a random experiment. For example, if a coin is tossed once we
may take Q = {H, T}, where H corresponds to a head and T to a tail. If
the coin is tossed twice, this is a different experiment and we need a different
Q, say {HH, HT, TH, TT}; in this case one performance of the experiment
corresponds to two tosses of the coin.

If a single die is tossed, we may take Q to consist of six points, say Q =
{1,2,...,6}. However, another possible sample space consists of two
points, corresponding to the outcomes “N is even” and “N is odd,” where N
is the result of the toss. Thus different sample spaces can be associated with
the same experiment. The nature of the particular problem under considera-
tion will dictate which sample space is to be used. If we are interested, for
example, in whether or not N > 3 in a given performance of the experiment,
the second sample space, corresponding to “N even” and “N odd,” will not
be useful to us.

In general, the only physical requirement on Q is that a given performance
of the experiment must produce a result corresponding to exactly one of the
points of Q). We have as yet no mathematical requirements on Q; it is simply a
set of points.

Next we come to the notion of event. An “‘event” associated with a random
experiment corresponds to a question about the experiment that has a yes or
no answer, and this in turn is associated with a subset of the sample space.
For example, if a coin is tossed twice and Q = {HH, HT, TH, TT}, “the
number of heads is <1°” will be a condition that either occurs or does not
occur in a given performance of the experiment. That is, after the experiment
is performed, the question “Is the number of heads < 1?” can be answered
yes or no. The subset of Q corresponding to a “yes” answer is 4 = {HT, TH,
TT}; that is, if the outcome of the experiment is HT, TH, or TT, the answer
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1.2 ALGEBRA OF EVENTS (BOOLEAN ALGEBRA) 3

B = {first toss = second toss }

Q A = {number of heads <1}
A J

FiGure 1.1.1  Coin-Tossing Experiment.

to the question “Is the number of heads < 1?7 will be “yes,” and if the out-
come is HH, the answer will be “no.” Similarly, the subset of Q associated
with the “event” that the result of the first toss is the same as the result of the
second toss is B = {HH, TT}.

Thus an event is defined as a subset of the sample space, that is, a collection
of points of the sample space. (We shall qualify this in the next section.)

Events will be denoted by capital letters at the beginning of the English
alphabet, such as 4, B, C, and so on. An event may be characterized by listing
all of its points, or equivalently by describing the conditions under which the
event will occur. For example, in the coin-tossing experiment just considered,
we write

A = {the number of heads is less than or equal to 1}

This expression is to be read as “A is the set consisting of those outcomes
which satisfy the condition that the number of heads is less than or equal to
1,” or, more simply, “A4 is the event that the number of heads is less than or
equal to 1.”” The event A4 consists of the points HT, TH, and TT; therefore
we write A = {HT, TH, TT}, which is to be read “A is the event consisting
of the points HT, TH, and TT.” As another example, if B is the event that
the result of the first toss is the same as the result of the second toss, we may
describe B by writing B = {first toss = second toss} or, equivalently,
B = {HH, TT} (see Figure 1.1.1).

Each point belonging to an event 4 is said to be favorable to A. The event
A will occur in a given performance of the experiment if and only if the
outcome of the experiment corresponds to one of the points of 4. The entire
sample space L is said to be the sure (or certain) event; if must occur on any
given performance of the experiment. On the other hand, the event consist-
ing of none of the points of the sample space, that is, the empty set &, is

called the impossible event; it can never occur in a given performance of the
experiment.

1.2 ALGEBRA OF EVENTS (BOOLEAN ALGEBRA)

Before talking about the assignment of probabilities to events, we introduce
some operations by which new events are formed from old ones. These

e
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operations correspond to the construction of compound sentences by use of
the connectives “or,”” “and,” and “not.” Let 4 and B be events in the same
sample space. Define the union of A and B (denoted by 4 U B) as the set
consisting of those points belonging to either A or B or both. (Unless other-
wise specified, the word “or” will have, for us, the inclusive connotation.
‘In other words, the statement “p or ¢”” will always mean “p or ¢ or both.”)
Define the intersection of A and B, written A4 N B, as the set of points that
belong to both A and B. Define the complement of A, written 4°, as the set of
points which do not belong to A.

» Example 1. Consider the experiment involving the toss of a single die,
with N = the result; take a sample space with six points corresponding to
N=1,2,3,4,5, 6. For convenience, label the points of the sample space
by the integers 1 through 6.

A B A B
/
A Q
#
AUB ANB A°

FIGURE 1.2.1 Venn Diagrams.

: Let A = {N is even} and B ={N >3}
Then
AUB={Nisevenor N >3} =1{2,3,4,5, 6}
A NB={Nisevenand N > 3} = {4, 6}
A° = {N is not even} = {1, 3, 5}
B°={Nisnot >3} ={N<3}={1,2} «

Schematic representations (called Venn diagrams) of unions, intersections,
and complements are shown in Figure 1.2.1.

Define the union of n events A, A,, ..., A, (notation: 4; U+ U 4,
or U2, 4,) as the set consisting of those points which belong to at least one
of the events A4;, 4,, ..., A,. Similarly define the union of an infinite se-
quence of events 4;, 4,, . . . as the set of points belonging to at least one of the
events Ay, 4, . .. (notation: 4, U 4, U -+, or U2, 4,).

Define the intersection of n events A, . . . , A, as the set of points belonging
to all of the events 4y, . .. , 4, (notation: 4; N A, N+ -+ N A, or N, 4,).
Similarly define the intersection of an infinite sequence of events as the set of
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1.2 ALGEBRA OF EVENTS (BOOLEAN ALGEBRA) 5

points belonging to all the events in the sequence (notation: 4; N A, N+ - -,
or N2, 4,). In the above example, with 4 = {N is even} = {2, 4, 6},
B={N2>3}=1{3,4,5,6}, C={N=1or N=5}={1, 5}, we have

AUBUC=Q, ANBNC=g
AUBUC=1{2,4,6 U{1,2} U{l,5 ={1,2,4,5,6)
AuC)N[4nB)y]=1{1,2,4,56} N {46} ={l,2,5}

Two events in a sample space are said to be mutually exclusive or disjoint
if 4 and B have no points in common, that is, if it is impossible that both 4
and B occur during the same performance of the experiment. In symbols,
A and B are mutually exclusive if 4 N B = &. In general the events 4;,
As, ... , A, are said to be mutually exclusive if no two of the events have a
point in common; that is, no more than one of the events can occur during

c
FIGURE1.2.2 AN (BUC)= (4N B)U (4N C).

the same performance of the experiment. Symbolically, this condition may be
written

A, N4d; =0 fori#j

Similarly, infinitely many events A,, 4,, . . . are said to be mutually exclusive if
A; N A; = & fori#j.

In some ways the algebra of events is similar to the algebra of real numbers,
with union corresponding to addition and intersection to multiplication. For
example, the commutative and associative properties hold.

AUB=BUA, AUBUC) =AUB)UC
ANB=BNA, ANBNC)=ANBNC (121

Furthermore, we can prove that for events 4, B, and C in the same sample
space we have

ANBUC)=UANBUMUNC) (1.2.2)

There are several Ways to establish this; for example, we may verify that the
sets of both the left and right sides of the equality above are represented by
the area in the Venn diagram of Figure 1.2.2.
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Another approach is to use the definitions of union and intersection to
show that the sets in question have precisely the same members; that is, we
show that any point which belongs to the set on the left necessarily belongs to
the set on the right, and conversely. To do this, we proceed as follows.

reEANBUC)=>z€4 and xeBUC
=>xed and (xeBorxe()

(The symbol =~ means “implies,” and <=means “implies and is implied by.”)

Case 1. z€B. Then x€4 and z€B, so x€A NB, so 2e(4d NB)U
4n0.

Case 2. ze€C. Then xed4 and z€C, so x€A NC, so xe(4d NB)U
A4 nC0).

Thus zed N (B U C) = 2€6(ANB)U(4NC); that is, 4 N
(BUC)= (A NB)U (4N C). (The symbol < is read “is a subset of”’;
we say that 4; < 4, provided that « € 4, => x € 4,; see Figure 1.2.3. Notice
that, according to this definition, a set 4 is a subset of itself: 4 < A.)

Conversely: Let te (A "NBYU (A NC). ThenzecAdNBorxed NC.
Casel. z€eANB. ThenxeB,soxeBUC,soxed N(BUC).

Case2. zeANC. ThenzeC,soxeBUC,soxed N(BUDC).

Thus (A N B) U (4 NC)<= AN (B U C); hence
ANBUC)=ANB)UANC)
As another example we show that

(A VUA, U~ UA)=A4"NALL N NA° (1.2.3)

n
Az

FIGURe 1.2.3 A4, < A4,.

e



46628-0 Ash 1 4/14/08 8:24 AM Page$

1.2 ALGEBRA OF EVENTS (BOOLEAN ALGEBRA) 7

The steps are as follows.

2e(d, V- UA4)<>x¢Ad, U---UA,
<= it is not the case that = belongs to at least one of
the 4,
<> € none of the 4,

<redf for all i

<<zred N+ NAS°

An identical argument shows that

O4) =04 (1.2.4)
(94)

i=1 i=1

and similarly

(n Ai) U Af e (N NAY =AU U4 (12.5)

=1 =1
Also
(n A,.) = U4 (1.2.6)
=1 =1

The identities (1.2.3)-(1.2.6) are called the DeMorgan laws.
In many ways the algebra of events differs from the algebra of real numbers,
as some of the identities below indicate.

AUA=4 AUAL=Q
ANA=4 ANA=
ANQ=4 AVg=A4
AVQ=Q AnNng=g v (1.2.7)
Another method of verifying relations among events involves algebraic
manipulation, using the identities already derived. Four examples are given

below; in working out the identities, it may be helpful to write 4 U B as
A+ Band A N B as AB.

. AU(ANB) =4 (1.2.8)

PRrROOF.
A+ AB=AQ + AB=A(Q + B)=4Q =4

2. (AUBN(AUC)=AU(BNC) (1.2.9)

e
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PROOF.
(A+B)(A4+C)=(4+ B)A+ (4 + BC

= AA + AB + AC + BC (note AB = BA)
=AQ+ B+ C)+ BC

= AQ 4+ BC
= A + BC
3. AUu[(4nB)Xl=Q (1.2.10)
PrOOF. )
A+ (ABY=A+ A+ B =Q+ B =Q
4. ANBYUANBUMA°NB)=AUB (1.2.11)
PROOF.
AB® 4+ AB + A°B = AB°+ AB + AB + A°B [see (1.2.7)]
= A(B°+ B) + (4 + A9B
= AQ 4+ QB
=A+ B

(see Figure 1.2.4).
As another example, let  be the set of nonnegative real numbers. Let

An=|:0,1—l]={er:nggl—l} n=12,...
n n

(This will be another common way of describing an event. It is to be read:
“A, is the set consisting of those points z in Q such that 0 <2 <1 — 1/n.”
If there is no confusion about what space {2 we are considering, we shall
simply write 4, = {#: 0 < 2 <1 — 1/n}.) Then

8

U4d,=00,1)={z:0<2<1}

0 4, = {0}

n=1

FiGURE 1.2.4 Venn Diagram Illustrating
(ANBYUMANBYUA*NB)=AUB.

e
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I.2 ALGEBRA OF EVENTS (BOOLEAN ALGEBRA) 9

As an illustration of the DeMorgan laws,

((j A,,)°= [0, 1)° = [1, @) = {z: & > 1}

n=1

ﬁAn°=ﬁ(1-—’—t,oo)=[1,oo)

n=1 n=1

(Notice that  >:1 — I/nforalln =1,2,...<>2 > 1.) Also

(ﬁ A,,)c= {0} = (0, ) = {z: = > 0}

n=1

L:JA;:(j (1—1,00) — (0, 00)

n=1 n=1 n

PROBLEMS

1. An experiment involves choosing an integer N between 0 and 9 (the sample space
consists of the integers from 0 to 9, inclusive). Let A = {N < 5}, B = {3<NKL
7}, C = {N is even and N > 0}. List the points that belong to the following
events.

ANBNC, AV (BN CY, 4AvB)ynce, ANnB)YNn A4 v Oyl
2. Let A, B, and C be arbitrary events in the same sample space. Let D; be the
event that at least two of the events A, B, C occur; that is, D, is the set of points
common to at least two of the sets 4, B, C.
Let D, = {exactly two of the events 4, B, C occur}
D, = {at least one of the events 4, B, C occur}
D, = {exactly one of the events 4, B, C occur}
Dy = {not more than two of the events 4, B, C occur}
Each of the events D, through Dj can be expressed in terms of 4, B, and C by
using unions, intersections, and complements. For example, D3 = 4 Y B U C.
Find suitable expressions for D,, Dy, D,, and Ds.

3. A public opinion poll (circa 1850) consisted of the following three questions:

(a) Are you a registered Whig?
(b) Do you approve of President Fillmore’s performance in office?
(c) Do you favor the Electoral College system? '
A group of 1000 people is polled. Assume that the answer to each question must
be either “yes” or “no.” It is found that:

550 people answer “yes” to the third question and 450 answer “no.”

325 people answer “yes” exactly twice; that is, their responses contain two
“yeses” and one “no.” ,

e
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100 people answer “yes” to all three questions.

125 registered Whigs approve of Fillmore’s performance.

How many of those who favor the Electoral College system do not approve
of Fillmore’s performance, and in addition are not registered Whigs? HINT:
Draw a Venn diagram.

4. If A and B are events in a sample space, define A — B as the set of points which
belong to A but not to B; thatis, 4 — B = A N B°. Establish the following.
@ANB-C)=ANB)—-(ANC)
b)A-BYC)=A-B)—-C
Is is true that (4 —B)VU C = (4 V C) — B?

5. Let Q be the reals. Establish the following.

© 1 o 1
(a, b) = nL=Jl(a, b — ;l:| n=1[¢1 + ;l N b)

© 1 © 1
[a, b] = nD1 [a, b + ;l) n=1(a 5 b:l

6. If 4 and B are disjoint events, are A° and B¢ disjoint? Are A N Cand BN C
disjoint? What about 4 U C and B L C?

7.1f A, < A, ; < -+ < A,, show that Ny 4s = Ay, U2, A; = 4.

8. Suppose that A,, 4,, . . . is a sequence of subsets of Q, and we know that for
each n, 2, 4, is not empty. Is it true that (>, 4, is not empty? (A related
question about real numbers: if, for each n, we have ZLI a; < b, is it true that

o1 <b?)
9. If A, By, B,, . . . are arbitrary events, show that

AnUBY=UUNB)

This is the distributive law with infinitely many factors.

1.3 PROBABILITY

We now consider the assignment of probabilities to events. A technical
complication arises here. It may not always be possible to regard all subsets
of Q as events. We may discard or fail to measure some of the information in
the outcome corresponding to the point w € €2, so that for a given subset
A4 of Q, it may not be possible to give a yes or no answer to the question
“Is w € A?” For example, if the experiment involves tossing a coin five times,
we may record the results of only the first three tosses, so that 4 = {at least
four heads} will not be “measurable’; that is, membership of w € 4 cannot
be determined from the given information about .

In a given problem there will be a particular class of subsets of Q called the

e



46628-0 Ash 1 4/14/08 8:24 AM Page$

1.3 PROBABILITY 1

“class of events.” For reasons of mathematical consistency, we require that
the event class & form a sigma field, which is a collection of subsets of Q
satisfying the following three requirements.

QeF (1.3.1)

00
Ay, Ay, ...€F  implies Ud,es (1.3.2)

n=1

That is, % is closed under finite or countable union.
AeZ implies A°eF (1.3.3)

That is, & is closed under complementation.

Notice that if 4;, 4,,...€ %, then 4,°, 4,°,... €% by (1.3.3); hence

1 A5 € F by (1.3.2). By the DeMorgan laws, N2, 4, = (U2, 4,9°%
hence, by (1.3.3), N, 4, € Z. Thus & is closed under finite or countable
intersection. Also, by (1.3.1) and (1.3.3), the empty set & belongs to &.

Thus, for example, if the question “Did A4, occur ?”” has a definite answer
forn=1,2,...,s0 do the questions “Did at least one of the 4, occur?”’
and “Did all the 4,, occur?”’

Note also that if we apply the algebraic operations of Section 1.2 to sets in
&, the new sets we obtain still belong to .

In many cases we shall be able to take & = the collection of all subsets
of Q, so that every subset of Q is an event. Problems in which # cannot be
chosen in this way generally arise in uncountably infinite sample spaces;
for example, 2 = the reals. We shall return to this subject in Chapter 2.

We are now ready to talk about the assignment of probabilities to events.
If A € #, the probability P(4) should somehow reflect the long-run relative
frequency of 4 in a large number of independent repetitions of the experi-
ment. Thus P(4) should be a number between 0 and 1, and P(£2) should be 1.

Now if 4 and B are disjoint events, the number of occurrences of 4 U B
in n performances of the experiment is obtained by adding the number of
occurrences of 4 to the number of occurrences of B. Thus we should have

P(4 U B) = P(4) + P(B) if 4 and B are disjoint
and, similarly,
P(A, U---UA,)=>P4,) ifA,...,A,aredisjoint
=1
For mathematical convenience we require that
P( U Aﬂ) — 3 P(4,)
n=1 n=1

when we have a countably infinite family of disjoint events Ay, 4,, . ...

e
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The assumption of countable rather than simply finite additivity has not
been convincingly justified physically or philosophically; however, it leads
to a much richer mathematical theory.

A function that assigns a number P(4) to each set A in the sigma field &
is called a probability measure on & , provided that the following conditions
are satisfied.

P(A)>0 forevery deF (1L.3.4)
PQ)=1 , (1.3.5)
If Ay, A,, ... are disjoint sets in #, then
P(A, U Ay, U--)=P(4,) + P(4y) + -+ (1.3.6)
We may now give the underlying mathematical framework for probability

theory.

DEFINITION. A probability space is a triple (Q, %, P), where Q is a set,
& a sigma field of subsets of 2, and P a probability measure on F.

We shall not, at this point, embark on a general study of probability
measures. However, we shall establish four facts from the definition.
(All sets in the arguments to follow are assumed to belong to &)

L. P(2)=0 (1.3.7)

PROOF. A U @ = A;hence P(4 U @) = P(A). But 4 and & are disjoint
and so P(4 VU @)= P(4) + P(@). Thus P(4) =P(4) + P(); conse-
quently P(2&) = 0. ‘ '

2. P(4 Y B)=P(4) + P(B) — P(4 N B) (1.3.8)
PrOOF. A4 = (4 N B) U (4 N B°), and these sets are disjoint (see Figure
1.2.4). Thus P(4) = P(4 N B) + P(4A N B°). Similarly P(B) = P(4 N B).+
P(4° N B). Thus P(4) + P(B) — P(4 N B) = P(A N B) 4+ P(4 N B°) +
P(4° N B) = P(4 U B). Intuitively, if we add the outcomes in 4 to those in
B, we have counted those in A N B twice; subtracting the outcomes in
4 N B yields the outcomes in 4 U B.
3. If B< A, then P(B) < P(A4); in fact,
P(4 — B) = P(4) — P(B) (1.3.9)
where A — B is the set of points that belong to 4 but not to B.

PrOOF. P(A) = P(B) + P(4 — B), since B < A (see Figure 1.3.1), and
the result follows because P(4 — B) > 0. Intuitively, if the occurrence of B

e
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FiGure 1.3.1

always implies the occurrence of 4, 4 must occur at least as often as B in
any sequence of performances of the experiment.

4. P(Ay Uy U--) < P(4y) + P(4y) + + - (1.3.10)

That is, the probability that at least one of a finite or countably infinite
collection of events will occur is less than or equal to the sum of the prob-
abilities; note that, for the case of two events, this follows from P(4 U B) =
P(4) + P(B) — P(4 N B) < P(4) + P(B).

Proor. We make use of the fact that any union may be written as a
disjoint union, as follows.

A UA, U =4, U(4" NA) U4 NAL NA) U U
AN AN NA  NA)U--- (L3.11)

To see this, observe that if « belongs to the set on the right then « € 4,° N
crr N A5 N A, for some n; hence € 4,,. Thus « belongs to the set on the
left. Conversely, if  belongs to the set on the left, then # € 4, for some n.
Let n, be the smallest such n. Thenz € 4,° N --- N A5, N Ay, and so z
belongs to the set on the right. Thus

P(A, UA, U--)=3PA N NA,; NA)LDP(4,)
n=1L

n=1

using (1.3.9); notice that

AN NAS S NA, < A,

RemARrks. The basic difficulty with the classical and frequency definitions
of probability is that their approach is to try somehow to prove
mathematically that, for example, the probability of picking a heart
from a perfectly shuffled deck is 1/4, or that the probability of an
unbiased coin coming up heads is 1/2. This cannot be done. All we
can say is that if a card is picked at random and then replaced, and the
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process is repeated over and over again, the result that the ratio of
hearts to total number of drawings will be close to 1/4 is in accord
with our intuition and our physical experience. For this reason we
should assign a probability 1/4 to the event of obtaining a heart, and
similarly we should assign a probability 1/52 to each possible outcome
of the experiment. The only reason for doing this is that the con-
sequences agree with our experience. If you decide that some mysterious
factor caused the ace of spades to be more likely than any other card,
you could incorporate this factor by assigning a higher probability to
the ace of spades. The mathematical development of the theory would
not be affected; however, .the conclusions you might draw from
this assumption would be at variance with experimental results.

One can never really use mathematics to prove a specific physical
fact. For example, we cannot prove mathematically that there is a
physical quantity called “force.” What we can do is postulate a
mathematical entity called “force’ that satisfies a certain differential
equation. We can build up a collection of mathematical results that,
when interpreted properly, provide a reasonable description of certain
physical phenomena (reasonable until another mathematical theory is
constructed that provides a better description). Similarly, in probability
theory we are faced with situations in which our intuition or some
physical experiments we have carried out suggest certain results.
Intuition and experience lead us to an assignment of probabilities to
events. As far as the mathematics is concerned, any assignment of
probabilities will do, subject to the rules of mathematical con-
sistency. However, our hope is to develop mathematical results that,
when interpreted and related to physical experience, will help to
make precise such notions as “the ratio of the number of heads to the
total number of observations in a very large number of independent
tosses of an unbiased coin is very likely to be very close to 1/2.”

We emphasize that the insights gained by the early workers in prob-
ability are not to be discarded, but instead cast in a more precise
form. '

PROBLEMS

1. Write down some examples of sigma fields other than the collection of all

subsets of a given set Q.

2. Give an example to show that P(4 — B) need not equal P(4) — P(B)if B is not

a subset of 4.
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1.4 COMBINATORIAL PROBLEMS

We consider a class of problems in which the assignment of prbbabilities can
be made in a natural way.

Let Q be a finite or countably infinite set, and let # consist of all subsets of
Q.

For each point w,€Q, i=1,2,...,assign a nonnegative number p;,
with 3, p; = 1. If 4 is any subset of Q, let P(4) = >, .4 p;- Then it may
be verified that P is a probability measure; P{w,} = p;, and the probability of
any event A is found by adding the probabilities of the points of A. An
(Q, #, P) of this type is called a discrete probability space.

» Example 1. Throw a (biased) coin twice (see Figure 1.4.1).

Let E, = {at least one head}. Then

El = Al V) A2 |V A3
Hence
P(E,) = P(4,) + P(A4:) + P(43)
=.36 4+ .24 + .24 = .84
Let E, = {tail on first toss}; then

E2 = A3 UA4

2

& s
[N >
-

A, ={HH}, A, ={HT}
Ay ={TH}, A, ={TT}
Assign P(4;) = .36
P(4,) = P(4y) = 24
P(4,) = .16

FIGURE 1.4.1 Coin-Tossing Problem.

e
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and
P(E;) = P(43) + P(A4) =.4 «

In the special case when Q = {w;, ..., w,}andp, = 1/n,i=1,2,...,n,
we have
number of points of 4 favorable outcomes

P(4) = T =
total number of points in Q total outcomes

corresponding to the classical definition of probability.

Thus, in this case, finding P(A4) simply involves counting the number of
outcomes favorable to 4. When # is large, counting by hand may not be
feasible; combinatorial analysis is simply a method of counting that can often
be used to avoid writing down the entire list of favorable outcomes.

There is only one basic idea in combinatorial analysis, and that is the
following. Suppose that a symbol is selected from the set {ay,...,a,};
if a; is chosen, a symbol is selected from the set {b,y, . . . , b,,,}. Each pair of
selections (a;, b;;) is assumed to determine a “result” f(i, j). If all results are
distinct, the number of possible results is nm, since there is a one-to-one
correspondence between results and pairs of integers (i,/), i=1,...,n,
j=1,...,m

If, after the symbol b,; is chosen, a symbol is selected from the set
{Cij1» Cijos -+ - 5 €43}, and each triple (a;, by, c;5;,) determines a distinct result
f(, J, k), the number of possible results is nmp. Analogous statements may be
made for any finite sequence of selections.

Certain standard selections occur frequently, and it is convenient to classify
them.

Letay, ..., a, be distinct symbols.

Ordered samples of size r, with replacement

The number of ordered sequences (a,, . . . , a; ), where the a; belong to
{ar,...,a,},isn X n X+ X n(rtimes), or
n’ (1.4.1)

(The term “with replacement’ refers to the fact that if the symbol a, is
selected at step k it may be selected again at any future time.)

For example, the number of possible outcomes if three dice are thrown is
6 X 6 X 6=216.

Ordered Samples of Size r, without Replacement

The number of ordered sequences (a;,, - . . , a; ), where the a; belong to
{ay, . .., a,}, but repetition is not allowed (i.e., no g, can appear more than

e
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once in the sequence), is
n!
(n—r)! ’

(The first symbol may be chosen in » ways, and the second in n — 1 ways,
since the first symbol may not be used again, and so on.) The above number
is sometimes called the number of permutations of r objects out of n, written
(®),-

For example, the number of 3-digit numbers that can be formed from
1,2,...,9,if no digit can be repeated, is 9(8)(7) = 504.

nn—1)m—r+1)=

r=12,...,n (14.2)

Unordered Samples of Size r, without Replacement

The number of unordered sets {a; , . . . , ai'}, where the @, , k = 1,...,7,
are distinct elements of {a;, ..., a,} (i.e., the number of ways of selecting
r distinct objects out of #), if order does not count, is

(") S L E— (1.4.3)

r —r!(n—r)!

To see this, consider the following process.

(a) Select r distinct objects out of n without regard to order; this can be
done in (7) ways, where (?) is to be determined.

(b) For each set selected in (a), say {a;,, . .., a,}, select an ordering of
a;,...,a;. This can be done in (r), = r! ways (see Figure 1.4.2 for n = 3,
r=2).

The result of performing (a) and (b) is a permutation of r objects out of #;

hence
n n!
(r)r! (n)rn(n—r)!

' ,
”)=———1"—, r=1,2,...,n
r rl(n —r)!

We define () to be n! /0! n! =1, to make the formula for (}) valid for
r=0,1,...,n Notice that (}) = (,”,)-
(7) is sometimes called the number of combinations of r objects out of n.

i

or

(a) 12 13

23
SN N

N
® 127 2113 31 235 3R

FIGURE 1.4.2 Determination of (7).

e
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Unordered Samples of Size r, with Replacement

We wish to find the number of unordered sets {a;, ..., a;}, where the
a;, belong to {a;,...,a,} and repetition is allowed. As an example, let
n = 3 and r = 3. Let the symbols be 1, 2, and 3. List all arrangements in a
column so that a precedes b if and only if @, read as an ordinary 3-digit
number, is <b. In an adjacent column list a new set of sequences formed from
the old by adding O to the first digit, 1 to the second digit, and 2 to the third
digit.

111 123=(1+0,14+1,14+2)
112 124=(1+0,14+1,242)

113 125
122 134
123 135
133 145
222 234
223 235
233 245
333 345

In the first column we have unordered samples of size 3 (out of 3), with
replacement. In the second column we have unordered samples of size 3
(out of 5), without replacement. In this way we can set up a one-to-one
correspondence between unordered samples of size r (out of ) with replace-
ment, and unordered samples of size r (out of n + r — 1) without replace-
ment. Thus the number of such samples is

(" +r— 1) (1.4.4)

r

An alternative way of looking at unordered samples with replacement is
to count all sequences (a,, . - - , a; ), each a, €{ay, . .., a,}, subject to the
constraint that sequences having the same occupancy numbers r, = the
number of occurrences of a,, k = 1,2,...,n, are identified. The r;, are
nonnegative integers satisfying r, + ry + - - - r, = r; hence we must count
the number of nonnegative integer solutions (ry, ..., r,) of the equation
ry + -+ + r, = r. This may be done combinatorally as follows.

Consider an arrangement of r stars and n — 1 bars, as shown in Figure

RN | x| *[*x1
rp=1r,=0,r3=3 rn=1r=1r3=2
(sample = a,a5a3a3) (sample = a,a,a3a3)

FIGURE 1.4.3 Counting Unordered Samples with Replacement.

e
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1.4.3 for n = 3, r = 4 (the thicker bars at the sides are fixed). Each arrange-
ment corresponds to a solution of r, + -+ + r, =r. The number of
arrangements is the number of ways of selecting r positions out of n + r — 1
for the stars to occur (or n — 1 positions for the bars); that is, (**71). For
n = 3, r = 4, there are 15 solutions.

ry ry ry  Sample

0 0 4 a3a5a505
0 40 a,a,0,0,
4 00 a,a,a,a¢
01 3 5030404
0 2 2 aya,a;0,
0 3 1 axa,0,a;
1 0 3 a,a;a5a;
2 0 2 a,a,a5a,
301 a,a,a,a5
1 30 a,a,a,a,
2 20 a,a,a,a,
310 a,a,a,a,
211 a,0,a,04
1 21 a,a,a,a,
11 2 a,a,a,a,

» Example 2. Find the probability of obtaining four of a kind in an
ordinary five-card poker hand.

There are (%7) distinct poker hands (without regard to order), and so we
may take Q to have (%) points. To obtain the number of hands in which there
are four of a kind:

(a) Choose the face value to appear four times (13 choices: A, K, Q,

..2)
(b) Choose the fifth card (48 ways).
Thus p = (13)(48)/(°?). Figure 1.4.4 indicates the selection process.

Note. The problem may also be done using ordered samples. The number of
ordered poker hands is (52)(51)(50)(49)(48) = (52); (the drawing is
without replacement). The number of ordered poker hands having
four of a kind is (13)(48) 5!, so that p = (13)(48)(5Y)/(52); =
(13)(48)/(%?) as before. Here we may take the space Q' to have (52),
points; each point of Q corresponds to 5! points of Q’. <

» Example 3. Three balls are dropped into three boxes. Find the probability
that exactly one box will be empty.

e
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(@) Ace King Que cee 3 2

(b) King of Spades Ky =+ 2 AY R

FIGURE 1.4.4 Counting Process for Selecting Four of a Kind. There is a one-to-one
correspondence between paths in the diagram and favorable outcomes.

In problems of dropping r balls into » boxes, we may regard the boxes
as (distinct) symbols g, . . . , a,; each toss of a ball corresponds to the selec-
tion of a box. Thus the sequence a,a,a,a; corresponds to the first ball into
box 2, the second and third into box 1, and the fourth into box 3.

In general, an arrangement of  balls in » boxes corresponds to a sample of
size r from the symbols ay, . . . , a,. If we require that the sampling be with
replacement, this means that a given box can contain any number of balls.
Sampling without replacement means that a given box cannot contain more
than one ball. If we consider ordered samples we are saying that the balls are
distinguishable. For example, aza, (ball 1 into box 3, ball 2 into box 7) is
different from a,a; (ball 1 into box 7, ball 2 into box 3); in other words, we
may regard the balls as being numbered 1, 2, ..., r. Unordered sampling
corresponds to indistinguishable balls. -

If there is no restriction on the number of balls in a given box, the total
number of arrangements, taking into account the order in which the balls are
tossed (i.e., regarding the balls as distinct), is the number of ordered samples
of size r (from {ay, . . . , a,}) with replacement, or »". If the boxes are energy
levels in physics and the balls are particles, the Maxwell-Boltzmann assump-
tion is that all #»” arrangements are equally likely.

If there can be at most one ball in a given box, the number of (ordered)
arrangements is (n),. If the order in which the balls are tossed is neglected,
we are simply choosing r boxes out of n to-be occupied;, the Fermi-Dirac
assumption takes the (I) possible selections of boxes (or energy levels) as
equally likely.

e
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We might also mention the Bose-Einstein assumption; here a box may
contain an unlimited number of balls, but the balls are indistinguishable;
that is, the order in which the balls are tossed is neglected, so that, for ex-
ample, a,a,a,a; is identified with a,a;a,a,. Thus the number of arrangements
counted in this scheme is the number of unordered samples of size r with
replacement, or ("*7~'). The Bose-Einstein assumption takes all these
arrangements as equally likely.

To return to the original problem, we have boxes a;, a,, and a; and se-
quences of length 3 (three balls are tossed). We take all 3% = 27 ordered
samples with replacement as equally likely. (We shall see that this model—
ordered sampling with replacement—corresponds to the tossing of the balls
independently; this idea will be developed in the next section.) Now

P{exactly 1 box empty} = P{box 1 empty, boxes 2 and 3 occupied}
+ P{box 2 empty, boxes 1 and 3 occupied}
+ P{box 3 empty, boxes 1 and 2 occupied}

Furthermore

P{box 1 empty, boxes 2 and 3 occupied} = P{g; does not occur in the

sequence a; 4,4, , but a,

3%

and a, both occur}

If a, does not occur, either a, or a; must occur twice, and the other symbol
once. We may choose the symbol that is to occur twice in two ways; the
symbol that occurs once is then determined. If, say, ag occurs twice and a,
once, the position of g, may be any of three possibilities; the position of the
two ay’s is then determined. Thus the probability that box 1 will be empty
and boxes 2 and 3 occupied is 2(3)/27 = 6/27 (in fact the six favorable out-
COIES are dadsds, Asdgls, (glalls, Asdsds, dsdsls, and dydsds).

Thus the probability that exactly one box will be empty is, by symmetry,
3(6)/27 = 2/3. «

» Example 4. In a 13-card bridge hand the probability that the hand will
contain the A K Q J 10 of spades is ({7)/(%2). (The A K Q J 10 of spades must
be chosen, and afterward eight cards must be selected out of 47 that remain
after the five top spades have been removed.)

Now let us find the probability of obtaining the A K Q J 10 of at least one
suit. Thus, if Ag is the event that the A K Q J 10 of spades is obtained, and
similarly for Ay, Ay, and A (hearts, diamonds, and clubs), we arelooking for

PAs UAgz UALy UAY)

The sets are not disjoint, so that we cannot simply add probabilities. It is
possible to obtain, for example, the A K Q J 10 of both spades and hearts in
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a 13-card hand, and this probability is easy to compute:

42)
P(As N Ap) = &——
S H ( 52)
13
What we need here is a way of expressing P(As U Ag U Ap U Ay in

terms of the individual terms P(Ag) etc., and the intersections P(Ag N Ag)
etc. We know that

P(4 U B) = P(A) + P(B) — P(A N\ B)
If we have three events, then
PAVBUC)=PAVBUCQC)=PA)+PBYC)—PA4N(BUCQC)
=PA) +PBUC)—P(ANB)UMAn O)
= P(4) + P(B) + P(C) —P(ANB)—P(ANC)
—PBNC)+PANBNC)
The general pattern is now clear and may be verified by induction.
P(4, V- U A =ZP(A2') _ZP(Ai N A4))
z i<j
+ > PANA;NA)— -+ (=D)"PA4, N - N4, (145)
i<i<k
In the present problem the intersections taken three or four at a time are
empty; hence, by symmetry,
P(As U Ay U AL U Ap) = 4P(Ag) — 6P(As N Ap)
4(47) _ 6(42)
—\8/ \3J
(i)
13
It is illuminating to consider an incorrect approach to this problem.
Suppose that we first pick a suit (four choices); we then select the A K Q J 10
of that suit. The remaining eight cards can be anything (if they include the
A K QJ 10 of another suit, the condition that at least one A K Q J 10 of the
same suit be obtained will still be satisfied). Thus we have (%) choices, so
that the desired probability is 4(¥)/(33).

The above procedure illustrates multiple counting, the nemesis of the com-
binatorial analyst (see Figure 1.4.5).

e
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(1) Spades Hearts Diamonds Clubs
/
¥
/I ]
/7
1
// !
/ I
|
2 | AKQII10of clubs,
say 2 of diamonds, ——— A K Q J 10 of spades,
2 of spades, 2 of 2 of diamonds, spades, clubs
clubs

FIGURE 1.4.5 Multiple Counting.

In writing p = 4({)/(3) we are saying that there is a one-to-one corre-
spondence between paths in Figure 1.4.5 and favorable outcomes. But this
is not the case, since the two paths indicated in the diagram both lead to the
same result, namely, A K Q J 10 of spades, A K Q J 10 of clubs, 2 of dia-
monds, 2 of spades, 2 of clubs. In fact there are 6(%%) such duplications. For
we can pick the two suits in (3) = 6 ways; then, after taking A K Q J 10 of
each suit, we select the remaining three cards in (%) ways. If we subtract the
number of duplications, 6(%), from the original count, 4(¥), we obtain the
correct result.

To rephrase: the counting process we have proposed counts the number of
paths in the above diagram, that is, the number of choices at Step 1 times the
number of choices at Step 2. However, the paths do not in general lead to
distinct “results,” namely, distinct bridge hands. <«

PROBLEMS

1. If a 3-digit number (000 to 999) is chosen at random, find the probability that
exactly 1 digit will be >5.

2. Find the probability that a five-card poker hand will be:
(a) A straight (five cards in sequence regardless of suit; ace may be high but
not low).
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(b) Three of a kind (three cards of the same face value z, plus two cards with
face values v and z, with z, y, 2z distinct).

(c) Two pairs (two cards of face value x, two of face value y, and one of face
value z, with z, y, z distinct).

. An urn contains 3 red, 8 yellow, and 13 green balls; another urn contains 5

red, 7 yellow, and 6 green balls. One ball is selected from each urn. Find the
probability that both balls will be of the same color.

. An experiment consists of drawing 10 cards from an ordinary 52-card pack.

(a) If the drawing is done with replacement, find the probability that no two
cards will have the same face value.

(b) If the drawing is done without replacement, find the probability that at
least 9 cards will be of the same suit.

. An urn contains 10 balls numbered from 1 to 10. Five balls are drawn without

replacement. Find the probability that the second largest of the five numbers
drawn will be 8.

. m men and w women seat themselves at random in m + w seats arranged in a

row. Find the probability that all the women will be adjacent.

. If a box contains 75 good light bulbs and 25 defective bulbs and 15 bulbs are

removed, find the probability that at least one will be defective.

. Bight cards are drawn without replacement from an ordinary deck. Find the

probability of obtaining exactly three aces or exactly three kings (or both).

. (The game of rencontre). An urn contains 7 tickets numbered 1,2,...,n.

The tickets are shuffled thoroughly and then drawn one by one without re-

placement. If the ticket numbered r appears in the rth drawing, this is denoted

as a match (French: rencontre). Show that the probability of at least one match

is

1 1 o A
e 4 ( ) ] —e?

1——2—i+§“!*— o as n—» o

A “language” consists of three “words,” Wy =a, W, = ba, W3 = bb. Let

N(k) be the number of “sentences” using exactly & letters (e.g., N(1) =1 (i.e.,

a), N(2) =3 (aa, ba, bb), N(3) = 5 (aaa, aba, abb, baa, bba); no space is

allowed between words).

(a) Show that N(k) = N(k — 1) + 2N(k — 2), k = 2,3, ... (define N(0) =
1).

(b) Show that the general solution to the second-order homogeneous linear
difference equation (a) [with N(0) and N(1) specified], is N(k) = A2* +
B(—1)*, where A and B are determined by N(0) and N(1). Evaluate 4
and B in the present case.

(The birthday problem) Assume that a person’s birthday is equally likely to
fall on any of the 365 days in a year (neglect leap years). If r people are selected,
find the probability that all r birthdays will be different. Equivalently, if r balls
are dropped into 365 boxes, we are looking for the probability that no box will
contain more than one ball. Tt turns out that the probability is less than 1/2
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for r > 23, so that in a class of 23 or more students the odds are that two or
more people will have the same birthday.

Fourteen balls are dropped into six boxes. Find the number of arrangements
(ordered samples of size 14 with replacement, from six symbols) whose
occupancy numbers coincide with 4, 4,2, 2,2, 0 in some order (i.e., boxes i;
and i, contain four balls, boxes i3, i;, and i5; two balls, and box ig no balls, for
some iy, . . . , ig).

(a) Let Q be a set with n elements. Show that there are 2" subsets of Q. For
example, if Q = {1, 2, 3}, the subsets are &, {1}, {2}, {3}, {1, 2}, {1, 3},
{2, 3}, and {1, 2, 3} = Q; 2% = 8 altogether.

(b) How many ways are there of selecting ordered pairs (4, B) of subsets of
Q such that 4 < B? For example, 4 = {1}, B = {1, 3} gives such a pair,
but 4 = {1, 2}, B = {1, 3} does not. ‘

Let Q be a finite set. A partition of Q is an (unordered) set {4;, . . . , 4,,}, where

the A4; are nonempty subsets whose union is Q. For example, if Q = {1, 2, 3},

there are five partitions.

4, ={1,2,3}

4, = {1’ 2}’ Ay, = {3}

Al = {19 3}9 A2 = {2}

Ay ={1}, 4, = {2, 3}

A, ={1}, 4y = {2}, 43 = {3}

Let g(n) be the number of partitions of a set with n elements.

(a) Show that g(n) = > =1 (»-1)g(k) [define g(0) = 1].

(b) Show that g(n) = e~* z;f:o k[k!

HINT: Show that the series satisfies the difference equation of part (a).

1.5 INDEPENDENCE

Consider the following experiment. A person is selected at random and his
height is recorded. After this the last digit of the license number of the next
car to pass is noted. If 4 is the event that the height is over 6 feet, and B is
the event that the digit is >7, then, intuitively, 4 and B are “independent™
in the sense that knowledge about the occurrence or nonoccurrence of one
of the events should not influence the odds about the other. For example,
say that P(4) = .2, P(B) = .3. In a long sequence of trials we would expect
the following situation.

(Roughly) 209; of the time A 807, of the time A4 does not occur;
occurs; of those cases in which 4 of these cases:

occurs:

309 B occurs 309 B occurs

709 B does not occur 709 B does not occur
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Thus, if Bis independent of 4, it appears that P(4 N B) should be .2(.3) =
.06 = P(A)P(B), and P(A° N B) should be .8(.3) = .24 = P(A°)P(B).

Conversely, if P(4 N B) = P(A)P(B) = .06 and P(4° N B) = P(A°)P(B)
= .24, then, if 4 occurs roughly 209 of the time and we look at only the
cases in which 4 occurs, B must occur in roughly 30 9; of these cases in order
to have 4 N B occur 6% of the time. Similarly, if we look at the cases in
which 4 does not occur (80%), then, since we are assuming that 4° N B
occurs 24 % of the time, we must have B occurring in 309, of these cases.
Thus the odds about B are not changed by specifying the occurrence or non-
occurrence of 4.

It appears that we should say that event B is independent of 4 iff P(4 N B)
= P(A)P(B) and P(4° N B) = P(A°)P(B). However, the second condition is
already implied by the first. If P(4 N B) = P(A)P(B),

P(4° N B) = P(B— A) = P(B — (4 N B)) = P(B) — P(4 N B)
since A N B is a subset of B; hence
P(A° N B) = P(B) — P(A)P(B) = (1 — P(A))P(B) = P(49)P(B)

Thus B is independent of A4; that is, knowledge of 4 does not influence the
odds about B, iff P(4)P(B) = P(A N B). But this condition is perfectly
symmetrical, in other words, B is independent of 4 iff 4 is independent of B.
Thus we are led to the following definition.

DEerINITION.  Two events A and B are independent iff P(A N B) = P(A)P(B).

If we have three events 4, B, C that are (intuitively) independent, knowl-
edge of the occurrence or nonoccurrence of 4 N B, for example, should not
change the odds about C; this leads as above to the requirement that
P(4 N B NC)= P4 N B)P(C).Butif 4, B, and C are to be independent,
we must expect that 4 and B are independent (as well as 4 and C, and B.
and C), so we should have all of the following conditions satisfied.

P(4 N B) = P(A)P(B), P(4 N C) = P(4)P(C),

P(B N C) =P(B)P(C)
and
P(4 N B N C)= P(4)P(B)P(C)

We are led to the following definition.
DEFINITION. Let A, i € I, where I is an arbitrary index set, possibly in-

finite, be an arbitrary collection of events [a fixed probability space
(Q, &, P) is of course assumed].
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The A, are said to be independent iff for each finite set of distinct indices
iy, ..., 0 €1 we have

P(A4;, O Ay O+ N A,) = P(A,)P(4,) - - P(4,)

REMARKS :
1. If the 4,, i € I, are independent, it follows that

P(Biln”° nBi,,)=P(Bi1)"'P(Bi,,)

for all (distinct) 7y, . . . , i, where each B;, may be either 4, or 4,°.
To put it simply, if the 4, are independent and we replace any event
by its complement, we still have independence [see Problem 1;
actually we have already done most of the work by showing that
P(4 N B) = P(A)P(B) implies P(A4° N B) = P(A°)P(B)].
2. The condition P(4; N--- N A4,) = P(4,) - P(4,) does not
imply the analogous condition for any smaller family of events. For
example, it is possible to have P(4 N B N C) = P(4)P(B)P(C), but
P(4A NB) + P(A)P(B), P(A N C) + P(AP(C), P(B N C) *
P(B)P(C). In particular, 4, B, and C are not independent.
Conversely it is possible to have, for example, P(4 N B) =
P(A)P(B), P(A N C) = P(A)P(C), P(B N C) = P(B)P(C), but
P(4 N B N C) + P(A)P(B)P(C). Thus A4 and B are independent, as
are A and C, and also B and C, but 4, B, and C are not indepen-
dent.

» Example 1. Let two dice be tossed, and take Q = all ordered pairs
(i), i,j=1,2,...,6, with each point assigned probability 1/36.
Let
A = {first die = 1, 2, or 3}
B = {first die = 3, 4, or 5}
C = {the sum of the two faces is 9}

(Thus 4 N B = {(3,1), 3,2), 3,3),(3,4), (3,5, 3,6)},4 N C =
{(3,6)}, BNC=1{3,6), (4,5), 5,4}, ANBNC=1{36))

Then
P(4 N B) =} # P(A)P(B) = $(}) = }
P(4 N C) = 5 # P(A)P(C) = }(5%) = 75
P(BNC)=+5#PBPIC)=43) =15
But

P(4 N\ B N C) = 3% = P(A)P(B)P(C)
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Now in the same probability space let

A = {first die = 1, 2, or 3}
B = {second die = 4, 5, or 6}
C = {the sum of the two faces is 7}

(Thus 4 N C ={(1,6), (2,5), (3,4} =4 N B N C,etc.) Then

P(4 N B) = { = P(A)P(B) = §(})
P(A N C) =5 =PAPC) = %)
P(B N C) =5 =PBPC) = 3%
But
P(ANBNC)=+ # P(APB)P(C) =+ «

We illustrate the idea of independence by considering some problems
related to the classical coin-tossing experiment.

A sequence of n Bernoulli trials is a sequence of n independent observations,
each of which may result in exactly one of two possible situations, called
“success’ or “failure.”” At each observation the probability of success is p,
and the probability of failureisg = 1 — p.

SpeCIAL CASES

(a) Toss a coin independently » times, with success = heads, failure
= tails.

(b) Examine components produced on an assembly line; success =
acceptable, failure = defective.

(c) Transmit binary digits through a communication channel;
success = digit recieved correctly, failure = digit received in-
correctly.

We take Q = all 2" ordered sequences of length n, with components 0
(failure) and 1 (success). To assign probabilities in accordance with the
physical description given above, we reason as follows.

Consider the sample point @ = 11---10---0 (k I’s followed by n — k
0’s). Let 4; = {success on trial i} = the set of all sequences with a 1 in the
ith coordinate. Because of the independence of the trials we must assign

Plwo}=PA, NA; N - NA,NA N+ NAS
= P(4,)P(4,) - - - P(4)P(4;41) - - P(4,°) = prq" "

Similarly, any point with k I’s and n — k 0’s is assigned probability p*q"*.
The number of such points is the number of ways of selecting &k distinct

e



46628-0 Ash 1 4/14/08 8:24 AM Page$9

1.5 INDEPENDENCE 29

positions for the 1’s to occur (or selecting n — k distinct positions for the
0’s); that is, (%). The sum of the probabilities assigned to all the points is

Iﬁ (:) P =+ =1

by the binomial theorem. Thus we have a legitimate assignment. Further-
more, the probability of obtaining exactly k successes is

pk) = (Z)pkq"“k ‘k=0,1,...,n (1.5.1)

pk), k=0,1,...,n,is called the binomial probability function.

» Example 2. Six balls are tossed independently into three boxes 4, B, C.
For each ball the probability of going into a specific box is 1/3. Find the
probability that box 4 will contain (a) exactly four balls, (b) at least two
balls, (c) at least five balls.

Here we have six Bernoulli trials, with success corresponding to a ball in
box A, failure to a ball in box B or C. Thus n = 6, p = 1/3, ¢ = 2/3, and
so the required probabilities are

@ p@) = Q@@
®) 1—p(© —p(1) = 1 — BF — QDG
© 2(5) + p(6) = QGG + B)° <

We now consider generalized Bernoullli trials. Here we have a sequence
of independent trials, and on each trial the result is exactly one of the k
possibilities b,, ..., b,. On a given trial let b, occur with probability p;,
i=1,2,...,k(p; >0, p,=1).

We take Q = all k™ ordered sequences of length » with components
by, ..., b; for example, if w = (bybgbyb, - - ) then b, occurs on trial 1,
bs on trial 2, b, on trials 3 and 4, and so on. As in the previous situation,
assign to the point

@ = (byby bbby by by by)

< p—>—py—>  <—p—>

the probability p,"1p," - - - p,". This is the probability assigned to any
sequence having n; occurrences of b;,i = 1, 2, ..., k. To find the number of
such sequences, first select n; positions out of » for the b,’s to occur, then
n, positions out of the remaining n — n; for the b,’s, ng out of n — n; — n,
for the by’s, and so on. Thus the number of sequences having exactly n,
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occurrences of by, . . . , n, occurrences of b, is
ny ny ng ] g

nylngl- .-l

n!

The total probability assigned to all points is

n! n: n: n
PPt =+ +p)" =1

ny,...,fgnonneg  pylpgl e et ny!
k
integers, WlthEl”F" . (1.5.2)
To see this, notice that (p, + - +p)* =P+ -+ p)pr + - - +
P (pr+ -+ pu), ntimes. A typical term in the expansion is p,"- -
Ppi™*; the number of times this term appears is ‘

n!
nlng!---ng!

since we may count the appearances by selecting p; from n, of the » factors,
selecting p, from 7, of the remaining n — n, factors, and so forth. Thus we
have a legitimate assignment of probabilities.

The probability that b; will occur »; times, b, will occur n, times, . ..,
and b,, will occur #, times is

!
Py, oy 1) =~ py " gy (1.5.3)
ny!eeemg!
p(ny, ..., m), ny, ..., n, = nonnegative integers whose sum is 7, is called
the multinomial probability function.

Note that when k = 2, generalized Bernoulli trials reduce to ordinary
Bernoulli trials [let b, = “success,” b, = “failure”, p, = p,po=¢q¢ =1 —p,
ny =k, ny =n — k; then (n![n,! ny!)p,"1p,™ = (Pp*q™* = probability of
k successes in # trials].

» Example 3. Throw four unbiased dice independently. Find the proba-
bility of exactly two 1’s and one 2.

Let
b, = “1 occurs” (on a given trial)  p; = % n=2
b, = “2 occurs” Pe=% ny, =1,
by = “3,4,5, or 6 occurs” ps=1% ng =1

The probability is (41/2! 11 11) (1/6)2(1/6)*(2/3)* = 1/27. <
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» Example 4. If 10 balls are tossed independently into five boxes, with a
given ball equally likely to fall into each box, find the probability that all
boxes will have the same number of balls.

Let b; = “ball goes into box i”’, p; = 1/5,n;=2,i=1,2,3,4,5,n = 10.
The probability = (10!/2%)(1/5)%°. <«

ReMARK. If r balls are tossed independently into n boxes, we have seen that
the event {ball 1 into box i, ball 2 into box i, . . . , ball r into box i,}
must have probability p; p;, - * - p;,, where p; is the probability that a
specific ball will fall into box i. In particular, if all p; = 1/n (as is
assumed in Examples 2 and 4 above), the probability of the event is
1/n". In other words, all ordered samples of size r (out of n symbols),
with replacement, have the same probability. This justifies the
assertion we made in Example 3 of Section 1.4.

We emphasize that the independence of the tosses is an assumption,
nota theorem. For example, if two balls are tossed into two boxesand a
given box can contain at most one ball, then the events 4, = {ball 1
goes into box 1} and 4, = {ball 2 goes into box 1} are not independ-
ent, since P(4; N A,) = 0, P(4,) = P(4,) = 1/2.

» Example 5. An urn contains equal numbers of black, white, red, and
green balls. Four balls are drawn independently, with replacement. Find
the probability p(k) that exactly k colors will appear in the sample, k =
1,2,3,4.

This is a multinomial problem with n = 4 and b, = B = black, b, = W=
white, by = R = red, b, = G = green.

k = 4: The probability that all four colors will appear is given by the
multinomial formula with all n, = 1; that is,

4 /1y
(LY Z6j6a = pa
1!1!1!1!(4) /64 = p(4)

k = 3: The probability of obtaining two black, one white, and one red
ball is given by the multinomial formula with n; =2, n, =n3 =1, n, = 0;

that is,
_ A 1)4 _3
211! 1!0!(4 64

To find the total probability of obtaining exactly three colors, multiply by
the number of ways of selecting three colors out of four [(5) = 4] and the
number of ways of selecting one of three colors to be repeated (3). Thus

p(3) = 36/64.
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k = 2: The probability of obtaining two black and two white balls is

_4!_(1)4 -3
2121000!14) 128

)

Thus the probability of obtaining two balls of one color and two of another is
3/128 times the number of ways of selecting two colors out of 4[(3) = 6],
or 9/64. Similarly, the probability of obtaining three of one color and one of

another is
4! 1\ 12
— (=)D = =
3! 1!0!0_!(4)( )3 64

Notice that the extra factor is (4)(3) = 12, not (3) = 6, since three blacks
and one white constitute a different selection from three whites and one black.
Thus

p(2) = 9/64 + 12/64 = 21/64.
k = I: The probability that all balls will be of the same color is

4! 1\’ 1

P = 3 ororor (4)(4) 64

ReMARK. The sample space of this problem consists of all ordered samples
of size 4, with replacement, from the symbols B, W, R, G, with all
samples assigned the same probability. The reader should resist the
temptation to assign equal probability to all unordered samples of
size 4, with replacement. This would imply, for example, that
{WWWW} and {WWWB, WWBW, WBWW, BWWW} = {three
whites and one black} have the same probability, and this is inconsistent
with the assumption of independence. <«

PROBLEMS

1. Show that the events 4;, i € 1, are independent iff P(B; N - - - N Bi,) =P(B;) "
P(B;,) for all (distinct) iy, . . . , iy, where each B;, may be either 4, or 4, °.
2. Let p(k), k =0,1,...,n, be the binomial probability function.
() If (n + 1)p is not an integer, show that p(k) is strictly increasing up to
k = [(n + 1)p] = the largest integer < (n + 1)p, and attains a maximum
at [(n + 1)p]. p(k) is strictly decreasing for all larger values of k.
(b) If (n + 1)p is an integer, show that p(k) is strictly increasing up to k =
(n + 1)p — 1 and has a double maximum at k = (n + 1)p — 1 and k =
(n + 1)p; p(k) is strictly decreasing for larger values of k.
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3. A single card is drawn from an ordinary deck. Give examples of events 4 and B
associated with this experiment that are
(a) Mutually exclusive (disjoint) but not independent
(b) Independent but not mutually exclusive
(c) Independent and mutually exclusive
(d) Neither independent nor mutually exclusive

. Of the 100 people in a certain village, 50 always tell the truth, 30 always lie, and
20 always refuse to answer. A sample of size 30 is taken with replacement.
(a) Find the probability that the sample will contain 10 people of each category.
(b) Find the probability that there will be exactly 12 liars.

5. Six unbiased dice are tossed independently. Find the probability that the number
of 1’s minus the number of 2’s will be 3.

. How many terms are there in the multinomial expansion (1.5.2)?

7. An urn contains ¢, balls of color Cj, t, of color C,, . .., t;, of color C;.
(a) If n balls are drawn without replacement, show that the probability of
obtaining exactly #, of color C;, n, of color C,, . . ., n; of color Cy, is

YRS Iy
ny) \ny My
t
n
where t =1t; + t, + * -+ + #; is the total number of balls in the urn and
+{) is defined to be 0if n; > #,. (Notice the pattern: #; +#, + -+ + f; =1,
ny +ny + -+ + n, = n.) The above expression, regarded as a function
of ny, ..., ny, is called the hypergeometric probability function.

(b) What is the probability of the event of part (a) if the balls are drawn inde-
pendently, with replacement ?

8. (a) If an event A is independent of itself, that is, if 4 and A are independent,
show that P(4) =0 or 1.

(b) If P(A) =0 or 1, show that 4 and B are independent for any event B, in
particular, that 4 and A4 are independent.

-~

=)

1.6 CONDITIONAL PROBABILITY

If 4 and B are independent events, the occurrence or nonoccurrence of 4
does not influence the odds concerning the occurrence of B. If 4 and B are
not independent, it would be desirable to have some way of measuring exactly
how much the occurrence of one of the events changes the odds about the
other.

In a long sequence of independent repetitions of the experiment, P(A)
measures the fraction of the trials on which 4 occurs. If we look only at the
trials on which 4 occurs (say there are n, of these) and record those trials
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on which B occurs also (there are n,p of these, where n,p is the number
of trials on which both 4 and B occur), the ratio nyp/n, is a measure of
P(B| A), the “conditional probability of B given 4,” that is, the fraction of
the time that B occurs, looking only at trials producing an occurrence of A.
Comparing P(B | A) with P(B) will indicate the difference between the odds
about B when 4 is known to have occurred, and the odds about B before any
information about 4 is revealed.

The above discussion suggests that we define the conditional probability
of B given A as

P(4)

This makes sense if P(4) > 0.

(1.6.1)

» Example 1. Throw two unbiased dice independently. Let 4 = {sum of
the faces = 8}, B = {faces are equal}. Then

_PANB) _ P{4 — 4} 1/36

P(4) P{4 —4,5-3,3—-56—2,2—6} 5/36
(see Figure 1.6.1).

There is a point here that may be puzzling. In counting the outcomes
favorable to 4, we note that there are two ways of making an 8 using a 5 and
a 3, but only one way using a 4 and a 4. The probability space consists of
all 36 ordered pairs (i,7),i,j = 1,2, 3,4, 5, 6, each assigned probability1/36.
The ordered pair (4, 4) is the same as the ordered pair (4, 4) (this is rather
difficult to dispute), while (5, 3) is different from (3, 5). Alternatively, think
of the first die to be thrown as red and the second as green. A 5 on the red
die and a 3 on the green is a different outcome from a 3 on the red and a 5 on
the green. However, using 4’s we can make an 8 in only one way, a 4 on the
red followed by a 4 on the green. «

P(B| 4)

(N

The extension of the definition of conditional probability to events with
probability zero will be considered in great detail later on. For now, we are

A B

()

26
FIGURE 1.6.1 Example on Conditional Probability.

Numbers Indicate Favorable Outcomes.
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content to note some consequences of the above definition [whenever an
expression such as P(B | A) is written, it is assumed that P(4) > 0].

If 4 and B are independent, then P(4 N B) = P(4)P(B), so that
P(B ] A) = P(B) and P(4|B) (= P(4 N B)[P(B)) = .P(A), in accordance
with the intuitive notion that the occurrence of one of the events does not
change the odds about the other.

The formula P(4 N B) = P(A)P(B l A) may be extended to more than two

events.
P(4 NBNC)=PNB)PC|A4NB)

Hence

P(4 N B N C)= P(4)P(B| A)P(C | A N B) (1.6.2)
Similarly

P(ANBNCND) =P(A)P(B|A)P(C|A nB)P(D|A NBNC)
(1.6.3)

and so on.

» Example 2. Three cards are drawn without replacement from an ordinary
deck. Find the probability of not obtaining a heart.
Let A; = {card i is not a heart}. Then we are looking for

P(Ay 0 Ay N Ay) = P(A)P(dy | ADP(As | 4 O Ap) = 33 38 5%

[For example, to find P(4, | A,), we restrict ourselves to the outcomes favor-
able to 4,. If the first card is not a heart, 51 cards remain in the deck, in-
cluding 13 hearts, so that the probability of not getting a heart on the second
trial is 38/51.]

Notice that the above probability can be written (3)/(52), which could have
been derived by direct combinatorial reasoning. Furthermore, if the cards
were drawn independently, with replacement, the probability would be quite
different, (3/4)* = 27/64. «

We now prove one of the most useful theorems of the subject.

Theorem of Total Probability. Let B,, B, ... be a finite or countably
infinite family of mutually exclusive and exhaustive events (i.e., the B; are
disjoint and their union is Q). If A is any event, then

P(4) = 3 P(4 N B) (1.6.4)
Thus P(A) is computed by finding a list of mutually exclusive, exhaustive

ways in which A can happen, and then adding the individual probabilities.
Also

P(4) = 3 P(B)P(4| B) (1.6.5)
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where the sum is taken over those i for which P(B;) > 0. Thus P(A) is a
weighted average of the conditional probabilities P(A | B;).

PROOF.
P(4) = P(4 N Q) = P(A A (U Bi)) — P(liJ 4N Bi))
= E P(A N B) = Z P(B)P(4 | B)

Notice that under the above assumptions we have

P(A N By) _ P(BYP(4] By
P(4) X P(B)P(4]|B)

P(B,| 4) = (1.6.6)

This formula is sometimes referred to as Bayes’ theorem; P(B, | A) is some-
times called an a posteriori probability. The reason for this terminology may
be seen in the example below.

» Example 3. Two coins are available, one unbiased and the other two-
headed. Choose a coin at random and toss it once; assume that the unbiased
coin is chosen with probability 3/4. Given that the result is heads, find the
probability that the two-headed coin was chosen.

The “tree diagram” shown in Figure 1.6.2 represents the experiment.

We may take ( to consist of the four possible paths through the tree, with
each path assigned a probability equal to the product of the probabilities
assigned to each branch. Notice that we are given the probabilities of the

H
1/2
unbiased
3/4 1/2
) T
H
1/4 1
two-headed
0
T

FIGURE 1.6.2 Tree Diagram.
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events B; = {unbiased coin chosen} and B, = {two-headed coin chosen}, as
well as the conditional probabilities P(4 | B;), where A = {coin comes up
heads}. This is sufficient to determine the probabilities of all events.

Now we can compute P(B; | 4) using Bayes’ theorem; this is facilitated if,
instead of trying to identify the individual terms in (1.6.6), we simply look at
the tree and write

P(B, N A)
P(4)

_ P{two-headed coin chosen and coin comes up heads}

P(B, | 4) =

P{coin comes up heads}
_ 1/H@) _2 4
@A) +aHa s

There are many situations in which an experiment consists of a sequence
of steps, and the conditional probabilities of events happening at stepn + 1,
given outcomes at step n, are specified. In such cases a description by means
of a tree diagram may be very convenient (see Problems).

» Example 4. A loaded die is tossed once; if N is the result of the toss, then
PIN=i}=p;,i=1,2,3,4,5, 6. If N=1i, an unbiased coin is tossed
independently i times. Find the conditional probability that N will be odd,
given that at least one head is obtained (see Figure 1.6.3).

at least one head

3
141

e
P2
Ps 3
Pa

15
Ps 16
Pe 31

32

63

64

FIGURE 1.6.3

e
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Let 4 = {at least one head obtained}, B = {N odd}. Then P(B| 4) =
P(A N B)[P(A). Now

P(ANB)= 3 P{N = iand at least one head obtained}

+=1,3,5
=ip, + %Pa + 3505

since when an unbiased coin is tossed independently i times, the probability
of at least one head is 1 — (1/2)". Similarly,

6
P(A) =Y P{N = i and at least one head obtained}
i=1

6
=3 p1 -2
Thus
1 31
P(B ‘ A) = ipy + &ps + s <
30, + §ps + &ps + T3Py + 3505 + §3p6

PROBLEMS

1. In 10 Bernoulli trials find the conditional probability that all successes will
occur consecutively (i.e., no two successes will be separated by one or more
failures), given that the number of successes is between four and six.

2. If X is the number of successes in » Bernoulli trials, find the probability that
X > 3 given that X > 1.

3. An unbiased die is tossed once. If the face is odd, an unbiased coin is tossed
repeatedly; if the face is even, a biased coin with probability of heads p # 1/2 is
tossed repeatedly. (Successive tosses of the coin are independent in each case.)
If the first n throws result in heads, what is the probability that the unbiased
coin is being used?

4. A positive integer I is selected, with P{I =n} = (1/2)*, n =1,2,... . If I
takes the value #, a coin with probability of heads e is tossed once. Find the
probability that the resulting toss will be a head.

5. A bridge player and his partner are known to have six spades between them.
Find the probability that the spades will be split
(a) 3-3
(b) 4-2 or 2-4
(c) 5-1or1-5
(d) 6-0 or 0-6.
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6. An urn contains 30 white and 15 black balls. If 10 balls are drawn with (respec-
tively without) replacement, find the probability that the first two balls will be
white, given that the sample contains exactly six white balls.

7. Let C, be an unbiased coin, and C, a biased coin with probability of heads 3/4.
At time ¢z = 0, C, is tossed. If the result is heads, then C; is tossed at time
t = 1; if the result is tails, C, is tossed at ¢+ = 1. The process is repeated at
t =2,3,... . In general, if heads appears at ¢ = n, then C, is tossed at ¢ =
n + 1; if tails appears at ¢t = n, then C, is tossed at t = n + 1.
Find y, = the probability that the toss at # = n will be a head (set up a
difference equation).

8. In the switching network of Figure P.1.6.8, the switches operate independently.

A/\

c\/D

FIGURE P.1.6.8

B

Each switch closes with probability p, and remains open with probability 1 — p.

(a) Find the probability that a signal at the input will be received at the output.

(b) Find the conditional probability that switch E is open given that a signal is
received.

9. In a certain village 20 %; of the population has disease D. A test is administered
which has the property that if a person has D, the test will be positive 909
of the time, and if he does not have D, the test will still be positive 309, of the
time. All those whose test is positive are given a drug which invariably cures the
disease, but produces a characteristic rash 259, of the time. Given that a person
picked at random has the rash, what is the probability that he actually had D
to begin with?

1.7 SOME FALLACIES IN COMBINATORIAL PROBLEMS

In this section we illustrate some common traps occurring in combinatorial
problems. In the first three examples there will be a multiple count.

» Example 1. Three cards are selected from an ordinary deck, without
replacement. Find the probability of not obtaining a heart.

e
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ProroseD SoLUTION. The total number of selections is (°%). To find the
number of favorable outcomes, notice that the first card cannot be a heart;
thus we have 39 choices at step 1. Having removed one card, there are 38
nonhearts left at step 2 (and then 37 at step 3). The desired probability is
(39)E)BT/CD).

FAaLLAcy. In computing the number of favorable outcomes, a particular
selection might be: 9 of diamonds, 8 of clubs, 7 of diamonds. Another
selection is: 8 of clubs, 9 of diamonds, 7 of diamonds. In fact the 3! =6
possible orderings of these three cards are counted separately in the numera-
tor (but not in the denominator). Thus the proposed answer is too high by a
factor of 3!; the actual probability is (39)(38)(37)/3! (33) = (&)/(%?) (see
example 2, Section 1.6). <«

» Example 2. Find the probability that a five-card poker hand will result
in three of a kind (three cards of the same face value «, plus two cards of face
values y and 2, with 2, y, and z distinct).

PrOPOSED SoLUTION. Pick the face value to appear three times (13
possibilities). Pick three suits out of four for the “three of a kind” ((3)
choices). Now one face value is excluded, so that 48 cards are left in the deck.
Pick one of them as the fourth card; the fifth card can be chosen in 44 ways,
since the fourth card excludes another face value. Thus the desired prob-
ability is (13)(3)(48)(44)/(2).

FALLACY. Say the first three cards are aces. The fourth and fifth cards
might be the jack of clubs and the 6 of diamonds, or equally well the 6 of
diamonds and the jack of clubs. These possibilities are counted separately in
the numerator but not in the denominator, so that the proposed answer is
too high by a factor of 2. The actual probability is 13(3)(48)(44)/2(%}) =
13()()16/(%?) [see Problem 2, Section 1.4; the factor (1?)16 corresponds to
the selection of two distinct face values out of the remaining 12, then one
card from each of these face values].

REMARK. A more complicated approach to this problem is as follows.
Pick the face value  to appear three times, then pick three suits out
of four, as before. Forty-nine cards remain in the deck, and the total
number of ways of selecting two remaining cards is (%Y). However, if
the two face values are the same, we obtain a full house; there are
12(3) selections in which this happens (select one face value out of 12,
then two suits out of four). Also, if one of the two cards has face value
z, we obtain four of a kind; since there is only one remaining card
with face value = and 48 cards remain after this one is chosen, there

e
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are 48 possibilities. Thus the probability of obtaining three of a kind
is
SG)G) - 1) -]
3 2 2
52
5)

(This agrees with the previous answer.) «

» Example 3. Ten cards are drawn without replacement from an ordinary
deck. Find the probability that at least nine will be of the same suit.

PROPOSED SOLUTION. Pick the suit in any one of four ways, then choose
nine of 13 face values. Forty-three cards now remain in the deck, so that the
desired probability is 4(*3)43/(32).

FaLLacy. Consider two possible selections.

1. Spades are chosen, then face values A K Q J 10 9 8 7 6. The last card
is the 5 of spades.

2. Spades are chosen, then face values A K Q J 10 9 8 7 5. The last card
is the 6 of spades (see Figure 1.7.1). Both selections yield the same 10 cards,
but are counted separately in the computation. To find the number of
duplications, notice that we can select 10 cards out of 13 to be involved in the
duplication; each choice of one card (out of 10) for the last card yields a
distinct path in Figure 1.7.1. Of the 10 possible paths corresponding to a given
selection of cards, nine are redundant. Thus the actual probability is

()=~ ()]
()

Spades

AKQJ109876 AKQJ109875

5 of spades 6 of spades

FiGure 1.7.1 Multiple Count.

e
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)s- (3

Now

(13) 39 4+ (13)4 _ (13)9
9 9 10
= 13)39 + (13)10 - 13)9
9 10 10
so that the probability is

1(5)2+ ()

as obtained in a straightforward manner in Problem 4, Section 1.4. <«

» Example 4. An urn contains 10 balls by, . . ., by, Five balls are drawn
without replacement. Find the probability that bs and b, will be included in
the sample.

PRrOPOSED SOLUTION. We are drawing half the balls, so that the proba-
bility that a particular ball will be included is 1/2. Thus the probability of
including both bg and by is (1/2)(1/2) = 1/4.

Farracy. Let A = {bg is included}, B = {b, is included}. The difficulty
is simply that 4 and B are not independent. For P(4 N B) = (H/(¥) = 2/9
(after bg and b, are chosen, three balls are to be selected from the remaining
eight). Also P(4) = P(B) = ())/(¥) = 1/2,so that P(4 N B) # P(A)P(B). <

» Example 5. Two cards are drawn independently, with replacement, from
an ordinary deck; at each selection all 52 cards are equally likely. Find the
probability that the king of spades and the king of hearts will be chosen (in
some order).

PrOPOSED SOLUTION. The number of unordered samples of size 2 out of
52, with replacement, is (3*271) = () [see (1.4.4)]. The kings of spades
and hearts constitute one such sample, so that the desired probability is
/()

FALLACY. It is not legitimate to assign equal probability to all unordered
samples with replacement. If we do this we are saying, for example, that the

outcomes “ace of spades, ace of spades” and “king of spades, king of hearts”
have the same probability. However, this cannot be the case if independent

e
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sampling is assumed. For the probability that the ace of spades is chosen twice
is (1/52)%, while the probability that the spade and heart kings will be chosen
(in some order) is P{first card is the king of spades, second card is the king
of hearts} + P{first card is the king of hearts, second card is the king of
spades} = 2(1/52)2, which is the desired probability.

The main point is that we must use ordered samples with replacement in
order to capture the idea of independence. «

1.8 APPENDIX: STIRLING’S FORMULA

An estimate of n! that is of importance both in numerical calculations and
theoretical analysis is Stirling’s formula

n!l~ n”e‘”\/ 271
in the sense that

lim ———m—— =1
nowo (p”e ”\/277n)

Proor. Define (2n)!! (read 2n semifactorial) as 2n(2n — 2)(2n — 4) - - -
6(4)(2),and 2n + D! las 2n + 1)(2n — 1) - - - (5)(3)(1). We first show that

@n)!! T2n— DI _(2n =N
Cn+ DI "2 2! S @n— DN

Let I, = [/ (cos @)* dw, k = 0,1,2, . ... ThenI, = #/2, I, = 1. Integrating
by parts, we obtain I, = [7/2 (cos #)*1 d(sin ) = |72 (k — 1)(cos z)*2
sin® z dz. Since sin*x = 1 — cos®w, we have I, = (k — 1),_, — (k — DI,
or I = [(k — 1)[k]L,_.. By iteration, we obtain I, = (/2) [(2n — 1)!!/
@2m!"] and Ip,.; = [(2n)!!/(2n + D!!]. Since (cos z)* decreases with k,
so does I, and hence I, .; < I, < Iy, 3, and (a) is proved.

(@)

(b) Let Q, = (3")/22". Then

lim Q,/nm = 1
To prove this, write e
2n)! (2n)!
Qn = o 9
nln! 2  (2"n!)
(2n)! _@n—=1n!

T@nen—2)---@®@F  @nl

e
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Thus, by (a),
2n)!! T 2n — 2)!!
@n + N < 2Q" < @2n — DN

Multiply this inequality by
| Qn—1DI _ @n—1DI_ 2o

=0,
an—2i = @i @n—on @M
to obtain
2n 2
<nmQ," <1
2n + 1. ™2

If we let n — oo, we obtain nwQ,? — 1, proving (b).

(¢) Proof of Stirling’s formula. Let c, = n![n"e~"~/2mn. We must show
that ¢, — 1 as n — co. Consider (n + 1)!/n! =n + 1. We have

(4 D! cpn(n 4+ )™ " 20(n 4 1)

n! cnn"e_"\/ 27n

e

Cpi1 n \" \/; 1)—(n+1/2)
= =(n + 1)(e =)l + -
= =0+ 00 ) G =t
Now (1 + 1/n)**/2 > e for n sufficiently large (take logarithms and expand
in a power series); hence ¢,/c, < 1 for large enough n. Since every mono-
tone bounded sequence converges, ¢, —a limit c. We must show ¢ = 1.

By (b),

Thus

lim (2")\/117 2 q
n=>o0 \ N

But

nilnl 2% (¢ (nfey'V2mm)® 2" ¢

Therefore c¢,,/c,2 — 1. However, ¢,, — ¢ and ¢,*>— c?, and consequently
c/c? = 1, so that ¢ = 1. The theorem is proved.

(2 am 2 = @n)! Vi _ ea,(2nfey™/2n(am) nm _ cay
n

REMARK. The last step requires that ¢ be >0. To see this, write
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where ¢, is defined as 1. To show that ¢, — a nonzero limit, it suffices
to show that the limit of In ¢, is finite, and for this it is sufficient to
show that >, In (c,../c,) converges to a finite limit. Now

c 1 —(n+1/2) 1
lnL“=1n[e(1+—) :|=1—(n+%)1n(1+—)
n n

cn
1 1 0(n)
=1l—-m+P|l-——+—
( 2)(11 2n®  n® )
where 0(n) is bounded by a constant independent of n. This is the order
of 1/n?; hence Y, In (c,,4/c,) converges, and the result follows.
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Random Variables

2.1 INTRODUCTION

In Chapter 1 we mentioned that there are situations in which not all subsets
of the sample space Q can belong to the event class %, and that difficulties
of this type generally arise when Q is uncountable. Such spaces may arise
physically as approximations to discrete spaces with a very large number of
points. For example, if a person is picked at random in the United States and
his age recorded, a complete description of this experiment would involve a
probability space with approximately 200 million points (if the data are
recorded accurately enough, no two people have the same age). A more
convenient way to describe the experiment is to group the data, for example,
into 10-year intervals. We may define a function ¢(x), x = 5, 15, 25, ...,
so that g(z) is the number of people, say in millions, between # — 5 and
z + 5 years (see Figure 2.1.1).

For example, if ¢(15) = 40, there are 40 million people between the ages of
10 and 20 or, on the average, 4 million per year over that 10-year span. Now
if we want the probability that a person picked at random will be between 14
and 16, we can get a reasonable figure by taking the average number of
people per year [4 = ¢(15)/10)] and multiplying by the number of years (2)
to obtain (roughly) 8 million people, then dividing by the total population to
obtain a probability of 8/200 = .04.

46

e
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q(x)
35 million people between
40 20 and 30, etc.
40 / \
35
20 1/ \
/ 30\
20 -
20 \—‘8 }‘

10\

2
00 10141620 30 40 50 .60 70 80 90

FIGURE 2.1.1 Age Statistics.

If we connect the values of g(x) by a smooth curve, essentially what we are
doing is evaluating (1/200) f1¢ [¢(x)/10] dz to find the probability that a
person picked at random will be between 14 and 16 years old. In general,
we estimate the number of people between ages a and b by [? [¢(=)/10] dx
so that ¢()/10 is the age density, that is, the number of people per unit age.
We estimate the probability of obtaining an age between a and b by
J2 [9(x)/2000] dz; thus g(%)/2000 is the probability density, or probability
per unit age. Thus we are led to the idea of assigning probabilities by means
of an integral. We are taking Q as (a subset of) the reals, and assigning
P(B) = |p f(%) dx, where f is a real-valued function defined on the reals.
There are several immediate questions, namely, what sigma field we are
using, what functions f are allowed, what we mean by [ f(x) dz, and how
we know that the resulting P is a probability.

For the moment suppose that we restrict ourselves to continuous or
piecewise continuous f. Then we can certainly talk about [pf(z) dz, at
least when B is an interval, and the integral is in the Riemann sense. Thus
the appropriate sigma field % should contain the intervals, and hence must
be at least as big as the smallest sigma field % containing the intervals (%
exists; it can be described as the intersection of all sigma fields containing
the intervals). The sigma field Z = Z(E") is called the class of Borel sets
of the reals E'. Intuitively we may think of % being generated by starting
with the intervals and repeatedly forming new sets by taking countable
unions (and countable intersections) and complements in all possible ways
(it turns out that there are subsets of E* that are not Borel sets).

Thus our problem will be to construct probability measures on the class of
Borel sets of E'. The reason for considering only the Borel sets rather than
all subsets of E! is this. Suppose that we require that P(B) = [z f (%) dx

e
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for all intervals B, where f is a particular nonnegative continuous function
defined on E%, and |®,, f(x) dz = 1. There is no probability measure on the
class of all subsets of E* satisfying this requirement, but there is such a meas-
ure on the Borel sets.

Before elaborating on these ideas, it is convenient to introduce the concept
of a random variable; we do this in the next section.

2.2 DEFINITION OF A RANDOM VARIABLE

Intuitively, a random variable is a quantity that is measured in connection
with a random experiment. If Q is a sample space, and the outcome of the
experiment is @, a measuring process is carried out to obtain a number R(w).
Thus a random variable is a real-valued function on a sample space. (The
formal definition, which is postponed until later in the section, is somewhat
more restrictive.)

» Example 1. Throw a coin 10 times, and let R be the number of heads.
We take Q = all sequences of length 10 with components H and T 2%
points altogether. A typical sample point is w = HHTHTTHHTH. For
this point R(w) = 6. Another random variable, R, is the number of times
a head is followed immediately by a tail. For the point w above, R;(w) = 3. «

» Example 2. Pick a person at random from a certain population and
measure his height and weight. We may take the sample space to be the
plane E?, that is, the set of all pairs (», y) of real numbers, with the first
coordinate « representing the height and the second coordinate y the weight
(we can take care of the requirement that height and weight be nonnegative
by assigning probability 0 to the complement of the first quadrant). Let
R, be the height of the person selected, and let R, be the weight. Then
Ry(z,y) = z, Ry(x,y) = y. As another example, let R; be twice the height
plus the cube root of the weight; thatis, Ry = 2R, + V' R,. Then Ry(z, y) =

2R,(@, 9) + VRy(z,y) = 20 + Vy. <

» Example 3. Throw two dice. We may take the sample space to be the
set of all pairs of integers (¢, y), ,y = 1,2, ..., 6 (36 points in all).

Let R, = the result of the first toss. Then R,(z, y) = .

Let R, = the sum of the two faces. Then Ry(%,y) = = + y.

Let R, = 1 if at least one face is an even number; R; = 0 otherwise.

Then R;(6, 5) = 1; Ry(3,6) = 1; Ry(1,3) =0, and so on. «

e
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» Example 4. Imagine that we can observe the times at which electrons are
emitted from the cathode of a vacuum tube, starting at time # = 0. As a
sample space, we may take all infinite sequences of positive real numbers,
with the components representing the emission times. Assume that the
emission process never stops. Typical sample points might be w;, = (.2,
1.5,6.3,...), wy = (.01,.5,.9,1.7,...). If R, is the number of electrons
emitted before ¢ = 1, then R,(w,) = 1, R,(w,) = 3. If R, is the time at which
the first electron is emitted, then Ry(w,) = .2, Ry(w,) = .01. <«

If we are interested in a random variable R defined on a given sample space,
we generally want to know the probability of events involving R. Physical
measurements of a quantity R generally lead to statements of the form
a < R < b, and it is natural to ask for the probability that R will lie between
a and b in a given performance of the experiment. Thus we are looking for
P{w: a < R(w) < b} (or, equally well, P{w: a < R(w) < b}, and so on).
For example, if a coin is tossed independently » times, with probability p
of coming up heads on a given toss, and if R is the number of heads, we

have seen in Chapter 1 that
b

P{w:a < R@) < b} =3 (Z) Pl —p)"*

NOTATION. {w:a < R(w) < b} will often be abbreviated to {a < R < b}.

As another example, if two unbiased dice are tossed independently, and
R, is the sum of the faces (Example 3 above), then P{R, = 6} = P{(5, 1),
1,5), 4,2), (2,4), (3, 3)} = 5/36.

In general an “event involving R corresponds to a statement that the value
of R lies in a set B; that is, the event is of the form {w: R(w) € B}. Intuitively,
if P{w: R(w) €I} is known for all intervals I, then P{w: R(w) € B} is deter-
mined for any “well-behaved’ set B, the reason being that any such set can
be built up from intervals. For example, P{O < R<2 or R> 3} (=
P{R€[0,2) U (3, 00)}) = P{0 < R < 2} + P{R > 3}. Thus it appears that
in order to describe the nature of R completely, it is sufficient to know
P{R €I} for each interval I. We consider in more detail the problem of
characterizing a random variable in the next section; in the remainder of
this section we give the formal definition of a random variable.

* For the concept of random variable to fit in with our established model
for a probability space, the sets {a < R < b} must be events; that is, they
must belong to the sigma field &. Thus a first restriction on R is that for all
real a, b, the sets {w: a < R(w) < b}arein & . Thus we can talk intelligently
about the event that R lies between a and b.

A question now comes up: Suppose that the sets {¢ < R < b} are in &

e
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for all a, b. Can we talk about the event that R belongs to a set B of reals,
for B more general than a closed interval? _
For example, let B = [a, b) be an interval closed on the left, open on the

right. Then
a<Rw)<biffa < Rw)<Lb _1 for at leastone n = 1,2, . ..
‘Thus !
{w:a < R(w) < b} = Gl'{w: a<Rw)<b— %}

and this set is a countable union of sets in &, hence belongs to . In a similar
fashion we can handle all types of intervals. Thus {w: R(w) € B} € # for
all intervals B.

In fact {w: R(w) € B} belongs to & for all Borel sets B. The sequence of
steps by which this is proved is outlined in Problem 1.

We are now ready for the formal definition.

DEFINITION. A random variable on the probability space (Q, #, P) is a real
valued function R defined on Q, such that for every Borel subset B
of the reals, {w: R(w) € B} belongs to #.

Notice that the probability P is not involved in the definition at all; if
Ris a random variable on (Q, &, P) and the probability measure is changed,
R is still a random variable. Notice also that, by the above discussion, to
check whether a given function R is a random variable it is sufficient to know
that {w: a < R(w) < b} € F for all real a, b. In fact (Problem 2) it is suffi-
cient that {w: R(w) < b} € Z forall real b (or, equally well, {w: R(w) < b} e F
for all real b; or {w: R(w) > a} € F for all real a; or {w: R(w) > a} € F
for all real a; the argument is essentially the same in all cases).

Notice that if % consists of all subsets of Q, {w: R(w) € B} automatically
belongs to &, so that in this case any real-valued function on the sample
space is a random variable. Examples 1 and 3 fall into this category.

Now let us consider Example 2. We take (2 = the plane E2, # = the class
of Borel subsets of E2, that is, the smallest sigma field containing all rec-
tangles (we shall use “rectangle” in a very broad sense, allowing open,
closed, or semiclosed rectangles, as well as infinite rectangular strips).

To check that R, is a random variable, we have

{@,y):a < Ri(,y) < b} ={(z,y):a < < b}

which is a rectangular strip and hence a set in % Similarly, R, is a random
variable. For R,, see Problem 3.
Example 2 generalizes as follows. Take Q = E™ = all n-tuples of real

e
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numbers, & the smallest sigma field containing the n-dimensional “inter-
vals.” [Ifa = (ay, ..., a,),b = (b, ..., b,), the interval (a, b) is defined as
{xeE" a;<x; <b;, i=1,...,n}; closed and semiclosed intervals are
defined similarly.] The coordinate functions, given by Ry(zy,...,%,) =
#y, Ry(2y,...,%,) = 2o, ..., Ry(%y,...,%,) = =, are random variables.

Example 4 involves some serious complications, since the sample points are
infinite sequences of real numbers. We postpone the discussion of situations
of this type until much later (Chapter 6).

PROBLEMS

*1. Let R be a real-valued function on a sample space Q, and let % be the collection
of all subsets B of E* such that {w: R(w) € B} € #.

(a) Show that  is a sigma field.

(b) If all intervals belong to €, that is, if {w: R(w)€ B} €% when B is an
interval, show that all Borel sets belong to ¢. Conclude that R is a random
variable.

*2. Let R be a real-valued function on a sample space Q, and assume {®: R(w) <

b} € # for all real b. Show that R is a random variable.

*3. In Example 2, show that R, is a random variable. Do this by showing that if

R; and R, are random variables, so is R, + R,; if R is a random variable,

s0 is aR for any real a; if R is a random variable, so is VR.

2.3 CLASSIFICATION OF RANDOM VARIABLES

If R is a random variable on the probability space (Q, #, P), we are gener-
ally interested in calculating probabilities of events involving R, that is,
P{w: R(w) e B} for various (Borel) sets B. The way in which these proba-
bilities are calculated will depend on the particular nature of R; in this
section we examine some standard classes of random variables.

The random variable R is said to be discrete iff the set of possible values
of R is finite or countably infinite. In this case, if #,, «,, . . . are the values of
R that belong to B, then

P{REB}=P{R=x1 or R—_—xz or -..}
XER

where prp(x), = real, is the probability function of R, defined by pp(z) =
P{R = z}. Thus the probability of an event involving R is found by summing

e
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the probability function over the set of points favorable to the event. In
particular, the probability function determines the probability of all events
involving R. ‘

» Example 1. Let R be the number of heads in two independent tosses of a
coin, with the probability of heads being .6 on a given toss. Take Q =
{HH, HT, TH, TT} with probabilities .36, .24, .24, .16 assigned to the four
points of Q; take & = all subsets. Then R has three possible values, namely,
0, 1, and 2, and P{R = 0} = .16, P{R = 1} = .48, P{R = 2} = .36, by
inspection or by using the binomial formula

k

Another way of characterizing R is by means of the distribution function,
defined by

PR =k} = (5)ra = <

Fp(z) = P{R < z}, x real

(see Figure 2.3.1 for a sketch of Fz and pp in Example 1).

Observe that, for example, P{R < 1} = pz(0) + pg(l) = .64, but if
0 < z < 1, we have P{R < «} = pr(0) = .16. Thus Fj has a discontinuity
at « = 1, of magnitude .48 = pp(1). In general, if R is discrete, and
P{R = %,} = p,, n=1,2, ..., where the p, are >0 and >, p, = 1, then
Fy, has a jump of magnitude p, at # = x,,; Fg is constant between jumps.

In the discrete case, if we are given the probability function, we can con-
struct the distribution function, and, conversely, given Fg, we can construct

1

Ey(x)
36
48
.16 e
| |
0 1 2 ¥
Py(®)
48
36
16}
x
0 1 2

FIGURE 2.3.1 Distribution and Probability Functions of a Discrete Random Variable.

e
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Pr- Knowledge of either function is sufficient to determine the probability
of all events involving R.

We now consider the case introduced in Section 2.1, where probabilities
are assigned by means of an integral.

Let f be a nonnegative Riemann integrablet function defined on E* with
%0 f(x) dx = 1. Take Q = E', &% = Borel sets. We would like to write,
for each Be &,

P(B) = L f(z) d

but this makes sense only if B is an interval. However, the following result is
applicable. '

Theorem 1. Let f be a nonnegative real-valued function on E', with
J%s f (@) dx = 1. There is a unique probability measure P defined on the Borel
subsets of E*, such that P(B) = [ f(x) dx for all intervals B = (a, b].

The theorem belongs to the domain of measure and integration theory, and
will not be proved here.

The theorem allows us to talk about the integral of f over an arbitrary
Borel set B. We simply define [z f(x) dx as P(B), where P is the probability
measure given by the theorem.

The uniqueness part of the theorem may then be phrased as follows. If
Q is a probability measure on the Borel subsets of E* and OB) = [pf(x)dx
for all intervals B = (a, b], then Q(B) = [z f(x) dx for all Borel sets B.

If R is defined on Q by R(w) = w (so that the outcome of the experiment is
identified with the value of R), then

P{w: R(w) € B} = P(B) =ff(x) dx
B
In particular, the distribution function of R is given by

Fp(2) = P{o: R(@) < #} = P(—w, 2] = fjmf(t) d

so that Fg, is represented as an integral.

DEerINITION. The random variable R is said to be absolutely continuous iff
there is a nonnegative function f = f% defined on E* such that

Fa(a) = fwfR(t) dt  for all real (2.3.1)

[ g is called the density function of R. We shall see in Section 2.5 that
Fg(x) must approach 1 as  — co; hence [, fg(%) dx = 1.

1 “Integrable” will from now on mean ‘“Riemann integrable.”

e
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Fy(x)

FiGure 2.3.2 Distribution and Density Functions of a Uniformly Distributed Random
Variable.

» Example 2. A number R is chosen at random between a and b; R is
assumed to be uniformly distributed; that is, the probability that R will fall
into an interval of length ¢ depends only on ¢, not on the position of the
interval within [a, b]. ‘

We take Q = E', & = Borel sets, R(w) = o, f(x) = fr(z) = 1/(b — a),
a<Lz<b;f(x)=0,2>borz < a Define P(B) = [ f(x) de. In particu-
lar, if B is a subinterval of [a, b], then P(B) = (length of B)/(b — a). The
density and distribution function of R are shown in Figure 2.3.2. «

Note. The values of Fy are probabilities, but the values of fr are not;
probabilities are found by integrating fx.

Frpx)y =P{R<L 2} =| fgr(t)dt
If R is absolutely continuous, then
b
P{a < R L b} =ffR(x) de, a<b

For {R < b} is the disjoint union of the events {R < a} and {a <
R < b}; hence P{R < b} = P{R <L a} + P{a < R L b}. It follows

e
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that
P{a < R < b} = Fg(b) — Fg(a) 2.3.2)

= [ saaz— [ juor az = [ sute) d

Thus, if Q(B) = P{R € B}, we have Q(B) = [p fr(%) dr when B is
an interval (a, b]. By Theorem 1, Q(B) = [z fr(») dz for all Borel
sets B. Therefore, if R is absolutely continuous,

P{ReB} = f fr(w)dx  for all Borel sets B
B .

The basic point is that the density function f, determines the probability
of all events involving R.

If R is absolutely continuous, then
P{R=c}=P{chgc}=JfR(x)dx=0

The event {R = c} is in general not impossible; for example, if R is uniformly
distributed between a and b, each event {R =z}, a < « < b, is possible;
that is, the set {w: R(w) = z} is not empty. But the event {R = ¢} has
probability 0. This does not contradict the axioms of probability. The
definition of a probability measure requires that if the event A4 is impossible
(i.e., 4 = @) then P(4) = 0; the converse need not be true. Intuitively,
if R is uniformly distributed between a and b, it should be expected
that all events {R = 2}, a < « < b, will have the same probability. Any
probability other than 0 will lead to a contradiction, since there are
infinitely many points « between a and b.

As a consequence of the fact that P{R = «} = 0 in the absolutely con-
tinuous case, we have

Pla<R<b}=Pla<RLb}=Pla<R<D}
= P{a < R < b}
b

= Fp(b) — Fr(a) (2.3.3)

Notice also that although in the discrete case the probability function of
R determines the probability of all events involving R, in the absolutely con-
tinuous case it gives no information at all, since pg(z) = P{R = «} = 0 for

e
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all z. However, the distribution function of R is still adequate, since Fg
determines f%. If f5 is continuous, it may be obtained from Fy, by differentia-
tion; that is,

4 f_ Jalt) dt = f5(2)

(the fundamental theorem of calculus). The general proof that Fr, determines
[r is measure-theoretic, and we shall not pursue it here.

If fr is continuous, we have just seen that Fp is differentiable, and its
derivative is fz. In general, if R is absolutely continuous, Fr(x) will be a
continuous function of «, but again we shall not pursue this.

We shall show in Section 2.5 that the distribution function of an arbitrary
random variable must be nondecreasing [a < b implies Fr(a) < Fgr(b)],
must approach 1 as x — o0, and must approach 0 as x — —oo.

» Example 3. ‘Let R be time of emission of the first electron from the
cathode of a vacuum tube. Under certain physical assumptions, it turns out
that R has the following density function:

x) = Ae™*?, x>0
T( (4 constant)

=0 z<0
(see Figure 2.3.3).
ful) . _
Fg@) = f fr () dt
—a
so Fp() =0,z <0,
e and if 2 > 0,
x .
Fp(x) Fp@) = f ’ fr®dt
—a
@ x
+ J' fr®)dt = f Ae=M dt
1 '— 0 0
=1—e
1=~ M

FiGure 2.3.3 Exponential Density
and Distribution Functions.
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R-1DER=-2)
0 N——"2 >R

FIGURE 2.3.4 Calculation of Probabilities.

We calculate some probabilities of events involving R:

2
P{1<R<2} = f Ae® dz = ¢* — ¢~ = Fp(2) — Fp(1)
1

P{R—1)(R—2)>0}=P{R<1 or R>2}
= P{R < 1} + P{R > 2}

1 0
=f Ae™*® dx +f Ae™** dx
0 2

=1—e*+e™

(see Figure 2.3.4). «

REMARK. You will often see the statement “Let R be an absolutely con-
tinuous random variable with density function f,”” with no reference
made to the underlying probability space. However, we have seen
that we can always supply an appropriate space, as follows. Take
Q = E', F = Borel sets, P(B) = [ f(«) dx for all Be #.1f R(w) =
w, o € Q, then R is absolutely continuous and has density f.

In a sense, it does not make any difference how we arrive at
and P; we may equally well use a different Q and P and a different R,
as long as R is absolutely continuous with density f. No matter what
construction we use, we get the same essential result, namely,

P{ReB} = f f(2) d=
B

Thus questions about probabilities of events involving R are answered
completely by knowledge of the density f.

e
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PROBLEMS

1. An absolutely continuous random variable R has a density function f@) =
(1/2)e-lal,
(a) Sketch the distribution function of R.
(b) Find the probability of each of the following events.

(1) {IrR <2} (5) {R* —R*~ R -2 <0}

@) {[Rl <2or R > 0} (6) {esin R > 1}

3) {IRI £2and R < —1} ~ (7) {R is irrational} (= {w: R(w) is
@) {IR| +|R — 3| <3} an irrational number})

2. Consider a sequence of five Bernoulli trials. Let R be the number of times that a
head is followed immediately by a tail. For example, if w = HHTHT then
R(w) = 2, since a head is followed directly by a tail at trials 2 and 3, and also
at trials 4 and 5. Find the probability function of R.

2.4 FUNCTIONS OF A RANDOM VARIABLE

A general problem that arises in many branches of science is the following.
Given a system of some sort, to which an input is applied; knowledge of
some of the characteristics of the system, together with knowledge of the
input, will allow some estimate of the behavior at the output. We formulate a
special case of this problem. Given a random variable R; on a probability
space, and a real-valued function g on the reals, we define a random variable
R, by R, = g(Ry); that is, Ry(w) = g(R,(w)), w € Q. R, plays the role of the
input, and g the role of the system; the output R, is a random variable
defined on the same space as R,. Given the function g and the distribution or
density function of the random variable R,, the problem is to find the distri-
bution or density function of R,.

Note. If R, is a random variable and we set R, = g(R,), the question arises
as to whether R, is in fact a random variable. The answer is yes if
g is continuous or piecewise continuous; we shall consider thjs prob-
lem in greater detail in Section 2.7.

» Example 1. Let R, be absolutely continuous, with the density f; given in
Figure 2.4.1. Let R, = R;?; that is, Ry(w) = R,2(w), w € Q. Find the distri-
bution or density function of R,.

We shall indicate two approaches to the problem.

e



46628-0 Ash 1 4/14/08 8:25 AM Page$9

2.4 FUNCTIONS OF A RANDOM VARIABLE 59

Ry=R}
f,(x)
A
1
2
y
ze~*
R
-1 0 ¥ N 0 NG 1
FIGURE 2.4.1 FIGURE 2.4.2

DisTRIBUTION FUNCTION METHOD. In this method the distribution func-
tion F, of R, is found directly, by expressing the event {R, < y} in terms of

the random variable R,. First, since R, > 0, we have Fy(y) = P{R, <y} =0
for y < 0.

If y > 0, then R, < y iff —/y < R, < /7 (see Figure 2.4.2). Thus, if
y2>0,

. s
P(R, < y} = P{—/5 < R, < \/4} = f S h@) dz
In particular, if 0 <y < 1, then -
vy . vi ) S
Fyfy) = f ' f(@) do = f tdo+ f YT de = 17 + 31 — V)
—\/1/ _\/y 0

(see Figure 2.4.3).

Ify>1,
vy 1 0 vV
Fy(y) =f fi(x)dx =f Ode + | $de+ ( e dux
_'\/y —'\/y —1 Jo
—3+i0—-e"

(see Figure 2.4.4). A sketch of F, is given in Figure 2.4.5.

f(x)
1
2
7/ yoms
A x
-1 -vy 0 vy
FIGURE 2.4.3

e
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f,(x)

N

lo=x
z€

-7 -1 0 1 N

FIGURE 2.4.4

We would like to conclude, by inspection of the distribution function F,,
that the random variable R, is absolutely continuous. We should be able to
find the density f; of R, by differentiating F,.

dFy(y) —

—=2 =0, <0
dy Y

fo(y) =

1-/(1+e“‘/”), 0<y<1

(see Figure 2.4.6).

It may be verified that F,(y) is given by [* o J2(t) dt, so that f, is in fact the
density of R,. Thus, in this case, if we differentiate F, and then integrate the
derivative, we get back to F,.

It is reasonable to expect that a random variable R, whose distribution
function is continuous everywhere and defined by an explicit formula or
collection of formulas, will be absolutely continuous. The following result
will cover almost all situations encountered in practice.

Fy(y)

VT +i(-eVY)

FIGURE 2.4.5

e



46628-0 Ash 1 4/14/08 8:25 AM Page$

2.4 FUNCTIONS OF A RANDOM VARIABLE 61

f(»)
] y
0 1
FIGURE 2.4.6

Let R be a random variable with distribution function F. Suppose that

(1) Fis continuous for all z
(2) Fis differentiable everywhere except possibly at a finite

number of points (2.4.1)
(3) The derivative f(x) = F’(z) is continuous except possibly at

a finite number of points

Then R is an absolutely continuous random variable with density function f.
(The proof involves the application of the fundamental theorem of calculus;
see Problem 6.)

Note. Density functions need not be continuous or bounded. Also, in
this case there is an ambiguity in the values of f,(y) at ¥ = 0 and
y = 1, since F, is not differentiable at these points. However, any
values may be assumed, since changing a function at a single point,
or a finite or countably infinite number of points, or in fact on a set
of total length (Lebesgue measure) zero, does not change the integral.

DensiTy FuncTioN METHOD. In this approach we develop an explicit
formula for the density of R, in terms of that of R;.

We first give an informal description. The probability that R, will lie in
the small interval [y, y + dy] is

v+dy

fo(1) dt

Y

which is roughly fy(y) dy if f; is well-behaved near y. But if we set h(y) =
\/y, hy(y) = —\/Q, y > 0, then (see Figure 2.4.7)

Ply< R, <y +dy}=Phy) <R < hhy+ dy)}
+ P{hy(y + dy) < R, < hy(y)}

e
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Ry
y+dy
y
By
hz(y+dy)J hy(y +dy)
ho(y)==A[fy —\Y=hy(¥)
FIGURE 2.4.7

Hence

$(w) dy = £l () P E dy()iy— ke

+ ful() 2 = h;z + dy)] dy

Let dy — 0 to obtain

Jo() = L (()hi(¥) + fi(ha(9))(—hi(¥))
= (@) Ihi@)] + fi(ho(¥)) |h(y)]

In this case

fo(®) = £i(/7) [AWY) + fi(—D)]

- Ja) + A=) *d#"y - \/Z)

Now (see Figure 2.4.1),if 0 <y < 1,

2/u

1 - 1 "
) =—=BeV" + == + V)
2y 4.y
Ify>1,
L Ve 0 1 —\/;
fo(%) 2\/[6 +0] = 4\/y
as before.

Similar reasoning shows that in general

fo(y) = H(@®) @] + - - - + filha( @) Ba()]

where £,(y), . . . , h,(y) are the values of R, corresponding to R, = y.

Here is the formal statement. Suppose that the domain of g can be written
as the union of intervals L I, ...,I, Assume that over the interval I,
g is strictly increasing or strlctly decreasmg and is differentiable (except

e
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possibly at the end points), with 4; = inverse of g over I,. Let F, satisfy the
three conditions (2.4.1). Then

i) = g () 1))
where : =

Si(hi(y) |h;‘(i’/)|
is interpreted as 0 if y ¢ the domain of 4;. For the proof, see Problem 7.

Remark. If we have R, = A(R,), where A is a one-to-one differentiable
function, and R, = g(R,), where g is the inverse of 4, then

1
h' =
(y) g’(x):l x=h(y)

PSR (Y0

i=1 | 8" (%) =y

Thus we may write

where R, = g(R,).
In the present example we have

g@) =2  h®» =y, h(y)=—y

so that
N RGN NN NP
f(y) = el + el 2v7 LAWY + Ai(—VY)]
as before. «

» Example 2. Let R, be uniformly distributed between 0 and 2; that is,
@)=, 0<z<on
2m
=0 elsewhere

Let R, = sin R, (see Figure 2.4.8).

R2 Ry

2w +sin~ly
) )
‘\w 2r T —sin-ly

0 T —sin~ly R 0 w\l 2r By
sin~ly Y

FIGURE 2.4.8

e
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DisTrIBUTION FuncTioN MeTHOD. If0 <y <1,

Fy(y) = P{R, < v}
=P{0 <R, <sin7'y} + P{w —sin'y < R, < 27}
sin "ty or
=f —dx + 1 dx
0

2m 7—sin 'y 27
1 1. 4
=~ -+ —smn
2 = Y

where the branch of the arc sin function is chosen so that —7/2 < sin™'y <
/2. ‘
If-1<y<0,
Fy(y) = P{m —sin™ y < R, < 27 + sin™" g}
1 1
==+ —sin™"
2 Y
as above, and
, 1
fly) =Fy(y) = —F/—> —-1<y<1
Tr\/ 1—9°
DensITY FUNcTION METHOD. If0 <y < 1,

fiy) = fiGsin™ 9) \i sin ' y| + fi(m — sin 9) | L (r — sin~ y)
dy dy

1

B 71'\/ 1—9°
Similarly,

fz(?/)=_——1 for—1<y<0

77\/1 — 9
[f2(») = 0, |y| > 1] (see Figure 2.4.9). «

)

-1 0 1
FIGURE 2.4.9

e
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PROBLEMS
1. Let R, be absolutely continuous with density

fl(x) = e-x, r Z 0; fl(w) = 0’ z < 0

Define
R, = R; if Ry <1
1 .
e E lf Rl > 1

Show that R, is absolutely continuous and find its density.

2. An absolutely continuous random variable R, is uniformly distributed between
—1 and +1. Find and sketch either the density or the distribution function of
the random variable R,, where R, = e—Fu.

3. Let R, have density fi(®) = 1/2%, x > 1; fi(z) = 0, < 1. Define
R, = 2R, for R, <2
=R? forR,>2

Find the density of R,.
4. Let R, be as in Problem 3, and define

Ry, = 2R, for R, <2
=5 for Ry >2

Find and sketch the distribution function of R,; is R, absolutely continuous?
5. (a) Let R, have distribution function

F@=1—-¢% >0

Define

Show that R, is uniformly distributed between 0 and 1.

(b) In general, if a random variable R, has a continuous distribution function
g(@) = Fy(x) and we define a random variable R, by R, = g(R;), show that
R, is uniformly distributed between 0 and 1.

6. If R is a random variable with distribution function F, where F is continuous
everywhere and has a continuous derivative f at all but a finite number of points,
show that R is absolutely continuous with density f.

e
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7. Establish the validity of the formula

@) =3 fih,@) b @)
=1

under the conditions given in the text.

8. Let R, be chosen at random between 0 and 1, with density f; [so that 3 f1(¥) dy =
1]. Let R, be the second digit in the decimal expansion of R;. (To avoid ambiguity,
write, for example, .3 as .3000 - - -, not .2999 - - - )

(a) Show that R, =k iff i + 107%k < 10R, < i + 107'(k + 1) for some i =
0,1,...,9. Hence
9 107 Y+10"2k+1072
PRy =k} =2 fiWdy, k=0,1,...,9
=0 J107i+10"%
(b) If R is uniformly distributed between 0 and 1, and R, = v 1_2, find the
probability function of R, = the second digit in the decimal expansion of
R;.

9. A projectile is fired with initial velocity v, at an angle 6 uniformly distributed

between 0 and /2 (see Figure P.2.4.9). If R is the distance from the launch site

R

FIGURE P.2.4.9

to the point at which the projectile returns to earth, find the density of R (consider
only the effect of gravity).

2.5 PROPERTIES OF DISTRIBUTION FUNCTIONS

We shall establish some general properties of the distribution function of an
arbitrary random variable. We need two facts about probability measures.

Theorem 1. Let (Q, &, P) be a probability space.
(a) If Ay, A,, . . . is an expanding sequence of sets in & , that is, A, < A,
foralln,and A =U?_ A,, then P(4) = lim__  P(4,).

n=1

e
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FIGURE 2.5.1 Expanding Sequence.

(®) IfA,, A, .. .is a contracting sequence of sets in F , that is, A,,, < A
Joralln,and A = N°_ A,, then P(4) = lim _  P(4,).

n

PROOF.
(a) We can write

A=A4, V(A —A) U (A3 —A) VU4, —A, ;)"
(see Figure 2.5.1; note this is the expansion (1.3.11) in the special case of
an expanding sequence). Since this is a disjoint union,
P(4) = P(4)) + P(4y — A)) + P(45 — A) + - - -
= P(A;) + P(A;) — P(A)) + P(Ag) — P(4)) + -+ since A, < A,
=lim P(4,)

(b) If 4=, A4,, then, by the DeMorgan laws, 4°= U,_, 4,
Now A,,; < A4,; hence 4,° < A°, . Thus the sets 4,° form an expanding
sequence, so, by (a), P(4,°) — P(A°); that is; 1 — P(4,) — 1 — P(4). The
result follows.

Theorem 2. Let F be the distribution function of an arbitrary random
variable R. Then

1. F(x) is nondecreasing; that is, a < b implies F(a) < F(b)
For we have shown [see (2.3.2)] that F(b) — F(a) = P{la < R < b} > 0.

2. limF(z) = 1

x>0

Letz,,n=1,2,... be a sequence of real numbers increasing to + oo. Let
A, = {R < z,}. Then the 4, form an expanding sequence. (Since x, <
Tpi1, R < @, implies R < #,,,,.) Now U 4, = Q, since, given any point

e
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F(x)

F(xf)/———

ﬂ o)

1 .
0

FiGURE 2.5.2 Right Continuity of Distribution Functions.

w € Q, R(w) is a real number; hénce, for sufficiently large n, R(w) < z,,
so that w € 4,,. Thus P(4,) - P(Q) = 1, that is, lim ,  F(z,) = 1.

3. lim F(z) =0
Let z,, n=1,2,... be a sequence of real numbers decreasing to —co.
Let 4, ={R < ,}. Then the 4, form a contracting sequence. (Since
Tppy < %y, RL %, implies R < ,.) Now N 4, = &, since if o is
any point of Q, R(w) cannot always be <z, because z, - —oo. Thus
P(4,) — P(z) = 0, that is, F(z,) — 0.

4. F is continuous from the right; that is, lim,_  + F(x) = F(x,)

Hence F assumes the upper value at any discontinuity; see Figure 2.5.2.

Let «,, approach z, from above; thatis, letz,, n =1, 2, . .. be a (strictly)
decreasing sequence whose limit is x,. As before, let 4, = {R < «,}. The
A, form a contracting sequence whose limit (intersection) is 4 = {R < %o}.
In order to show that M,—; 4, = {R < %}, we reason as follows. If
R(w) < =, for all n, then, since z, — x,, R(w) < x,. Conversely, if R(w) <
%,, then, since z, < =, for all n, R(w) < =, for all n. Thus P(4,,) — P(A);
that is, F(z,) — F(z,).

5. lim F(z) = P{R < x}
20
[We write F(zy) for lim_, , - F(x).]

Let»,, n =1,2,... be a (strictly) increasing sequence whose limit is .
Again let 4, = {R < =,}. The 4, form an expanding sequence whose union
is {R < zy}. To show Up; 4, = {R < %y}, we reason as follows. If w e
some 4,, then R(w) < =,, so that R(w) < x, Conversely, if R(w) < ,,
then, since , — x,, eventually R(w) < x,, so that we Uy, 4,. Thus
P(A,) — P{R < =,}, and the result follows.

6. P{R = z,} = F(%,) — F(y)

e
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Thus Fis continuous at z, iff P{R = z,} = 0, and if F is discontinuous at x,,
the magnitude of the jump is the probability that R = z,.
For P{R < z,} = P{R < z,} + P{R = x,}, so that

F(x,) = F(2p) + P{R = =}

ReMARK. The random variable R is said to be continuous iff its distribution
function Fx(z) is a continuous function of z for all z. In any reasonable
case a continuous random variable will have a density—that is, it
will be absolutely continuous—but it is possible to establish the
existence of random variables that are continuous but not absolutely
continuous.

7. Let F be a function from the reals to the reals, satisfying properties
1, 2, 3, and 4 above. Then F is the distribution function of some random vari-
able.

This is a somewhat vague statement. Let us try to clarify it, even though we
omit the proof. What we are doing essentially is making the statement “Let
R be a random variable with distribution function F.” It is up to us to supply
the underlying probability space. As we have done before, we take Q = E1,
& = Borel sets, R(w) = w. Now if Fis to be the distribution function of R,
we must have, for a < b,

P(a,b] = P{la< R < b} = F(b) — F(a) by (2.3.2)

It turns out that if F satisfies conditions 1-4, there is a unique probability
measure P defined on the Borel subsets of E* such that P(a, b] = F(b) — F(a)
for all real a, b, a < b; thus the probabilities of all events involving R are
determined by F. If we let a > — oo, we obtain P(— o0, b] = F(b), that is,
P{R < b} = F(b), so that in fact F is the distribution function of R. In the
special case in which F(z) = (2, f(t) dt, where fis a nonnegative integrable
function and (%, f(#) dx = 1, P(a, b] = F(b) — F(a) = J? f () de. This is
exactly the situation we considered in Theorem 1 of Section 2.3.

PROBLEMS

1. Let R be a random variable with the distribution function shown in Figure
P.2.5.1; notice that R is neither discrete nor continuous. Find the probability

e
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Fr(x)

win -
o

wim
I

Ficure P.2.5.1

of the following events.

@) {R =2}

®) {R <2}

) {R=20r.5<R<15}
(d{R=2o0r.5<R<3}

2. Let R be an arbitrary random variable with distribution function F. We have
seen that P{a < R < b} = F(b) — F(a), a < b. Show that

P{a < R <b} =F(b) — F(a)
P{a <R <b} =F@®) — F(a)
P{a <R <b} =F() — F(a
(Of course these are all equal if F is continuous at a and b.)

2.6 JOINT DENSITY FUNCTIONS

We are going to investigate situations in which we deal simultaneously with
several random variables defined on the same sample space. As an intro-
ductory example, suppose that a person is selected at random from a certain
population, and his age and weight recorded. We may take as the sample
space the set of all pairs (2, y) of real numbers, that is, the Euclidean plane
E2, where we interpret = as the age and y as the weight. Let R, be the age of
the person selected, and R, the weight; that is, R,(z,y) = =, Ry(z, y) = y.
We wish to assign probabilities to events that involve R; and R, simul-
taneously. A cross-section of the available data might appear as shown in
Figure 2.6.1. Thus there are 4 million people whose age is between 20 and 25
and (simultaneously) whose weight is between 150 and 160 pounds, and so
on. Now suppose that we wish to estimate the number of people between 22
and 23 years, and 154 and 156 pounds. There are 4 million people spread over
5 years and 10 pounds, or 4/50 million per year-pound. We are interested in

e
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weight
160
weight
170 o156 _
2 3 =
160 154
4 | s
150 150
20 25 30 age 20 22 23 25 &

FIGURE 2.6.1 Age-Weight Data (Num-  FIGURE 2.6.2 Estimation of Probabilities.
ber of People Is in Millions).

a range of 1 year and 2 pounds, and so our estimate is 4/50 x 1 x 2 = 8/50
million (see Figure 2.6.2). If the total population is 200 million, then

P{22 < R, < 23,154 < R, < 156}

should be approximately

8/50 = .0008
200

NotaTioN. {22 < R, < 23, 154 < R, < 156} means {22 < R, < 23 and
154 < R, < 156}.

What we are doing is multiplying an age-weight density 4/50 by an area
1 x 2 to estimate the number of people or, equally well, a probability density
4/[50(200)] by an area (1 x 2) to estimate the probability.

Thus it appears that we should assign probabilities by means of an integral
over an area. Let us try to construct an appropriate probability space. We
take Q = E?, &# = the Borel subsets of E% Suppose we have a nonnegative
real-valued function f on E?, with

[ [ r@pazay=1
Theorem 1 of Section 2.3 holds just as well in the two-dimensional case;
there is a unique probability measure P on & such that P(B) = (g f (%) dx

for all rectangles B.
If we define R,(z, y) = =, Ry(%, y) = ¥y, then

P{(R,, Ry) € B} = P(B) = f ff(x, y) dz dy
B

e
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For example,
a

b
Pasr<be<R<d = [ j@ydaay

Y=c
The joint distribution function of two arbitrary random variables R, and
R, is defined by
Fis(x,y) = P{R, <z, R, < y}

In the present case we have
Y

Fis(z, y) =fz=_ f(u, v) du dv

In general, if R, and R, are arbitrary random variables defined on a given
probability space, the pair (R,, R,) is said to be absolutely continuous iff
there is a nonnegative function f = f;, defined on E2 such that

x Y
Fio(2, y) = j f Ji2(u, v) du dv for all real z, y (2.6.1)

Ji2 is called the density of (R,, R,) or the joint density of R, and R,.
Just as in the one-dimensional case, if (R;, Ry) is absolutely continuous, it
follows that

P{(Rla R2) € B} = f12(x’ y) dx dy
]

for all two-dimensional Borel sets B (see Problem 1). Again, as in the one-
dimensional case, if fis a nonnegative function on E2? with

f—if_zf(x’ y)dedy =1

we can always find random variables R;, R, such that (R,, R;) is absolutely
continuous with density f. We take Q = E2?, # = Borel sets, R,(z,y) = z,
Ry(,y) =y, P(B) = [[pf(x, y) dx dy. Even if we use a completely different
construction, we get the same result, namely,

P{(Ry, Ry) € B} = f f f(z, y) dz dy
B

We have a similar situation in # dimensions. If the » random variables
Ry; Ry, ..., R, are all defined on the same probability space, the joint
distribution function of Ry, R,, . . ., R, is defined by

F12...'n(x1’ . 7xn) = P{Rl S Liyeos ’-Rn S xn}

The random vector or n-tuple (R, ..., R,) is said to be absolutely con-
tinuous iff there is a nonnegative function f;, , defined on E", called the

e
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density of (Ry, . .. “‘, R,) or the joint density of Ry, ..., R,, such that

&1

Tn
Funarn o) = [ [ il -, 262)
—o0 —o0
for all real 24, ..., x,.
Notice that f;,_ ., can be recovered from F;, _, by differentiation:
anF12...n(x13 ) xn)
Oz, - - - 0w,

at least at points where f;,___, is continuous.
If (R,, ..., R,) is absolutely continuous, then

=f12...n(w1, ey xn)

P{(Rl’ Tt Rn) EB} =f : 'ffm...n(xl’ tero xn) dxl e dxn
B

for all n-dimensional Borel sets B.
If fis a nonnegative function on E™ such that

f f f@p . w) ey doy = 1

we can always find random variables R;, ..., R, such that (R,,..., R,)
is absolutely continuous with density /. We take Q = E", & = Borel sets,
and define R,(zy,...,%,) =, ..., R, (2, ...,%,) = z,. If Bis any Borel
subset of E™, we assign

P(B)=f~--ff(wl,...,xn)dxl---dxn
B
Then (Ry, . .., R,) is absolutely continuous with density f.

» Example 1. Let

ful@,H)=1 f0<z<1 and 0<y<l1
=0 elsewhere '

(This is the uniform density on the unit square.) We may as well take Q = E2,
& = Borel sets, Ry(z, y) = =, Ry(z,y) =y,

P(B) = f ffm(x, y) dz dy
B

Let us calculate the probability that 1/2 < R, + R, < 3/2. Now

GSR+R<E={z9:% < Ry + Ry(z,y) < 3}
={=y::<c+y< 3

e
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Yy
\\
¥
b\ 32
2

O .
N\ .

[

2
FIGURE 2.6.3 FIGURE 2.6.4
Calculationof P{} <R, + R, < 4}.  Calculation of P{R; > R, > 2}.
Thus (see Figure 2.6.3)
PASR+R<H= | | fuezay

1/2<a+Y<3/2

= ff 1 dz dy = shaded area

shaded area
=1-2®) =1
If we want the probability that 1/2 < R, < 3/4and 0 < R, < 1/2, we obtain

3/4 1/2
P{%s&sg,osxgs%}=f f Ldedy = 3(}) =} <
=1/2 Jy=0
» Example 2. Let

S, y) =@z, y >0
=0 elsewhere

Let us calculate the probability that R, > R, > 2. We have (see Figure 2.6.4)

P{R, >R, >2} = f frala, y) dz dy

2=2y=>2
fee] x @
=f e” dxf e Vdy =f e e — e ) da
2 2 2
— 4 —4 __ 1,14
=e¢ — Ll =14«

To summarize:

P{(R,, R;) € B} = f fisle, 9) do dy

(z,v)eB

The probability of any event is found by integrating the density function

e
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i

over the set defined by the event. This is perhaps about as close as one can come
to a one-sentence summary of the role of density functions in probability
theory.

PROBLEMS

1. Let Fy, be the joint distribution function of R, and Ry, where (R;, Rs) is absolutely
continuous with density f;,. Show that

’ 1 (b2
Pla; < R, < bj,a, <Ry < by} = f Sz, y) dz dy

ay Jaz

b

The uniqueness part of Theorem 2.3.1 (generalized to two dimensions) shows that
P{(Rl’ R2) € B} =fff12(x: y) dx dy
B

for all two-dimensional Borel sets B.
HINT: If F'is the joint distribution function of the random variables R; and R,,
show that

Pla; < Ry < by, a5 < Ry < by} = F(by, by) — Flay, by) — F(by, ay) + Flay, ay)
2. If F is the joint distribution function of the random variables R;, R,, and R,

€xpress
P{a; < Ry < by,a; < Ry < by, a3 < Ry < by}
“in terms of F. Can you see a general pattern that will extend this result to n
dimensions ?

3. If
F(x,y) =1 forx +y >0

=0 forz +y <0
(see Figure P.2.6.3.), show that F cannot possibly be the joint distribution

FIGURE P.2.6.3

e
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function of a pair of random variables (see Problem 1.)
4. Let R, and R, have the following joint density:
fro@, y) = % if -1 <z<1 and -1<y<1
=0 elsewhere

(This corresponds to R; and R, being chosen independently, each uniformly
distributed between —1 and +1; we elaborate on this in the next section.)
Find the probability of each of the following events.

@) {R, + R, < }}
(b) {R; — Ry < }}
©) {RR; <1}

Ry, 1
@z <3
(e {

1
< 5}
) {IR,)] + IR <1}
®) {IRy| < By}

R,
R,

2.7 RELATIONSHIP BETWEEN JOINT AND INDIVIDUAL
DENSITIES; INDEPENDENCE OF RANDOM VARIABLES

If R, and R, are two random variables defined on the same probability
space, we wish to investigate the relation between the characterization of the
random variables individually and their characterization simultaneously.
We shall consider two problems.

1. If (R,, R,)isabsolutely continuous, are R, and R, absolutely continuous,
and, if so, how can the individual densities of R, and R, be found in terms of
the joint densities ?

2. Given Ry, R, (individually) absolutely continuous, is (R;, R;) absolutely
continuous, and, if so, can the joint density be derived from the individual
density ?

Problem 1

To go from simultaneous information to individual information is
essentially a matter of adding across a row or column. For example, suppose
that a group of 14 people has the age-weight distribution shown in Figure
2.7.1. The number of people between 20 and 25 years is found by adding the
numbers in the first column; thus 4 4 2 = 6.

Let us develop this idea a bit further. If R; and R, are discrete, the joint
probability function of R, and R, [or the probability function of the pair

e
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weight
170
2 3
160
4 5
150 age
20 25 30

FIGURE 2.7.1 Calculation of Individual Probabilities from Joint Probabilities.

(R;, R,)] is defined by
@, 9) =P{R,=x, R, =y} =,yreal (2.7.1)
If the possible values of R, are ¥y, ¥s, . . . , then
{Ri=z}={R =2, R =y} U{R =2, Ry =y} U~

since the events {R, = y,}, n = 1, 2, . . . are mutually exclusive and exhaus-
tive. Thus the probability function of R, is given by

pi(®) = P{R1 = x} = z DPa(%, Y) (2.7.2)
Similarly, ’
po(y) = P{R, = y} = 3 p1a(2, 9) (2.7.3)

There are analogous formulas in higher dimensions, for example,
Pual(® 9) = 3 P1as(®, 4,2)  Po(¥) = 2 P12s(%, ¥, 2)
z x,2

where p53(2, ¥,2) = P{R, = 2, R, = y, Ry = z}.

Now let us return to the absolutely continuous case. If (Ry, R,) is ab-
solutely continuous with joint density f;,, we shall show that R, is absolutely
continuous (and so is R,) and find f; and f, in terms of fi,.

For any z, we have, intuitively,

P{wy < Ry < @y + dao} ~ f1(%,) dz, (2.7.4)
But

Plzy < Ry < 2y + drg} = Plwy < Ry < @) + dg, —00 < Ry < o0}

mo+d:co )
- j d f @, 9) dy
gy —00

(see Figure 2.7.2).
If f1, is well-behaved, this is approximately

dz, f_ ? fuao, 1) dy 27.5)

e
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DAMINNNGNS

L2 xo + dx,

FIGURE 2.7.2 Calculation of Individual Densities from Joint Densities.

From (2.7.4) and (2.7.5) (replacing «, by ) we have

fi(@) = f_ " fule ) dy

To verify this formally, we work with the distribution function of R,.

Fy(%,) = P{R, < %o} = P{R; < %), —0 < R, < oo}

=" [ ? flz(x,y)dy} dx

L=—00 Y=—00

Thus F, is represented as an integral, and so R, is absolutely continuous with
density

fi@) = f_ " fua, v) dy 2.7.6)

Similarly,
fuly) = f_ ® fua(a, 9) da @1.7)

In exactly the same way we may establish similar formulas in higher dimen-
sions; for example,

s, 9) = [ Funl, ,2) (2738)
50 = [ [ ot 1,9 d 279)
The process of obtaining the individual densities from the joint density is

sometimes called the calculation of marginal densities, because of the simi-
larity to the process of adding across a row or column.

e
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y

1

4

0 1
FiGure 2.7.3
» Example 1. Let
Sz, y) =8xy, 0<y<Lx<1

=0 elsewhere
(see Figure 2.7.3).

fi(@) = f_ " i, 9) dy

=0 fz<0 or z>1
fo<«<1,

fi(®) =f 8zy dy = 42®  (Figure 2.7.4a)
. 0

fi) = f_ ? fual )

=0 ify<0 or y>1
fo<y<1,

1
(%) =f 8xy de = 4y(1 — y*)  (Figure 2.7.4b)
Y

Sketches of f; and f; are given in Figure 2.7.5. «

y
%
7 3
b) 7
¥

k x > X
o |[= 1 0 1

() (b)

FIGURE 2.7.4

e
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f, (%) f,()

4y(1-y2)

4x3

FIGURE 2.7.5

Problem 2

The second problem posed at the beginning of this section has a negative
answer; that is, if R, and R, are each absolutely continuous then (R,, R,)
is not necessarily absolutely continuous. Furthermore, even if (R,, R) is
absolutely continuous, f;(x) and f,(y) do nor determine fi,(z, y). We give
examples later in the section.

However, there is an affirmative answer when the random variables are
independent. We have considered the notion of independence of events, and
this can be used to define independence of random variables. Intuitively, the
random variables Ry, ..., R, are independent if knowledge about some of
the R; does not change the odds about the other R;’s. In other words, if
A; is an event involving R, alone, that is, if 4; = {R; € B;}, then the events
A,, ..., A, should be independent. Formally, we define independence as
follows.

DErINITION. Let R, ..., R, be random variables on (Q, #, P).R,, ..., R,
are said to be independent iff for all Borel subsets By, ..., B, of E*
we have

P{R,€B,,...,R,€B,} = P{R,€ B,} - - P{R, € B,}

Remark. If R, ..., R, are independent, so are R,,..., R, for k < n.
For
P{R,€B,,...,R,eB}=P{R,€B,,...,R.€B,
—w0 <Ry <0,...,—0 < R, < 0}
= P{R, € B,} ... P{R, € B}
since P{—o0 < R; < oo} = 1. If (R;, i€ the index set I), is an
arbitrary family of random variables on the space (Q, %, P), the

R; are said to be independent iff for each finite set of distinct indices
iy,...,ix€l, R;, ..., R, areindependent.

(284

e
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We may now give the solution to Problem 2 under the hypothesis of
independence.

Theorem 1. Let R,, Ry, ..., R, be independent random variables on a
given probability space. If each R; is absolutely continuous with density f;,
then (Ry, Ry, . . . , R,) is absolutely continuous; also, for all zy, . . ., x,,

f;.2~'~~n(x19 Loy ooy xn) =.f1(x1)f2(x2) o 'fn(xn)

Thus in this sense the joint density is the product of the individual densities.

Proor. The joint distribution function of R;, . .., R, is given by
Fipp(2y, ..., 2,)=P{R, < ,...,R, L z,}
= P{R, < ,}---P{R, < z,}  byindependence

= ["hw du [ 1) s,

=£‘; . .J::ﬁ(ul) e fo(u,) duy - - - du,

It follows from the definition of absolute continuity [see (2.6.2)] that (R, . . . ,
R,)is absolutely continuous and that the joint density is f15..,(%y, . . . , %) =

file) - fu(®).

Note that we have the following intuitive interpretation (when n = 2).
From the independence of R, and R, we obtain

Ple <R <z+de,y <R, Z<y+ dy}
=Pz <R, <2+ de}Ply< R, <y + dy}

If there is a joint density, we have (roughly) f,(z,y) dx dy = f,(x) dx
J2(y) dy, so that fi(z, y) = f1(@)fo(y).

As a consequence of this result, the statement “Let R,, ..., R, be inde-
pendent random variables, with R; having density f;,”” is unambiguous in the
sense that it completely determines all probabilities of events involving the
random vector (Ry, ..., R,); if B is an n-dimensional Borel set,

PUR o R)EBY =+ [ e da - d,
B

We now show that Problem 2 has a negative answer when the hypothesis
of independence is dropped. We have seen that if (R,, ..., R,) is absolutely
continuous then each R; is absolutely continuous, but the converse is false

e
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in general if the R; are not independent; that is, each of the random vari-
ables Ry, ..., R, can have a density without there being a density for the
n-tuple (R, ..., R,).

» Example 2. Let R, be an absolutely continuous random variable with
density f, and take R, = R;; that is, Ry(w) = R;(w), w € Q. Then R, is
absolutely continuous, but (R, R,) is not. For suppose that (R;, R,) has a
density g. Necessarily (R;, R;) € L, where L is the line y = z, but

P{(Ry, Ry) € L} = f f gz, y) de dy
L

Since L has area 0, the integral on the right is 0. But the probability on the
left is 1, a contradiction. <

We can also give an example to show that if R, and R, are each absolutely
continuous (but not necessarily independent), then even if (R, R,) is ab-
solutely continuous, the joint density is not determined by the individual
densities.

» Example 3. Let

e =i+ ey, St
z,y) = (1 + 2y),
12 1 _1<y<1
=0 elsewhere
Since
1 1
fxdx:f ydy =0,
—1 -1
5@ = fumpdy=1  —1<w<1
=0 elsewhere
(=% —-1<y<L1
=0 elsewhere
But if
fmw=1 o=t
x,Y) =1,
12 1 1<y<i
=0 elsewhere

we get the same individual densities. <

e
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x4/

FIGURE 2.7.6

Now intuitively, if R, and R, are independent, then, say, eF1 and sin R,
should be independent, since information about e®: should not change the
odds concerning R, and hence should not affect sin R, either. We shall prove
a theorem of this type, but first we need some additional terminology.

If g is a function that maps points in the set D into points in the set E,}
and T < E, we define the preimage of T under g as

g (T)={xeD:g)e T}

For example, let D = {%,, %,, %3, 24}, E = {a, b, c}, g(x;) = g(x,) = g(x,) =
a, g(x,) = c (see Figure 2.7.6). We then have

g Ha} = {&y, 75, 2}
g_l{aa b} = {xla Loy xa}
g—-l{a5 C} = {xl’ Ty, T3, x4}
gHby=9
Note that, by definition of preimage, » € g~X(T) iff g(x) € T.

Now let R, . . . , R, be random variables on a given probability space, and
let g4, . . . , g, be functions of one variable, that is, functions from the reals
to the reals. Let Ry = g1(Ry), - - . , R, = g.(R,); thatis, R}(w) = g;,(R;(w)),
o € Q. We assume that the R; are also random variables; this will be the case
if the g; are continuous or piecewise continuous. Specifically, we have the
following result, which we shall use without proof.

If g is a real-valued function defined on the reals, and g is p1ecew1se con-
tinuous, then for each Borel set B < E!, g~1(B) is also a Borel subset of E*.
(A function with this property is said to be Borel measurable.)

Now we show that if g, is piecewise continuous or, more generally, Borel
measurable, R/ is a random variable. Let B; be a Borel subset of E*. Then

R{HB) = {: Ri(w) € B}
= {w: g(Ry(w)) € B}

= {0: R(w) e g (B)} € F
since g;'(B}) is a Borel set.

+ A common notation for such a function is g: D — E. It means simply that g(x) is defined
and belongs to E for each & in D.

e
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Similarly, if g is a continuous real-valued function defined on E”, then, for
each Borel set B < E', g7}(B) is a Borel subset of E™. It follows that if
R,, ..., R, are random variables, so is g(Ry, . . . , R,).

Theorem 2. If R,,...,R, are independent, then R|, ..., R are also
independent. (For short, “functions of independent random variables are
independent.””)

Proor. If By, ..., B, are Borel subsets of E', then
P{Ri€B;,...,R,eB,} = P{g,(R)€EB; ..., g, R,)€B,}
= P{R, € g;'(B)), ..., R, € g;'(B))}

=TI P{R, e g;'(B;)} by independence of the R,
=1

=TT Pig(r) e B} = TT P{R < B}

PROBLEMS

1. Let (R;, Ry) have the following density function.
fro@,y) =4doy  fO<2<1,0<y<l,z>y
= 6a? if0<z<1,0<y<l,e<y
=0 elsewhere

(a) Find the individual density functions f; and f;.
(b) If A = {R; <3}, B ={R, < 4}, find P(4 U B).

2. If (Ry, R,) is absolutely continuous with

fro®,y) =27, 0<y<w
=0 elsewhere
find f; (%) and f5(y).
3. Let (R;, Ry) be uniformly distributed over the parallelogram with vertices
(-1,0), (1,0), (2, 1), and (0, 1).
(a) Find and sketch the density functions of R; and R,.
(b) A new random variable R; is defined by R3 = R; + R,. Show that R; is
absolutely continuous, and find and sketch its density.

4. If R;, R,, . .., R, are independent, show that the joint distribution function is
the product of the individual distribution functions; that is,

Fion(®y, oy . . ., 25) = Fi(x)Fo() - - - F(x,) for all real y, ..., 2,

e
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[Conversely, it can be shown that if Fi,..n(%y, . .., %) = Fi(z;) - - - F(%,) for
allreal z, ..., 2,, then Ry, ..., R, are independent.]

5. Show that a random variable R is independent of itself—in other words, R
and R are independent—if and only if R is degenerate, that is, essentially constant
(P{R = ¢} =1 for some c).

6. Under what conditions will R and sin R be independent? (Use Problem 5 and
the result that functions of independent random variables are independent.)

7. If '(Rl, ..., R,) is absolutely continuous and fi,...,(%y, . . . , %,) = f1(x) * * - fu (%)
for all @y, . .., x,, show that Ry, . .., R, are independent.

8. Let (R,, R,) be absolutely continuous with density f1,(%,y) = (x + )/8,0 <«
<2,0 <y <2; fio(@, y) = 0 elsewhere.

() Find the probability that R, + R, < 1.

(b) Find the conditional probability that exactly one of the random variables
Ry, Ry is <1, given that at least one of the random variables is <1.

(c) Determine whether or not R, and R, are independent.

2.8 FUNCTIONS OF MORE THAN
ONE RANDOM VARIABLE

We are now equipped to consider a wide variety of problems of the following
sort. If R,, ..., R, are random variables with a given joint density, and we
define R = g(R,, . .., R,), we ask for the distribution or density function
of R. We shall use a distribution function approach to these problems; that
is, we shall find the distribution function of R directly. There is also a density
function method, but it is usually not as convenient; the density function
approach is outlined in Problem 12. The distribution function method can be
described as follows.

- ff Foa(@s s @) day - - da,

gley,....25) <z

» Example 1. Let R, and R, be uniformly distributed between 0 and 1,
and independent.
(a) Let R; = R, + R,. Then, since f,(7, ¥) = f1(*)f2(y) by independence,

Fy(z) = P{R, + Ry < 2} = f Fi@)fuly) dz dy

a+Y<z

If 0 < z < 1 (see Figure 2.8.1a),

2
Fy(z) = ff 1 dx dy = shaded area = Ez—

shaded area

e
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of N ! 0 1 AN *

(@) ®

f3(2)

©

FIGURE 2.8.1 (a) Calculation of Fs(z), 0 < z < 1. (b) Calculation of Fy(z), 1 <z < 2.
© f3@).

If 1 <2z < 2 (see Figure 2.8.1b),

2
F4(2) = shaded area = 1 — (2_2_2

Thus f3(2) = 2, 0<2<1; f3(:) =2 — 2, 1 <2< 2; f3(z) = 0 elsewhere
(see Figure 2.8.1c).

(b) Let R; = R,R,. (Notice that 0 < R; < 1.)If 0 <z < 1 (see Figure
2.8.2),

Fy2) = P{R,R, < 2} = f f (@, v) dz dy

2Y<gz

1
=shadcdarea=z+f Pdz=2—zInz
z X

f2:(;) = —1nz 0<z<L1

=0 elsewhere

e
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f3(2)

%z

(@) : (b)

FIGURE 2.8.2

(c) Let Ry = max (Ry, Ry). If 0 < z < 1 (see Figure 2.8.3),
P{R; < 2z} = P{R, < 7, R, < 2} = shaded area = 22
[Alternatively, F3(z) = P{R, < 2}P{R, < 2z} = 2® by independence.]
f3(2) = 2z, 0<2<L1«

Before the next example, we introduce the Gaussian or normal density
function.

f(x) = \/Zl_b e @2 4 real (b > 0, a any real number) (2.8.1)

w
This is the familiar bell-shaped curve centered at a (Figure 2.8.4); the smaller
the value of b, the higher the peak and the more f is concentrated close to
z = a. To check that this is a legitimate density, we must show that the area

y f3(2)

> X 2

(©) (®)

FIGURE 2.8.3

e



46628-0 Ash 1 4/14/08 8:25 AM Page$8

88 RANDOM VARIABLES

f(=)

|
|
|
|
|
a

FIGURE 2.8.4 Normal Density.

under fis 1. Let
I =f°° e da
Then
—f @ dxf 2 dy —f f e~ @+ 4o dy = (in polar coordinates)
f do f ' dr =
o 0

f Tertde = 7 (2.8.2)

so that

Thus

® 1 —(z—a)?/26° d : r— a)f
— = th = — d =1
Lo N * (W‘ Y= ) e gm e

» Example2. Let R, R,, and R; be independent, each normally distributed

(i.e., having the normal density), witha = 0,5 = 1. Let Ry = (R,®2 + R2 +

Ry»)'2; take the positive square root so that R, > 0. (For example, if

R,, R,, and R; are the velocity components of a particle, then R, is the speed.)
Find the distribution function of R,.

Fy(w) = P{R, < w} = P{R® + R + R < w?}

f (277)—3/2 —(a"+ vz )/Zd.’l? dy dz

&’ 4y° +2z <w?

We switch to spherical coordinates:
x = rsin ¢ cos 0
y = rsin ¢ sin 0
2 =rcos¢

e
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(¢ is the “cone angle,” and 6 the “polar coordinate angle.”) Then
27 T w
Fy(w) =f dﬂf dqu Q)2 e %% sin ¢ dr
0 0 0

= Qm)¥ 2(27r)(2)J‘ re 2 dr
0
Thus R4 has a density given by

fa(w) = L >0

\/271'

=0, w<0 <«

» Example 3. There are certain situations in which it is possible to avoid
all integration in an n-dimensional problem. Suppose that Ry, ..., R, are
independent and F; is the distribution function of R, i=1,2,...,n

Let T), be the kth smallest of the R;. [For example, if » = 4 and R,(w) =3,
Ry(w) = 1.5, Ry(w) = —10, Ry(w) = 7, then

Ty(w) = min R{(w) = Ry(w) = —10, Ty(w) = Ry(w) = 1.5

Ty(w) = Ry(w) = 3, Tyw) = max Ryw) = Ry(w) =17 ]
(Ties may be broken, for example, by favoring the random variable with the
smaller subscript.)

We wish to find the distribution function of Tj. When k =1 or k = n,
the calculation is brief.

P{T, < #} = P{max(R,,...,R,) < a} = P{R; < z,...,R, L a}
= ;[i P{R; < =} by independence
Thus .
Fr @) =TT F(@)
P{T,<a}=1—P{T; > 2} =1— P{min(R,,...,R,) > 2}

=1—P{R, >2,...,R,>a}=1—TIP{R, > 2}
Thus =

Fr@=1-110 - F@)

e



46628-0 Ash 1 4/14/08 8:25 AM Page$0

90  RANDOM VARIABLES
REMARK. We may also calculate Fp, (2) as follows.

P{T, < «} = P{at least one R; is <z}
= P4, WA, U---UA,) where 4, ={R; < =z}
= P(4,) + P(4,° N A4;) + -+
+ P4, NN AL, N A,) by (1.3.11)
But
PA° N NA; ; NA)=P{R, > ...,R_; >z R, Lz}
=1 - F,®) 1 — F_(*)F()
Thus .
Fp, (%) = Fy(%) + (1 — Fy(@))Fy(2) + (1 — Fy(2))(1 — Fy(*))Fy()
+ 0+ (1= Fy@) - (1 = Fa(2))F (%)

Hence
1—Fp,=(1—-F)1—-F,—(0—F)F;—"--
— (1 —=Fy)---(1—F,1)F,]
=1 —F)(1 - Fyll — F; — (1 — FyF,
— =0 =Fy) - (1—F,F,]
=110 - F)
as above. o

We now make the simplifying assumption that the R; are absolutely con-
tinuous (as well as independent), each with the same density f. [Note that

P{R; = R;} = fff(%)f(%) dz;dz; =0  (if i # )

Ti=Tj
Hence

P{R, = R, for at least one i # j} < > P{R,=R;} =0
i

Thus ties occur with probability zero and can be ignored.]
We shall show that the T}, are absolutely continuous, and find the density
explicitly. We do this intuitively first. We have

Pa<T,<z+de}=Pa< T, <z+dz, T, = Ry}
+Pr<<T,<x+4+de,T,=Ry}+ -+ +Pe<T,<x+dx, T,=R,}

by the theorem of total probability. (The events {T}, = R;}, i=1,...,n,
are mutually exclusive and exhaustive.) Thus

Pla<T,<z+de} =nPe<T,<x+de, T, =Ry} by symmetry
=nP{T, = R, x < R, < x + dr}

e



46628-0 Ash 1 4/14/08 8:25 AM Page$

2.8 FUNCTIONS OF MORE THAN ONE RANDOM VARIABLE 91

Now for R; to be the kth smallest and fall between « and = + dz, exactly
k — 1 of the random variables R,, . . . , R, must be <R, and the remaining
n — k must be >R, [and R, must lie in (z, x + d¥)].

Since there are (7}) ways of selecting k — 1 distinct objects out of n — 1,

we have
P{x<Tk<x+dm}=n(z—i)P{x<Rl<x+dx,

Ry <Ry, ...,R,<R,R;>Ry...,R, >Ry}
But if R, falls in (x, z 4+ dx), R; < R, is essentially the same thing as R; < z,
so that

Pla < T <+ def =}, ~ )@ de(PR, < 2R, > 2
=~ ) F@E@ 1 ~ Fay da
Since P{z < T;, < x + dx} = fi(x) dx, where f}, is the density of T, (assumed
to exist), we have.
n

5@ =n(; ~ 1)f(w)(F(x))’°“l(1 — F()y*

[When k = n we get nf (x)(F(zx))"* = (d|dx)F(x)", and when k = 1 we get
nf(@)(1 — F(x))** = (dlde)(1 — (1 — F(x))*), in agreement with the
previous results if all R; have distribution function F and the density f can
be obtained by differentiating F.]

To obtain the result formally, we reason as follows.

P{T,< 2} =3 P{T, < #, T, = R;} = nP{T, < =, T, = Ry}
i=1

= nP{R, < z, exactly k — 1 of the variables R,, ..., R, are
<R,, and the remaining n — k variables are >R}
=n(z_ 1)P{ng %, Ry <Ry ...,R, <R,Ry1>Ry,...,

R, > R} by symmetry

A ] N N
=n . e
(k -_ 1) L1=—00 J Xg=—00 Zp=—00 o Xf+1=21

[ g fe e d,

Zn

= [ n( 7)) — Fay

e



46628-0 Ash 1 4/14/08 8:25 AM Page?&

92 RANDOM VARIABLES

The integrand is the density of T;, in agreement with the intuitive approach.
Ty,..., T, are called the order statistics of Ry, ..., R,.

ReEMARK. All events

{R < z, Ri2 < Ri17 R Rik < Rila R, > Ri1> cee s -Rz'ﬂ > Ril}

i = Yk+1
have the same probability, namely,

Ziy

[ u, [ s o[ 1w do, [ w0 day,,

te Oof (xz,,) dxi,,

x4y

This justifies the appeal to symmetry in the above argument. «

PROBLEMS

1. Let R, and R, be independent and uniformly distributed between 0 and 1.
Find and sketch the distribution or density function of the random variable
Rs = Ry/R2

2. If R, and R, are independent random variables, each with the density function
f@) =e*,x>0;f(x) =0,z <0, find and sketch the distribution or density
function of the random variable R;, where
(@ R3 =R, + R,

(b) Ry = Ry/Ry

3. Let R, and R, be independent, absolutely continuous random variables, each

normally distributed with parameters @ = 0 and b = 1; that is,

[@ = fila) = ;/17; eetle

Find and sketch the density or distribution function of the random variable
R; = Ry/R,.

4. Let R; and R, be independent, absolutely continuous random variables,
each uniformly distributed between 0 and 1. Find and sketch the distribution
or density function of the random variable R, where

_ max (Ry, Ry)
> min (R, Ry

RemARrk. The example in which R; = max (R;, Ry) 4+ min (R,, R;) may
occur to the reader. However, this yields nothing new, since

e
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max (Ry, Ry) + min (R;, Ry;) = R; + R, (the sum of two numbers is
the larger plus the smaller). '

. A point-size worm is inside an apple in the form of the sphere 22 + y* + 2% =

4a?. (Its position is uniformly distributed.) If the apple is eaten down to a core
determined by the intersection of the sphere and the cylinder * + y* = a2,
find the probability that the worm will be eaten.

. A point (Ry, Ry, Ry) is uniformly distributed over the region in E?* described

by 2? +y* < 4,0 <z < 3. Find the probability that R; < 2R;.

. Solve Problem 6 under the assumption that (R,, R,, Ry) has density f(z, y, 2) =

k2? over the given region and f(z,y,2) = 0 outside the region.

. Let Ty,..., T, be the order statistics of Ry, ..., R,, where R,..., R, are

independent, each with density /. Show that the joint density of 75, . .., T, is
given by
g(xla"'.sx'n)=n!f(xl)“'f(xn)’ r <y < <2,
=0 elsewhere

HINT: Find P{T; < by,...,T, <b,, Ry <Ry, <--+ <R}

. Let Ry, Ry, and R; be independent, each with density

f@=e*, 22>0
=0, z <0
Find the probability that R, > 2R, > 3R,

A man and a woman agree to meet at a certain place some time between 11 and
12 o’clock. They agree that the one arriving first will wait z hours, 0 <z < 1,
for the other to arrive. Assuming that the arrival times are independent and
uniformly distributed, find the probability that they will meet.

If n points Ry, . . . , R, are picked independently and with uniform density on a
straight line of length L, find the probability that no two points will be less
than distance d apart; that is, find

P{min [R; — R,| > d}
i#j
HINT: First find P{min, ,; |R; — R;| > d, R; < Ry < -+ < R,}; show that the
region of integration defined by this event is
xn—l + d S xn .<_ L
Zy o +d <2, 4 <L—d
xn_3+d$xn_2 SL _2d

% +d<a2, <L —(n—2d
0L, <L—m—-1d

e
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12.

13.

14.

15.
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(The density function method for functions of more than one random variable.)
Let (Ry, ..., Ry) be absolutely continuous with density fis...,(%y, ..., 2,).
Define random variables Wy, ..., W,by W; = g;,(Ry, ..., Ry),i =1,2,...,
n; thus (Wy,..., W,) =g(Ry, ..., R,). Assume that g is one-to-one, con-
tinuously differentiable with a nonzero Jacobian J, (hence g has a continuously
differentiable inverse #). Show that (W, ..., W,) is absolutely continuous
with density

[ioeen® = froed BN T, Y = @15 -+ 5 Yn)
_ Srn(h(¥))
o (x—rey

[The result is the same if g is defined only on some open subset D of E™ and
P{(R,,...,R))eD} =11]

Let R; and R, be independent random variables, each normally distributed
with @ = 0 and the same b. Define random variables R, and 6, by

R, = Ry cos b, (taking R, > 0)
Ry, = Ry sin 6,
Show that R, and 6, are independent, and find their density functions.

Let R, and R, be independent, absolutely continuous, positive random variables
and let R; = R R,. Show that the density function of Rj is given by

® 1
fi@) = fo - fl(%) faW)dw, 23>0
=0, 2 <0

Note: This problem may be done by the distribution function method or by
applying Problem 12 as follows.

Ry = RR,

R, =R,
Use the results of Problem 12 to obtain f3,(z, w) and from this find f3(2).

Because of inefficiency of production, the resistances R; and R, in Figure
P.2.8.15 may be regarded as independent random variables, each uniformly

R,

FIGURE P.2.8.15

e
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distributed between 0 and 1 ohm. Find the probability that the total resistance
R of the network is <% ohm. .

16. A chamber consists of the inside of the cylinder x? + y* = 1. A particle at
the origin is given initial velocity components v, = R, and v, = R, where R,
and R, are independent random variables, each with normal density f(x) =
(27)~Y2 ¢==*/2, (There is no motion in the z-direction, and no force acting on the
particle after the initial “push” at time ¢ = 0.) If 7 is the time at which the
particle strikes the wall of the chamber, find the distribution and density
functions of T.

2.9 SOME DISCRETE EXAMPLES

In this section we examine some typical problems involving one or more
discrete random variables. We first introduce the Poisson distribution, which
may be regarded as an approximation to the binomial when the number n
of trials is large and the probability p of success on a given trial is small.

Let R, be the number of successes in #» Bernoulli trials, with probability
Pn of success on a given trial. We have seen (Section 1.5) that R, has the
binomial distribution;} that is, the probability function of R, is

pRn(k) = (Z)pnk(l - pn)n—kn k=0,1,...,n

We now let n— oo, p, — 0 in such a way that np, — 4 = constant. We
shall show that
e 'k
Pr,(K) — T k=0,1,...

To see this, write

—1---(n—k+1 n—
pa ) = =D Yot — py
e — e — —_ n—k
_=ym@ —=2/m)--- (1 = (k= D/n) (npn)k(l _ Q@)
k! n
Now (1 — np,[n)™—1 and (1 — np,[n)" — e~* (Problem 1), and the result
follows.
We call p
p(k) = = > k=0,1,2,... (2.9.1)

+ When a probabilist says he knows the distribution of a random variable R, he generally
means that he has some way of calculating P{R€ B} for all Borel sets B. For example, he
might know the distribution function of R, or the probability function if R is discrete, or
the density function if R is absolutely continuous. Thus to say that R has the normal
distribution means that R has a density given by the formula (2.8.1).

e
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the Poisson probability function; a random variable which has this prob-
ability function is said to have the Poisson distribution. (To check that it is a
legitimate probability function:

2
=e‘l|:1+2+%+-'-]=e“‘e‘=1)

) e—). }.L
2

r=o0 k!

We shall show that if R, and R, are independent, each having the Poisson
distribution, then R, + R, also has the Poisson distribution. We first need a
characterization of independence in the discrete case.

Theorem 1. Let R,,...,R, be discrete random variables on a given
probability space, with probability functions py,...,p,. Let py,s..., be the
Jjoint probability function of Ry, . .., R,, defined by

Piz... 'n(xh ey xn)‘= P{Rl =Xy, ..., Rn S xn} (2.9.2)
Then Ry, . .., R, are independent if and only if

Pia. . n(@yy oo 2y) = pi(xy) - pL(2,) forallz,, ..., =,

Proor. If R;, ..., R, are independent, then

Pra...a(®y, ..., 2,) =P{R, =2x,...,R, =z,}
=P{R, =z} - P{R, = z,} by independence
= pa(®) * - pal,)

Conversely, if pis... (2, ..., 2,) = pi(z)) - p.(x,), then for all one-
dimensional Borel sets By, ..., B,,

P{R,€B,,...,R,€B,}= 3 PR ,==,...,R, =2,
21€B1,..., xn€EBy
= >  px) e pue)
21€B1,..., 2p€By
= z Pl(xl) e Z pn(xn)
x1€B1 Zn€Bn

= P{RIEBI} e P{RnEBn}
Hence Ry, ..., R, are independent.
REMARKS. If R, and R, are not independent, the joint probability function of

R, and R, is not determined by the individual probability functions.
For example, if P{R, =1, R,=1} = P{R, =2, R, =2} = a,

e
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P{R,=1,R, =2} =P{R, =2, Rz—l}—%v—a 0 < a<i,then
P{R, = 1} = P{R, = 2} = ;and P{R, = 1} = P{R, = 2} = }. Thus
we have uncountably many joint probability functions giving rise
to the same individual probability functions.

If we wish to define discrete random variables R, . . . , R, having a specified
joint probability function p;, ... ,, there is no difficulty in constructing an
appropriate probability space. Take Q = E", % = all subsets of Q (since
the random variables are discrete, there is no need to restrict to Borel sets),
PB) =2 4. onep P12 o1, ..., %), BEF.

Now let R, and R, be 1ndépendent with R; having the Poisson distribution

with parameter A, i=1,2. By Theorem 1, the joint probablhty functlon of
R; and R, is

’ A2
P, k) = P{Rl =j,R, = k} = g hith) L2
jlk!
We find the probability function of R; + R,.
P{R1 + R, = m} = Z P12(J, k)
J+k=m
_ e_.(j,l_i.;.z) m A.” m—J
j=oj!(m — j)!
But (4, + A,)™ = 2™ (™) AjAF~7 by the binomial theorem, so that

G_U'PH'Z)(Z]_ + lz)m

P{R1+R2=m}= m'

=0,1,...

Thus R, + R, has the Poisson distribution with parameter 4; + 4.
By induction, it follows that the sum of »n independent random variables

R,, ..., R,, where R, is Poisson with parameter A, has the Poisson distri-
bution with parameter 4, + - -+ + 4,.

The use of the Poisson distribution as an approximation to the binomial is
illustrated in the problems.

» Example 1. Six unbiased dice are tossed independently. Let R, be the
number of ones, R, the number of twos; R, and R, have the binomial distri-
bution with n = 6, p = 1/6; that is,

k = k = - E) k 0, Py ) ) 9 s

e
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Let us find the joint probability function p;,(j ], k) of R, and R,. This is a multi-
nomial problem.

b, = “l occurs” on a giventoss py =% Ny =]
b, = “2 occurs” P2=% ny,=k n==6
by = ““3, 4, 5, or 6 occurs”’ ps=1% ng=6-j—k

Thus

6! 1Y+ 2\0=7*
', k p— - A ’
P1(J> k) jlk!(6 —j — k)!(6) (3)

J,k=0,1,2,3,4,56;j + k<6

Thus the multinomial formula appéars as the joint probability function of a
number of random variables, each of which is individually binomial.
Now let us find the conditional probability function of R, given R,; that is,

ik = P{R, =j| R, =k}
_ (U k) _ [6Yj1 k(6 =) — K)11(1/6)*(4/6)* ="
pa(k) [6!/k! (6 — k)!](1/6)%(5/6)**

(6 —Kk)! 45N 6 — kY (1Y ﬂ)s—k—i
j1e—j—kt st (5—’) ( j ) (5) (5
Intuitively, given R, = k, there are 6 — k remaining tosses. The possible
outcomes are 1, 3, 4, 5, or 6 (2 is not permitted), all equally likely. Thus,
given R, =k, R, should be binomial with n =6 — k, p = 1/5. This is
verified by the formal calculation above.

REMARK. Since the discrete random variables R; and R, are independent iff
P1e(j> k) = p1(j)ps(k) for all j, k, it follows that independence is
equivalent to p,(j | k) = py(j) for all j, k [such that p,(k) > 0].

In the present case p,(j|k) is the binomial probability function
with n =6 —k, p=1/5, and p,(j) is the binomial probability
function with n = 6, p = 1/6. Thus R, and R, are not independent.
This is clear intuitively; for example, if we know that R, = 6, the
odds about R, are certainly affected ; in fact, R, must be 0. «

PROBLEMS

1. (a) If |z| < 1/2, show that
In(l +2) =z + 622

where |0] < 1, 6 depending on x.

e
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(b) Show that if z, — 4, then

xn
(1__’_')%4
n

2. If R has the binomial distribution with 7 large and p small, the Poisson approxi-
mation with 4 = np may be used (a rule of thumb that has been given is that the
approximation will be good to several decimal places if » > 100 and p < .01).
Feller (An Introduction to Probability Theory and Its Applications, vol. 1,
John Wiley and Sons, 1950) gives several examples of such random variables:

(i) The number of color-blind people in a large group (or the number of people
possessing some other rare characteristic).

(ii) The number of misprints on a page.

(iii) The number of radioactive particles (or particles with some other dis-
tinguishing characteristic) passing through a countmg devnce in a glven
time interval.

(iv) The number of ﬂymg bomb hits on a part1cu1ar area of London durmg
World War II (n is the number of bombs in a given period of time, p the
probability that a single bomb will hit the area).

(v) The number of raisins in a cookie.

[Here the assumptions are not entirely clear. Perhaps what is envisioned is that

the dough is bombarded by a raisin gun at some stage in the cookie-making

process. It would seem that this is simply a peaceful version of example (iv).]

In the following exercises, use the Poisson approximation to calculate the
probabilities.

(a) If p = .001, how large must n be if P{R > 1} > .99?
(b) If np = 2, find P{R > 3}.

3. The joint probability function of two discrete random variables R, and R, is as

follows:
P12(1, 1) =4
pe(1,2) =3
pi2(2,1) = .2
P12(2,2) = .1

Pi2(j, k) =0  elsewhere

(a) Determine whether or not R; and R, are independent.
(b) Find the probability that R;R, < 2.

4. Let R, and R, be independent; assume that R, has the binomial distribution
with parameters n and p, and R, has the binomial distribution with parameters
m and p. Find P{R; = | R, + R, = k}, and interpret the result 1ntu1t1ve1y
[Note: one approach involves establishing the formula ("1™) = >% 4 (D(,™).]
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Expectation

3.1 INTRODUCTION

We begin here the study of the long-run convergence properties of situations
involving a very large number of independent repetitions of a random experi-
ment. As an introductory example, suppose that we observe the length of a
telephone call made from a specific phone booth at a given time of the day,
say, the first call after 12 o’clock noon. Suppose that we repeat the experiment
independently n times, where » is very large, and record the cost of each
call (which is determined by its length). If we take the arithmetic average of
the costs, that is, add the total cost of all » calls and then divide by #, we
expect physically that the arithmetic average will converge in some sensz to a
number that we should interpret:as the long-run average cost of a call. We
shall try first to pin down the notion of average more precisely.
Assume that the cost R, of a call in terms of its length R, is as follows.

If 0 < R; < 3 (minutes) R, = 10 (cents)

If3<R, L6 R, =20

If6e <R L9 R, = 30
(Assume for simplicity that the telephone is automatically disconnected after
9 minutes.)
100

e
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Thus R, takes on three possible values, 10, 20, and 30; say P{R, = 10} =
.6, P{R, = 20} = .25, P{R, = 30} = .15. If we observe N calls, where N
is very large, then, roughly, {R, = 10} will occur .6/ times; the total cost of
calls of this type is 10(.6N) = 6N. {R, = 20} will occur approximately .25N
times, giving rise to a total cost of 20(.25N) = 5N. {R, = 30} will occur
approximately .15N times, producing a total cost of 30 (.15N) = 4.5N. The

total cost of all calls is 6N + SN + 4.5N = 15.5N, or 15.5 cents per call on
the average. '

Observe how we have computed the average.

10(.6N) + 20(.25N) + 30(.15N)
N

= 10(.6) + 20(.25) + 30(.15)
= ; YP{R, = y}

Thus we are taking a weighted average of the possible values of R,, where the
weights are the probabilities of R, assuming those values. This suggests the
following definition.

Let R be a simple random variable, that is, a discrete random variable
taking on only finitely many possible values. Define the expectation [also
called the expected value, average value, mean value, or mean] of R as

E(R) = > 2P{R = z] (3.1.1)
Since R is simple, this is a finite sum and there are no convergence problems.
In particular, if R is identically constant, say R = ¢, then E(R) = cP{R =
¢} = c¢. For short,

E(c)=c (3.1.2)

Note that if R takes the values «y, . . . , #,, each with probability 1/, then
E(R) = (%, + - - - + x,)/n, as we would expect intuitively. In this case each
z; is given the same weight, namely, 1/n.

We now have the problem of extending the definition to more general
random variables. If R is an arbitrary discrete random variable, the natural
choice for E(R) is again Y, «P{R = x}, provided that the sum makes sense.
(Theorem 1 will make this precise.)

Similarly, let R, be discrete and R, = g(R,). Since R, is also discrete, we
have E(R,) = 3, yP{R, = y}. However, if 2, z,, . .. are the values of R,
then with probability pg (»;) we have R, = z;, hence R, = g(x,). Thus if
our definition of expectation is sound, we should have the following alter-
nate expression for E(R,):

E(R,) = E[g(R))] = Zg(xi)pRl(xi) (3.1.3)

e
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fR‘l(x)

> X

x; xi+dxi

FIGURE 3.1.1

again a weighted average of possible values of R,, but expressed in terms of
the probability function of R,.

If R, is absolutely continuous, this approach breaks down completely,
since P{R, = z} = O for all z. However, we may get some idea as to how to
compute E(R,) = E[g(R,)] when R, is absolutely continuous, by making a
discrete approximation. If we split the real line into intervals (z;, ; + dx;],
then, roughly, the probability that 2, < R, < #; + dz; is fg (%, dz; (see
Figure 3.1.1). If R, falls into this interval, g(R,) is approximately g(z,),
at least if g is continuous. Thus an approximation to E(R,) should be

Z 8(x;) fr(x;) d;

which suggests that if a general definition of expectation is formulated
properly, and R, is absolutely continuous,

BlgR)] = [ ¢ (0) o (3.1.4)
In the telephone call example above, if R, has density f;, we obtain
BR) = | s(a)f(e) ds

where

R,=g(R)=10 if0<R L3

=20 if3<R L6

=30 if6<R <9
Thus

ER,) = IOJ:}”I(Q:) dx + 20J:fl(x) dx + 30£9f1(x) dx

= 10(.6) + 20(.25) + 30(.15)  as before

If we have an n-dimensional situation, for instance Ry = g(Ry, ..., Ry),

e
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the preceding formulas generalize in a natural way. If R,, ..., R, are dis-
crete,

E[gR,,...,R)= Y g®,...,2)P{R,=m,...,R, =z,} (3.1.5)

.....

If(R,,...,R,) is absolutely continuous with density £, . .. ,,

o]

E[g(Rla L] Rw,)] =Jj_ : [w g(xls LRI xn)flz..-n(xlz AR xn) dxl e dxn
) (3.1.6)

We shall outline very briefly a general definition of expectation that in-
cludes all the previous special cases.
If R is a simple random variable on (Q, &, P), we define

E(R) = 3 «P{R = z}

just as above. Now let R be a nonnegative random variable. We approximate
R by simple random variables as follows.

Define
Riw)=KE=1 k=1 pay<®, k=12 . mr
2 2 o
and let

R, (w)=n if R(w) > n

(see Figure 3.1.2 for an illustration with n = 2).

For any fixed w, eventually R(w) < n, so that 0 < R(w) — R,(w) < 27"
Thus R,(w) — R(w). In fact R,(w) < R,,(w) for all n, w. For example,
if 3/4 < R(w) < 7/8, then Ry(w) = Ry(w) = 3/4;if 7/8 < R(w) < 1, then
Ry(w) = 3[4, Ry(w) = 7/8. In general, if R(w) lies in the lower half of the
interval [(k — 1)/2", k[2"), then R, (w) = R, (w); if R(w) lies in the upper
half, R,(w) < R, ().

Thus we have constructed a sequence of nonnegative simple functions R,
converging monotonically up to R. We have already defined E(R,), and
since R, < R,,; we have E(R,) < E(R,,;). We define

E(R) =lim E(R,)  (this may be + o)

n—r o

It is possible to show that if {R;} is any other sequence of nonnegative simple
functions converging monotonically up to R,

lim E(R,) = lim E(R,)

n—* o n=>ow

and thus E(R) is well defined.

e
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R(w)

2
7/4
6/4
5/4

1
3/4
2/4
1/4

0 w
Ry(w)

2
7/4
6/4
5/4

1
3/4
2/4
1/4

0 1)

FiGure 3.1.2 Approximation of a Nonnegative Random Variable by Simple Random
Variables.

Finally, if R is an arbitrary random variable, let Rt = max (R, 0),
R~ = max (—R, 0); that is,

Rt(w) = R(w) if R(w) > 0; Rt(w) =0 if Rlw) < 0
R (w) = —R(w) if R(w) < 0; R (w)=0 if R(w) >0

R* and R~ are called the positive and negative parts of R (see Figure 3.1.3).
It follows that R = Rt — R~ (and |R| = Rt + R~), and we define E(R) =
E(R*) — E(R") if this is not of the form 400 —co; if it is, we say that the
expectation does not exist. Note that E(R) is finite if and only if E(R*) and
E(R™) are both finite. Since it can be shown that E(|R|) = E(R') + E(R"),
it follows that

E(R) is finite if and only if E(|R]) is finite (3.1.7)

Theexpectation ofanonnegativerandomvariablealwaysexists; it may be + co.

The following results may be proved.

Let R;, Ry,..., R, be random variables on (Q, %, P), and let R, =
g(Ry, ..., R,), where g is a function from E™ to E'. Assume that g has the
property that g=*(B) is a Borel subset of E™ whenever B is a Borel subset of
E*. Then, as we indicated in Section 2.7, R, is a random variable.

e
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R(w) \
@
R (w)
w
R=(0)A
w

FIGURE 3.1.3 Positive and Negative Parts of a Random Variable.

Theorem 1. If R,, ..., R, are discrete, then

E[g(Rla AR ] Rn)] = 2 g(xb L] xn)P{Rl = xl: L) Rn = x’n}

.....

if glwy,...,2,) >0 for all x,, ..., x,, or if the series on the right is ab-
solutely convergent.

Theorem 2. If (R, ..., R,) is absolutely continuous with density fi,...
then

E[g(Rls LR Rn)] =J; o ‘VJ; g(x]_, MR xn)f12~--n(x13 R ] xn) dxb R dxn

if gy, ...,2,) >0 for all z,...,x,, or if the integral on the right is
absolutely convergent.

We shall look at examples that are neither discrete nor absolutely con-
tinuous in Chapter 4.

Notice that it is quite possible for the expectation to exist and be infinite,
or not to exist at all. For example, let

(see Figure 3.1.4a). Then

E(R) =£:0sz(95) do =J;wxxlzdx =

e
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fr(%) ' falx)

222 2x2

x x
0 1 -1 1

@ , ®

FIGURE 3.1.4 (a) E(R) = . (b) E(R) Does Not Exist.

As another example, let fR(x) = 1/222, |z| > 1; fr(z) = 0, |z| < 1 (Figure
3.1.4b). Then (see Figure 3.1.5)

E(RY) = f

0

2 () d =f°°fo(x) dz = %fwx Liz=o
o] . 0 0

© 0

E(R) = f

—0

(@) do = f

—00

—afp(x) doe = %f —x-1—2 dx

—o0 x

Thus E(R) does not exist.

Finally it can be shown that if two random variables R, and R, are
“essentially” equal, that is, if P{w: R,(w) # Ry(w)} = 0, then E(R,) = E(R,)
if the expectations exist.

ReMARK. Theorem 1 fails if the series on the right is conditionally but not
absolutely convergent. For example, let P{R, = n} = (1/2)*, n =1,
2,...,and R, = g(R,), where g(n) = (—=1)™"2"/n. If R,(w)=n,
n odd, then Ry(w) = 2"/n; hence Rf(w) = g(n) = 2"[n, R;(w) = O.
If R(w)=mn, n even, then R,(w) = —2"/n; hence Ri(w) =0,
R, (w) = —g(n) = 2"[n. Therefore, by the nonnegative case of

Theorem 1,
ER) = 3 gm)P{R,=n}=14+3+Li+ =
n odd
x+=uxx=0 x==0,2>0
=0,2<<0 ==-x2=0

x x

FiGuURre 3.1.5

e
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and
ERy)= > —gm)P{R,=n}=%+1%1+

n even

o

=00

Hence E(R,) does not exist, although
SemPR =} =1—F+1—1+

is conditionally convergent. From an intuitive standpoint, the

expectation should not change if the series is rearranged; a
conditionally but not absolutely convergent series will not have this

property.

3.2 TERMINOLOGY AND EXAMPLES

If R is a random variable on a given probability space, the kth moment of
R (k > 0, not necessarily an integer) is defined by

o, = E(R") if the expectation exists
Thus

o, = > @¥pr(x)  if R is discrete
@x

oo
= f o*fg(x) dz  if R is absolutely continuous
—o0

o, is simply E(R), the expectation of R, often written as m and called the
mean of R. If R has density f», m may be regarded as the abscissa of the
centroid of the region in the plane between the x-axis and the graph of f5
(see Figure 3.2.1). To see this, notice that the total moment of the region

X
4

m x x+dx

P

FiGure 3.2.1 Geometric Interpretation of E(R). The “Strip” Between x and = + dz
Contributes (x — m)fg(x) dx to the Moment about z = m.

e
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about the line x = m is

[[@=msardz=m-m=0

The expectation of R is a measure of central tendency in the sense that the
arithmetic average of » independent observations of R converges (in a sense
yet to be made precise) to E(R).

The kth central moment of R (k > 0) is defined by

Br = E[(R — m)"] if m is finite and the expectation exists

= > (x — m)’pg(x)  if R is discrete

=f (x — m)*fp(x)dz  if R is absolutely continuous

Notice that f; = E(R —m) =m — m = 0.

B2 = E[(R — m)?] is called the variance of R, written o2, 6%(R), or
Var R. o (the positive square root of f,) is called the standard deviation of
R. Note that if R has finite mean, then, since (R — m)? > 0, Var R always
exists; it may be infinite.

If R has density f%, the variance of R may be regarded as the moment of
inertia of the region in the plane between the z-axis and the graph of fj,
about the axis x = m.

The variance may be interpreted as a measure of dispersion. A large vari-
ance corresponds to a high probability that R will fall far from its mean, while
a small variance indicates that R is likely to be close to its mean (see Figure
3.2.2). We shall make a quantititative statement to this effect (Chebyshev’s
inequality) in Section 3.7. ,

» Example 1. Consider the normal density function

2 2%
e~E B b5 0, a real

f;.ra()—\/2 b

Since f5 is symmetrical about « = a, the centroid of the area under f3 has
abscissa a, so that E(R) = a. We compute the variance of R.

f (z —a)® gt g
\/271' b

Lety = (x — a)/\/2 b. We obtain

© 2b2 s 2b2 0 s
ot = f —— 9% 2bdy="=| yle dy
v—0 \/277 b \/7T —o0

e
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fo(®)
Small o2

Larger o2

> X

FIGURE 3.2.2

Now, by (2.8.2),

Ja={"eraw

—00

Integrate by parts to obtain

J7 = ye 1, -—f — 22 e dy
It follows that -

0 2 .
[[veray=1ym
-—00
Hence 6% = b% Thus we may write

1
J27 o

In this case the mean and variance determine the density completely.

2, 2
e-—(x——m) /20

Jr(®) =

109

(3.2.1)

If R has the normal density with mean m and variance 62, we sometimes

write “R is normal (m, ¢?)” for short. «

Before looking at the next example, it will be convenient to introduce the

gamma function, defined by
I'(r) =f a e dw,  r>0
0
Integrating by parts, we have

I'(r) =f°°e—wd(£r) — xre_mj|°° +f°o£r ~ Ju
r r 0 0o r

0
= z—e_xdx,:]:;(iii)
[ r

Thus
I'tr+ 1) =rI'(r)

e

(3.2.2)

(3.2.3)
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Since
I(1) = L Cerde =1
we have
rQ)=1r)y =1, r@ =2'k)=2-1, '@ =3r@ =3-2-1=3!

and
I'(n 4+ 1) = n!, n=0,1,... (3.2.4)

We also need I'(1/2).
'} =f V2% da
Let x = y? to obtain ’

T@}) = f vy dy =2 f ' dy = f ' dy
by 0

—00

By (2.8.2), we have _
I'@) =r (3.2.5)

» Example 2. Let R, be absolutely continuous with density fi(#) = e,
z > 0;fi(x) = 0,z < 0. Let R, = R,2. We may compute E(R,) in two ways.

1. E(Ry) = E(R?) = f " () do = f “Setde =T(3) =2 by(3.2.4)

2. We may find the density of R, by the technique of Section 2.4 (see
Figure 3.2.3). We have

N AN A
Ji®) = KW 4 Ny =

Nk

=0, y<0

y>0

—> R

1

Vy
FiGURE 3.2.3 Computation of Density of R,.

e
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Then
BR) = [ ufiw) dy
© gVi
= —d
[
= (with y = xz)f e dr =2
as before. ’

Notice that both methods must give the same answer by Theorem 2 of
Section 3.1. For R,(w) = (R,(w))?; applying the theorem with g(R;) = R,?,

we obtain
ER) = | %(2) ds
Applying the theorem with g(R,) = R,, we have

E(Ry) = f " ufiw) dy

Generally the first method is easier, since the computation of the density of

R, is avoided. <«

» Example 3. Let R, and R, be independent, each with density f(z) = e,

x> 0; f(x) =0, x < 0. Let Ry = max (R;, R;). We compute E(Rj).
E(Ry) = Elg(Ry, Ry)] = f_ f_ 8(z, 1) finlz, ¥) d dy

= f j max (z, y)e e dx dy
0 0

Now max (z,y) =z if * > y; max (z,y) =y if x <y (see Figure 3.2.4).

Thus
E(Rj) =ffxe‘”e‘” dx dy +ffye“”e‘y dz dy

A B
0 X 0 Y
=f we‘””f e Vdydx +f ye“”f e *dx dy
=0 y=0 y=0 =0
y

on A, max (z,y) = x B
on B, max (z,y) =y A

FIGURE 3.2.4

e
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The two integrals are equal, since one may be obtained from the other by
interchanging « and y. Thus

E(R;) = Zf xe—”‘f eldydx = 2f ze ¥(1 — e dx
0 0 0
=2f xe"dx—2f Ee“zdz=§I‘(2)=?_’<
0 o 2 2 2

The moments and central moments of a random variable R, especially the
mean and variance, give some information about the behavior of R. In
many situations it may be difficult to compute the distribution function of R
explicitly, but the calculation of some of the moments may be easier. We
shall examine some problems of this type in Section 3.5.

Another parameter that gives some information about a random variable
R is the median of R, defined when Fg is continuous as a number u (not
necessarily unique) such that Fr(u) = 1/2 (see Figure 3.2.5a and b).

In general the median of a random variable R is a number x such that

Fr(w) =PR< u} > %

Frlp) =PR<u} <}
(see Figure 3.2.5c).
Loosely speaking, u is the halfway point of the distribution function of R.

Fp(x)
i (x)

1 x

FIGURE 3.2.5 (a) p is the Unique Median. (b) Any Number Between a and b is a Median.
(¢©) p is the Unique Median.

e
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PROBLEMS

1. Let R be normally distributed with mean 0 and variance 1. Show that

E(R") =0, n odd
=0 —-DFrE-3)---G)3Q), n even

2. Let R; have the exponential density fi(x) = ¢, x > 0; fi(#) =0, # < 0. Let
R, = g(R,) be the largest integer <R; (if 0 < R; <1,R, =0;if 1 <R; <2,
R, =1, and so on).

(a) Find E(R,) by computing [ g(@)f () dx.
(b) Find E(R,) by evaluating the probability function of R, and then computing
20 ¥PR,)- '

3. Let R, and R, be independent random variables, each with the exponential

density f(z) = e,z > 0; f(z) = 0, z < 0. Find the expectation of

(@) RyR,
(b) Ry — R,
©) |Ry — Ry

4. Let R, and R, be independent, each uniformly distributed between —1 and +1.
Find E[max (Ry, Ry)].

5. Suppose that the density function for the length R of a telephone call is
f@) = xe™®, x>0

=0, <0
The cost of a call is
C(R) =2, 0<RKLK3

=2+ 6(R —3), R >3

Find the average cost of a call.

6. Two machines are put into service at ¢ = 0, processing the same data. Let R;
(i =1, 2) be the time (in hours) at which machine / breaks down. Assume that
R, and R, are independent random variables, each having the exponential density
function f'(x) = Ae™, x > 0; f(x) = 0, # < 0. Suppose that we start counting
down time if and only if both machines are out of service. No repairs are allowed
during the working day (which is T hours long), but any machine that has
failed during the day is assumed to be completely repaired by the time the next
day begins. For example, if 7" = 8 and the machines fail at # =2 and ¢ =6,
the down time is 2 hours. ‘

(a) Find the probability that at least one machine will fail during a working day.
(b) Find the average down time per day. (Leave the answer in the form of an
integral.)

7. Show that if R has the binomial distribution with parameters » and p, that is, R
is the number of successes in z» Bernoulli trials with probability of success p on

e
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a given trial, then E(R) = np, as one should expect intuitively. HINT: in
E(R) = ZLD k(;)p’“(l — p)**, factor out np and use the binomial theorem.

ReMArk. In Section 3.5 we shall calculate the mean and variance of R in an
indirect but much more efficient way.

8. If R has the Poisson distribution with parameter 4, show that
E[RR—-—1DR-2)--(R=r+ D=1

Conclude that E(R) = Var R = 4.

3.3 PROPERTIES OF EXPECTATION

In this section we list several basic properties of the expectation of a random
variable. A precise justification of these properties would require a detailed
analysis of the general definition of E(R) that we gave in Section 3.1; what
we actually did there was to outline the construction of the abstract Lebesgue
integral. Instead we shall give plausibility arguments or proofs in special
cases.

1. LetR,, ..., R, be random variables on a given probability space. Then

E(Ry + "+ R,) = ER) + - + ERR,)

CAUTION. Recall that E(R) can be 4 oo, or not exist at all. The complete
statement of property 1 is: If E(R;) exists for all i=1,2,...,n,
and 4o and —oo do not both appear in the sum E(R;) + - +
E(R,) (+ oo alone or — oo alone is allowed), then E(R; + - + R,)
exists and equals E(R,) + - -+ + E(R,).

For example, suppose that (R, R,) has density fi,, and R" = g(R;, Ry),
R" = h(R;, R,). Then

E(R" 4+ R") = E[g(Ry, Ry) + h(Ry, R,)]

=foo f’ lg(@, y) + h(=, v)]fis(®, ) dz dy

—oC

[ st nsstm v awdn + [ [ hto e, vy o ay

— 00

= E(R") + E(R")

e
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2. If R is'a random variable whose expectation exists, and a is any real
number, then E(aR) exists and

E(aR) = aE(R)}

For example, if R, has density f; and R, = aR,, then

E(R,) = foo axfi(x) dz = aE(R,)

Basically, properties 1 and 2 say that the expectation is linear.
3. If R; < R,, then E(R,) < E(R,), assuming that both expectations exist.

For example, if R has density f, and R; = g(R), R, = h(R), and g < A,
we have

E(R,) = f (@) f(z) dz < f_ h(z) f(z) de = E(R,)

-0

4. If R > 0 and E(R) = 0, then R is essentially 0; that is, P{R = 0} = 1.
This we can actually prove, from the previous properties. Define R, = 0 if
0<R<1/n;R,=1/nif R > 1/n. Then 0 < R, < R, so that, by property
3, E(R,) = 0. But R, has only two possible values, 0 and 1/n, and so

1 1

E(R,) = 3 ypr,(y) = OP{R, = 0} + ;P{Rn - ;}

Y
Thus
Ph"=%=thl%ﬂ) for all n
n n

But

P{R>0}=P[U{R21” <2P{R21}=0

n=1 n n=1 n

Hence

PIR=0}=1

Notice that if R is discrete, the argument is much faster: if > -  2pr(%) =
0, then zpp(z) = 0 for all > 0; hence px(x) = 0 for « > 0, and therefore
Pr(0) = 1.

CoRrROLLARY. If Var R = 0, then R is essentially constant.
Proor. If m = E(R), then E[(R — m)?] = 0, hence P{R = m} = 1.

T Since E(R) is allowed to be infinite, expressions of the form 0 * o will occur. The most
convenient way to handle this is simply to define 0 - co = 0; no inconsistency will result.

e
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5. Let Ry, ..., R, be independent random variables.
(a) If all the R, are nonnegative, then

E(RR, - - - R,) = E(RDE(R,) - - * E(R,)

(b) If E(R,) is finite for all i (whether or not the R; > 0), then E(R,R; " -
R,) is finite and
E(RR; "+ R,) = E(R)E(R;) - - E(R,)

We can prove this when all the R, are discrete, if we accept certain facts
about infinite series. For

E(RIRZ Tt Rn) = z . x1x2 e xnp12---n(x1’ ey xn)
x1

Under hypothesis (a) we may restrict the z;’s to be > 0. Under hypothesis
(b) the above series is absolutely convergent. Since a nonnegative or ab-
solutely convergent series can be summed in any order, we have

E(RR;- " R,) = 2 zpy(%) * - wZ z,p(2,) = E(R)E(R,) - - - E(R,)

If (Ry, ..., R,) is absolutely continuous, the argument is similar, with sums
replaced by integrals.

E(Rle..-R")=f J @ T fre @y ., @) day e day,
=f f 2y Bful(®y) o ful(®) day - - da,

~["an@ds [ npiw d,

= E(R)) - - - E(R,)

6. Let R be a random variable with finite mean m and variance ¢ (possibly
infinite). If @ and b are real numbers, then

Var (aR + b) = a?c?
ProOOF. Since E(aR + b) = am + b by properties 1 and 2 [and (3.1.2)},
we have
Var (aR + b) = E[(aR + b — (am + b))?]
= E[a®(R — m)?]
= @?E[(R — m)?¥] by property 2

= a2¢2.

e
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7. Let Ry, ..., R, be independent random variables, each with finite
mean. Then
Var(R, + -+ R,) =VarR, + -+ + VarR,

ProOOF. Let m; = E(R,). Then

Var(R, + - -+ + R,) = E[(élRl — i mi)z] = E[(i(Ri — mi))2i|

=1 =1

If this is expanded, the ““cross terms” are 0, since, if i # j,
E[(R; — m))(R; — m;)] = E(R;R; — m;R; — m;R; + m;m;)
= E(R)E(R;) — mE(R;) — m;E(R;) + mm;
by properties 5, 1, and 2
=0 since E(R,) = my, E(R;) = m;

Thus
n n
Var (R, + -+ R,) = Y E(R, — m))? = > Var R,
=1 i=1
CoroLLARY. If R, ..., R, are independent, each with finite mean, and
a,,...,a,, bare real numbers, then

Var (¢,R, + - + a,R, + b) =a®VarR, + -+ + a,* Var R,

PrOOF. This follows from properties 6 and 7. (Notice that ¢, Ry,. . . , a,R,
are still independent; see Problem 1.)

8. The central moments f,, ..., B, (n > 2) can be obtained from the
moments oy, ..., o, provided that oy, ..., «, ; are finite and «, exists.

To see this, expand (R — m)" by the binomial theorem.

R—m=3 (”)Rk(—m)"—k

—o\k
Thus
” Z (n n—
o= EIR —my1 =3, (M) (=m)~,
=o\k
Notice that since «, . .., ®,_; are finite, no terms of the form +o0 —oo

can appear in the summation, and thus we may take the expectation term by
term, by property 1.

This result is applied most often when n = 2. If R has finite mean [E(R?)
always exists since R? > 0], then (R — m)? = R* — 2mR + m?; hence

Var R = E(R?) — 2mE(R) + m?

e



46628-0 Ash 1 4/14/08 8:25 AM Page$l8

118 EXPECTATION

That is,
0% = E(R?) — [E(R)]? (3.3.1)

which is the “mean of the square”” minus the “square of the mean.”

9. If E(R") is finite and 0 < j < k, then E(R,) is also finite.

PRrROOF
[R(@)l’ < [R(@)]*  if [R(w)] > 1
<l1 if |[R(w)] < 1
Thus
IR(w)l! <1 + |R(w)|* for all w
Hence

E(IR") <1+ E(IR[") < o0

and the result follows. Notice that the expectation of a random variable is
finite if and only if the expectation of its absolute value is finite; see (3.1.7).

Thus in property 8, if «, , is finite, automatically «,, . . ., «,_, are finite
as well.

REMARK. Properties 5 and 7 fail without the hypothesis of independence.
For example, let R; = R, = R, where R has finite mean. Then
E(RyR,) # E(R,)E(R,) since E(R?) — [E(R)]? = Var R, which is
>0 unless R is essentially constant, by the corollary to property 4.
Also, Var (R, + R,) = Var (2R) = 4 Var R, which is not the same
as Var R, + Var R, = 2 Var R unless R is essentially constant.

PROBLEMS

1. If R, ..., R, are independent random variables, show that a;R; + by, ..
a,R, + b, are independent for all possible choices of the constants a; and b,.

‘o

2. If R is normally distributed with mean m and variance o%, evaluate the central
moments of R (see Problem 1, Section 3.2).

3. Let 6 be uniformly distributed between 0 and 2. Define R; = cos 6, R, = sin 0.
Show that E(R,R,) = E(R,)E(R,), and also Var (R; + R,) = Var R, + Var R,,
but R, and R, are not independent. Thus, in properties 5 and 7, the converse
assertion is false.

4. If E(R) exists, show that |E(R)| < E(|R]).

5. Let R be a random variable with finite mean. Indicate how and under what
conditions the moments of R can be obtained from the central moments. In

e



46628-0 Ash 1 4/14/08 8:25 AM Page$l9

3.4 CORRELATION 19

particular show that E(R%* < oo if and only if Var R < . More generally,
o, is finite if and only if B, is finite.

3.4 CORRELATION
If R, and R, are random variables on a given probability space, we may define
Jjoint moments associated with R; and R,
ai, = E(RR,), jo k>0
and joint central moments _
Bir = E[(Ry — m) (R, — mp)*],  my = E(R,), my = E(Ry)

We shall study f;; = E[(R, — m;)(Ry — my)] = E(R,R,) — E(R,E(R,),
which is called the covariance of R, and R,, written Cov (R,, R,).

In this section we assume that E(R,) and E(R,) are finite, and E(R,R,)
exists; then the covariance of R, and R, is well defined.

Theorem 1. If R, and R, are independent, then Cov (R;, R,) = 0, but not
conversely.

PrOOF. By property 5 of Section 3.3, independence of R, and R, implies
that E(R;R,) = E(R,)E(R,); hence Cov (R,, R,) = 0. An example in which
Cov (R;, Ry;) = 0 but R, and R, are not independent is given in Problem 3
of Section 3.3.

We shall try to find out what the knowledge of the covariance of R, and

R, tells us about the random variables themselves. We first establish a very
useful inequality.

Theorem 2 (Schwarz Inequality). Assume that E(R,?) and E(R,?) are finite
(R, and R, then automatically have finite mean, by property 9 of Section 3.3,
and finite variance, by property 8). Then E(R,R,) is finite, and

|E(R,R,)[* < E(R)E(Ry?)

ProoF. If R, is essentially 0, the inequality is immediate, so assume R,
not essentially 0; then E(R,%) > 0. For any real number z let

h(z) = E[(z [Ry| + |R|)*] = E(R?)2* + 2E(|R,R,)x + E(Ry?)

Since A(x) is the expectation of a nonnegative random variable, it must be
>0 for all z. The quadratic equation /4(x) = 0 has either no real roots or, at

e
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FiGURE 3.4.1 Proof of the Schwarz Inequality.

worst, one real repeated root (see *Figure 3.4.1). Thus the discriminant must
be <0; hence ‘
(E(IRyR2]))? < E(RPE(Ry?) < 0

Since E(|R,R,]) is finite, so is E(R;,R,), by (3.1.7). Furthermore, | E(R;R,)| <
E(|R,R,|) (Problem 4, Section 3.3), and the result follows.

Now assume that E(R,%) and E(R,?) are finite and, in addition, that the
variances ¢,2 and 0,2 of R, and R, are >0. Define the correlation coefficient
of R, and R, as
Cov (R4, R,)

‘ 0102

p(Ry, Rp) =

By Theorem 1, if R, and R, are independent, they are uncorrelated; that is,
p(Ry, R;) = 0, but not conversely.

Theorem 3. —1 < p(Ry, R,) < 1.

ProoOF. Apply the Schwarz inequality to R, — E(R,) and R, — E(R,).
|E[(Ry — ER)(R; — ER)]* < E[(R, — ER,’)E[(R, — ER,)’]

Thus |Cov (R, R,)|2 < 0,202, and the result follows.

We shall show that p is a measure of linear dependence between R, and R,
[more precisely, between R, — E(R,)and R, — E(R,)], in the following sense.
Let us try to estimate R, — ER, by a linear combination ¢(R, — ER,) + d,
that is, find the ¢ and 4 that minimize
E{[(R, — ER,) — (c(R, — ERy) + d)I*}
= 0,2 — 2¢ Cov (Ry, Ry) + c?0,% + a2
= 0,2 — 2¢ po,05 + %04 + d?

e
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Clearly we can do no better than to take d = 0. Now the minimum of
Ax* + 2Bx + D occurs for # = —B[A; hence o0,%c? — 2p0y05c + 0% is
minimized when

0,0 o
C=P_1_2=p_2

0y %51

Thus the minimum expectatiofi is 0,2 — 2p%0,? + p20,? = 0,2(1 — p?).
For a given 0,2, the closer |p| is to 1, the better R, is approximated (in the
mean square sense) by a linear combination aR, + b. In particular, if
lpl =1, then '

2
E[(R2 — ER, — 222 (R, — ERI))] =0
(1]

so that

R, — ER, = P2 (R, — ER))
01
with probability 1.

Thus, if |p| =1, then R, — E(R,) and R, — E(R,) are linearly de-
pendent. (The random variables Ry, . . . , R, are said to be linearly dependent
iff there are real numbers a, . . . , a,, not all 0, such that P{a,R; + - +
a,R, = 0} = 1.) Conversely, if R, — E(R,) and R, — E(R,) are linearly
dependent,‘ that is, if a(R; — ER;) + b(R, — ER,) = 0 with probability 1
for some constants a and b, not both 0, then |p| = 1 (Problem 1).

PROBLEMS

1. If R, — E(R,) and R, — E(R,) are linearly dependent, show that [ p(Ry, Ry)| = 1.

2. If aR, + bR, = c for some constants a, b, ¢, where a and b are not both 0,
show that R, — E(R;)and R, — E(R,) arelinearly dependent. Thus | p(R;, R,)| =
1 if and only if there is a line L in the plane such that (Ry(w), Ry(w)) lies on L
for “almost” all w, that is, for all @ outside a set of probability 0.

3. Show that equality occurs in the Schwarz inequality, |[E(R1Ry)|?> = E(R*)E(RS?),
if and only if R; and R, are linearly dependent.

4. Prove the following results.
(a) Schwarz inequality for sums: For any real numbers ay, . .., ay, by, .. ., by,
Craiab) <Dr a2 Y, bl
(b) Schwarz inequality for integrals: If | g%(x) dzand [} h*(x) dx are finite, so is
[ g(@)h(x) d=, and furthermore (J? g(@)h(x)dz)* < J? g% (@) dx (! K3 (x) de.
HINT: show that both (a) and (b) are special cases of Theorem 2.

e



46628-0 Ash 1 4/14/08 8:25 AM Page$g2

122 EXPECTATION

5. Show that if Ry, ..., R, are arbitrary random variables with E(R;?) finite for
all i, then
n n.
Var (R, + -+ + R,) =Y VarR; + 2 Cov (R;, R;)
=1

2,5=1
1<j

3.5 THE METHOD OF INDICATORS

In this section we introduce a technique that in certain cases allows the
expectation of a random variable to be computed quickly, without any
knowledge of the distribution function. This is especially useful in situations
when the distribution function is difficult to calculate.

The indicator of an event A is a random variable I, defined as follows.

Li(w)=1 ifwoed

=0 ifwé¢Ad
Thus I, = 1if 4 occurs and 0 if 4 does not occur. (Sometimes 1 is called the
“characteristic function” of 4, but we do not use this terminology since we

reserve the term ““characteristic function” for something quite different.)
The expectation of 1, is given by

E(Ly) = OP{I, = 0} + 1P{, = 1} = P{I, = 1} = P(4)

The “method of indicators’ simply involves expressing, if possible, a given
random variable R as a sum of indicators, say, R = I,, + - + I, . Then

E(R) = 3E(L,) = 3 P(4)

Hopefully, it will be easier to compute the P(4;) than to evaluate E(R)
directly.

» Example 1. Let R be the number of successes in » Bernoulli trials, with
probability of success p on a given trial; then R has the binomial distribution
with parameters n and p; that is,

P{R =k} = (Z)pk(l — " k=0,1,....n

We have found by a direct evaluation that E(R) = np (Problem 7, Section
3.2), but the method of indicators does the job more smoothly. Let 4, be
the event that there is a success on trial /, i=1,2,...,n Then R =
Iy + -+ 1, (note that I 4, may be regarded as the number of successes

e
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on trial {). Thus
E(R) = 21 E(L,) = ;P(Ai) = np

Now, since 4,,..., A, are independent, the indicators I,,..., I,
are independent (Problem 1), and so there is a bonus, namely (by property
7, Section 3.3),

VarR = Y Var I,
=1
But 1 A.~2 =1 4,5 hence
E(I,}) = E(I,) =P(4,)=p
Therefore
Var I, = E(I,?) — [E(L M)y by (3.3.1)
=p—p=pl—p
Thus
Var R = np(1 — p) «

» Example 2. A single unbiased die is tossed independently » times. Let
R, be the number of 1’s obtained, and R, the number of 2’s. Find E(R,R,).

If A, is the event that the ith toss results in a 1, and B, the event that the
ith toss results in a 2, then

Ri=14 4" +1

Ry=1Ip + -+ Ip,
Hence

B(RiR) = > E(Lylz)
Now if i # j, I, and I, are independent (see Problem 1); hence
E(IAiIBj) = E([Ai)E(IBj) = P(4,)P(B;) = 3%

If i =j, A, and B, are disjoint, since the ith toss cannot simultaneously
resultina 1 and a 2. Thus I, Iy = I, 5, = O (see Problem 2). Thus

nn—1
E(R,Ry) = "= 1)

36
since there are n(n — 1) ordered pairs (i, ) of integers €{1, 2, ..., n} such
that i # j.
Note that the I, I, i,j =1, , n, are not independent [for instance,

if I A,(W)IB (w)=1, then I s (w)I B, (w) must be 0], so that we cannot compute
the variance of R,R, in the same way as in Example 1. <«

e
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PROBLEMS

1. If the events 4, . . . , 4, are independent, show that the indicators I, L ggs oo s L ”
are independent random variables, and conversely.
2. Establish the following properties of indicators:
@I =1, I, =0
() Linp =Lilg, Liup=1Li+1Ip—Linp
@I e , = 22,1y,  if the A4; are disjoint
i=14i

(d) If 4y, A, . . . is an expanding sequence of events (4, < 4, for all ) and
o0

Ay = A, or if Ay, A,, ... is a contracting sequence (4,4 < 4, for
all n) and N\, 4, = 4, then I, — I,; that is, lim,_, IA"(co) = I,(w)
for all w.

3. In Example 2, find the joint probability function of R; and R,. Notice how
unwieldy is the direct expression for E(R;R,).

n
E(RRy) = Z jkP{R1 =j, R, = k}
i, k=0
4. In a seqilence of n Bernoulli trials, let R, be the number of times a success is

followed immediately by a failure. For example, if # = 7 and o = (SSFFSFS),
then Ry(w) = 2, as indicated. Find E(R,).

5. Find Var R, in Problem 4.

6. 100 balls are tossed independently and at random into 50 boxes. Let R be the
number of empty boxes. Find E(R).

3.6 SOME PROPERTIES OF THE NORMAL DISTRIBUTION

Let R, be normally distributed with mean m and variance o2.

— 1 ——(:t:—m)2/2a-2
Si(w) = \/57—7 o e
If R, = aR, + b, a # 0, we shall show that R, is also normally distributed
[necessarily E(R,) = am + b, Var R, = a®¢* by properties 1, 2, and 6 of
Section 3.3].
We may use the technique of Section 2.4 to find the density of R,. R, = y
corresponds to R, = h(y) = (y — b)/a. Thus

£ = A K@) =~ 1, (l;—”)

la]

_ _ (y — (am + b)y*
/27 al Paas [ 2a%* :|

e
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so that R, has the normal density with mean am + b and variance a?®. We
may use this result in the calculation of probabilities of events involving a
normally distributed random variable. If R has the normal density with
E(R) = m, Var R = ¢?, then

v 2
P{a S R S b} =J‘ —i—— e—(w—m) /2a'2dx
a\/zﬂo‘

One must resort to tables to evaluate this. The point we wish to bring out is
that, regardless of m and o2, only one table is needed, namely, that of the
normal distribution function when m = 0, ¢% = 1; that is,

® 1 s
F* =f —e ' ?dt
(x) J—0 «/2778

For if R is normally distributed with E(R) = m, Var R = ¢?, then R* =
(R — m)/o is normally distributed with E(R*) = 0 and Var R* = 1. Thus

P{agRgb}=P{“_m_ _b“"‘}
o o

= (7))

A brief table of values of F* is given at the end of the book.

ReMARK. If a random variable has a density function f that is symmetrical
about 0 [i.e., an even function: f(—2) = f(x)], then the distribution
function has the property that F(—z) = 1 — F(z). For (see Figure

©3.6.1)
F(—z) = P{R L —2a} = f(t) dt = f f@)dt

=P{R>x}=1—F(x)

)

|

-Xx x

FIGURE 3.6.1 Symmetrical Density.

e
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- In particular, the distribution function F* has this property, and thus
once the values of F*(x) for positive « are known, the values of F*(x)
for negative « are determined.

PROBLEMS

1. Let R be normally distributed with m = 1, 6 = 9.

() Find P{—.5 < R < 4}
(b) If P{R > c} = .9, find c.

2. If R is normally distributed and k is a positive real number, show that
P{|R — m| > ko} does not depend on m or ¢; thus one can speak unambiguously
of the “probability that a normally distributed random variable lies at least k
standard deviations from its mean.” Show that when k = 1.96, the probability
is .05.

3.7 CHEBYSHEV’S INEQUALITY AND THE WEAK LAW
OF LARGE NUMBERS

In this section we are going to prove a result that corresponds to the physical
statement that the arithmetic average of a very large number of independent
observations of a random variable R is very likely to be very close to E(R).
We first establish a quantitative result about the variance as a measure of

dispersion.
Theorem 1.
(a) Let R be a nonnegative random variable, and b a positive real number.
Then
E(R
P(R > b} < B0

Proor. We first consider the absolutely continuous case. We have
@

of o) dz = L " of o) du

E(R) = f

since R > 0, so that fz(x) = 0, * < 0. Now if we drop the integral from 0
to b, we get something smaller.

E(R) > fwfo(:v) dx

e



46628-0 Ash 1 4/14/08 8:25 AM Page$g7

3.7 CHEBYSHEV’S INEQUALITY 127
Since z > b,

f ? of o) d > f " bfp(x) dz = bP{R > b}

This is the desired result.

The general proof is based on the same idea. Let 4, = {R > b}; then
R > RI,,. For if o ¢ 4,, this says simply that R(w) > 0; if @ € 4,, it says
that R(w) > R(w). Thus E(R) > E(RI,,). But RI,, > bl,,, since w € 4,
implies that R(w) > b. Thus

E(R) > E(RL,,) > E(bLy,) = bE(L,) = bP(4)
Consequently P(4,) < E(R)/b, as desired.

(b) Let R be an arbitrary random variable, ¢ any real number, and ¢ and
m positive real numbers. Then

P{R — ¢| > ¢} < =T
&€

PROOF.

E[IR — c|™
PR — ¢ 2 6} = P{R — o > "} < R= Ty )
e
(¢) If R has finite mean m and finite variance ¢ > 0, and k is a positive
real number, then

1
P{IR — m| > ko} <5

ProOF. This follows from (b) with ¢ = m, ¢ = ko, m = 2.

All three parts of Theorem 1 go under the name of Chebyshev’s inequality.
Part (c) says that the probability that a random variable will fall k or more
standard deviations from its mean is < 1/k2. Notice that nothing at all is
said about the distribution function of R; Chebyshev’s inequality is therefore
quite a general statement. When applied to a particular case, however, it
may be quite weak. For example, let R be normally distributed with mean m
and variance o2 Then (Problem 2, Section 3.6) P{|R — m| > 1.960} = .05.
In this case Chebyshev’s inequality says only that

1
P{|IR — m| > 1.960} <
{ l2 )< (1.96)*
which is a much weaker statement. The strength of Chebyshev’s inequality
lies in its universality.
We are now ready for the main result.

= .26

e
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Theorem 2. (Weak Law of Large Numbers). For eachn=1, 2,... ,
suppose that Ry, Ry, ..., R, are independent random variables on a given
probability space, each having finite mean and variance. Assume that the
variances are uniformly bounded; that is, assume that there is some finite
positive number M such that 62 < M for all i. Let S, = >» R, Then,
Jor any £ > 0,

{

Before proving the theorem, we consider two cases of interest.

n

28}—»0 as n— oo

SPECIAL CASES
1. Suppose that E(R;) = m for all i, and Var R, = o2 for all i. Then

E(S) = 3 ER) = nm

—_—=——-m=—""__
n n n
Therefore, for any arbitrary & > 0, there is for large # a high probability
that the arithmetic average and the expectation m will differ by <e.

This case covers the situation when Ry, R,, ..., R, are independent
observations of a given random variable R. All this means is that Ry, ..., R,
are independent, and the R; all have the same distribution function, namely,
Fpg. In particular, E(R,) = E(R), so that for large n there is a high probability
that (R, + - -+ + R,)/n and E(R) will differ by <e.

2. Consider a sequence of Bernoulli trials, and let R; be the number of
successes on trial i; that is, R, = I, , where A, = {success on trial i}. Then
(Ry + * -+ 4+ R)/n is the relative ffequency of successes in #n trials. Now
E(R;) = P(4,) = p, the probability of success on a given trial, so that for
large n there is a high probability that the relative frequency will differ from
p by <e.

PROOF OF THEOREM 2. By the second form of Chebyshev’s inequality
[part (b) of Theorem 1], with R = (S, — E(S,))/n, ¢ = 0, and m = 2, we

have
_— — 2
P{ Sy — E(S,) ZS}SI—E[ S_n_M” =L vars,
n &2 n n’?
But since R,, ..., R, are independent,

Var S, = Y VarR; by property 7 of Section 3.3
=1
< nM by hypothesis

e
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Thus
S —
P{ Lﬂ ZS}S%=M—‘>O
n n-e ne

ReMARK. If a coin with probability p of heads is tossed indefinitely, the
successive tosses being independent, we expect that as a practical
matter the relative frequency of heads will converge, in the ordinary
sense of convergence of a sequence of real numbers, to p. This is a
somewhat stronger statement than the weak law of large numbers,
which says that for large n the relative frequency of heads in n trials
is very likely to be very close to p. The first statement, when properly
formulated, becomes the strong law of large numbers, which we shall
examine in detail later.

PROBLEMS

1. Let R have the exponential density f(#) = e,z > 0;f () = 0,z < 0. Evaluate
P{|R — m| > ko} and compare with the Chebyshev bound.

2. Suppose that we have a sequence of random variables R, such that P{R, =
e} =1/n,P{R, =0} =1—1/n,n=1,2,....
(a) State and prove a theorem that expresses the fact that for large n, R, is
very likely to be 0.
(b) Show that E(R,*) -~ o as n— « for any k > 0.

3. Suppose that R, is the amount you win on trial 7 in a game of chance. Assume
that the R; are independent random variables, each with finite mean 2 and finite
variance ¢%. Make the realistic assumption that m < 0. Show that P{(R; + - -
+ R,)/n< mf2} - 1 as n — . What is the moral of this result?
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Conditional Probability
and Expectation

4.1 INTRODUCTION

We have thus far defined the conditional probability P(B | A) only when
P(4) > 0. However, there are many situations when it is natural to talk
about a conditional probability given an event of probability 0. For example,
suppose that a real number R is selected at random, with density f. If R
takes the value , a coin with probability of heads g(x)is tossed (0 < glx) L
1). It is natural to assert that the conditional probability of obtaining a head,
given R = x, is g(»). But since R is absolutely continuous, the event {R = x}
has probability 0, and thus conditional probabilities given R = « are not as
yet defined.

If we ignore this problem for the moment, we can find the over-all prob-
ability of obtaining a head by the following intuitive argument. The prob-
ability that R will fall into the interval (z, # + dx] is roughly f(2) d; given
that R falls into this interval, the probability of a head is roughly g(x). Thus
we should expect, from the theorem of total probability, that the probability
of a head will be Y, g()f (x) d», which approximates [®, g(«)f (z) dz. Thus
the probability in question is a weighted average of conditional probabilities,
the weights being assigned in accordance with the density .

130
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e
<
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(@ (b)
FIGURE 4.1.1

Let us examine what is happening here. We have two random variables
R, and R, [R; = R, R, = (say) the number of heads obtained]. We are
specifying the density of R,;, and for each « and each Borel set B we are
specifying a quantity P,(B) that is to be interpreted intuitively as the con-
ditional probability that R, € B given that R, = z. (We shall often write
P{R; € B| R, = =} for P,(B).)

We would like to conclude that the probabilities of all events
involving R; and R, are now determined. Suppose that C is a two-
dimensional Borel set. What is a reasonable figure for P{(R;, R,) € C}?
Intuitively, the probability that R, falls into (z, x + dx] is fi(x) dz. Given
that this happens, that is, (roughly) given R, = , the only way (R,, Ry)
can lie in C is if R, belongs to the “section” C, = {y: (z, y) € C} (see Figure
4.1.1a). This happens with probability P,(C,). Thus we expect that the total
probability that (R,, R,) will belong to C is

f_ " PAC fix) du

In particular, if C =4 x B = {(z,y): x€ 4, y € B} (see Figure 4.1.1b),

C,=¢ ifxd Ad; C,=B ifxed
Thus

P{(Ry, R;) € C} = P{R, € 4, Ry € B} — L P.(B) (%) d=

The above reasoning may be formalized as follows. Let Q = E?, & =
Borel subsets, Ry(7, y) = x, Ry(x, y) = y. Let f; be a density function on E?,
that is, a nonnegative function such that [®, f;(x) dz = 1. Suppose that for
each real « we are given a probability measure P, on the Borel subsets of E*.
Assume also that P,(B) is a piecewise continuous function of x for each fixed
B.

Then it turns out that there is a unique probability measure P on & such

e
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that for all Borel subsets 4, B of E!

P(A x B) = f P(B)fy(2) dz (4.1.1)
A

Thus the requirement (4.1.1), which may be regarded as a continuous version
of the theorem of total probability, determines P uniquely. In fact, if C € &,
P(C) is given explicitly by

P(C) =fw P (C)fi(x) d= 4.1.2)

Notice that if R,(z, y) = z, R,(z, y) = y, then

P(4 x B) = P{R, € A, R, € B}
and

P(C) = P{(R,, R;) € C}
Furthermore, the distribution function of R, is given by
Fy(z) = P{R, < #,} = P{R, € 4, R, € B}

where A = (— 0, 7], B = (— 0, o)

Zo
= [ @@ az = [ 1) do
Thus f; is in fact the density of R;. Notice also that
P{R,€B} = P{R, € A, R, € B}

where 4 = (— o0, o0); hence
P{R,€ B} = f * P(B)f() dv (4.13)

To summarize: If we start with a density for R, and a set of probabilities
P,(B) that we interpret as P{R, € B ] R, = x}, the probabilities of events of
the form {(R;, R,) € C} are determined in a natural way, if you believe that
there should be a continuous version of the theorem of total probability;
P{(R,, Ry) € C} is given explicitly by (4.1.2), which reduces to (4.1.1) in the
special case when C = 4 x B.

We have not yet answered the question of how to define P{R, € B | R, =}
for arbitrarily specified random variables R, and R,; we attack this problem
later in the chapter. Instead we have approached the problem in a somewhat
oblique way. However, there are many situations in which one specifies the
density of R;, and then the conditional probability of events involving R,
given R, = x. We now know how to formulate such problems precisely.
Consider again the problem at the beginning of the section. If R, has density
f, and a coin with probability of heads g(x) is tossed whenever R, = z (and

e
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a head corresponds to R, = 1, a tail to R, = 0), then the probability of
obtaining a head is '

P{R, = 1} =f°° P{R,=1|R, =z}f(x)dx by (4.1.3)

- f_ @) do

in agreement with the previous intuitive argument.

4.2 EXAMPLES
We apply the general results of this section to some typical special cases.

» Example 1. A point is chosen with uniform density between 0 and 1. If
the number R, selected is x, then a coin with probability « of heads is tossed
independently n times. If R, is the resulting number of heads, find p,(k) =
P{R, =k}, k=0,1,...,n.
Here we have fi(z) = 1, 0 < 2 < 1; fi(x) = 0 elsewhere. Also
Pk} = P{R,=k|R, = 2} = (Z)'x"(l — )"
By (4.1.3),

P{R, = k} = L 1(2) 2 — 2" d

This is an instance of the beta function, defined by

1
B(r, s) =J (1l — 2 tde, r,s>0
0

It can be shown that the beta function can be expressed in terms of the gamma
function [see (3.2.2)] by
TG

plr, s) = I'(r +5)

4.2.1)
(see Problem 1). Thus

polk) = (Z)ﬁ(k Fhn—k+ 1)

- (n)F(k + D(n — k + 1)

k L(n + 2)
| _—
=(n)k.(n D L k=010
kKl m+D! n+41

e



46628-0 Ash 1 4/14/08 8:25 AM Page$34

134 CONDITIONAL PROBABILITY AND EXPECTATION

» Example 2. A nonnegative number R, is chosen with the density fi(z) =
ze ™,z > 0; fi(x) =0,z < 0.If R, = z, a number R, is chosen with uniform
density between 0 and «. Find P{R, + R, < 2}. .

Now we must have 0 < R, < R;; hence, if 0 < R; < 1, then necessarily
R,+ R, <2 If 1<R; <2, then R, + R, <2 provided that R, <
2 — R;. If R; > 2, then R; 4 R, cannot be <2. By (4.1.2),

P{R, + R, < 2}
=f ze*P{R;, + R, < 2| R, = a} dx
0

1 2 . 0
=f ze *(1) d= +f ze “P{R, <2 — x [ R, = z}dx +J xze %(0) dx
Jo J 2

Given R, = 2z, R, is uniformly distributed between 0 and z; thus
2—x

(see Figure 4.2.1). Therefore

, 1<zL2

-

1 2
P{R, + R, < 2} =fxe‘”dx +j :ve‘“”(2 ) dov=1—2¢"+e" 4
0 1

xX
» Example 3. Let R, be a discrete random variable, taking on the values
x,, ¥y, . . . with probabilities p(x,), p(x,), . . . . If R, = z,, a random variable
R, is observed, where R, has density f;. What is P{(R,, R,) € C}?

This is not quite the situation we considered in Section 4.1, since R, is
discrete. However, the theorem of total probability should still be in force.
R, takes the value x; with probability p(z;); given that R, = x,, the prob-
ability that R, € B is P, (B) = {5 fi(y) dy. Thus we should have

P{Ry€ A Ry B) = 3 () | fiw) dy (42.2)
Yy
A
2 *
'Z“x‘l’ .s/
\E

x

0 | ZI;I'\\z\ ¥

FiGURE 4.2.1 Conditional Probability Calculation.

e
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and, more generally, _
PRy R) € CY =3 p(a) [ tw) v 423

In fact, if we take Q = E?, &% = Borel sets, Ri(z,y) =z, Ry(z,y) = v,
it turns out that there is a unique probability measure on # satisfying (4.2.2)
for all Borel subsets A, B of E*; P is given explicitly by (4.2.3). <«

PROBLEMS

1. Derive formula (4.2.1). HINT: in I'(r) = f@ t" e *dt, let t = 2%, Then write
I'(r)T'(s) as a double integral and switch to polar coordinates.
2. In Example 2, what are the sets C and C, in (4.1.2)? What is P,(C,)?

3. In Example 3, suppose that R; takes on positive integer values 1,2, ... with
probabilities p,, ps, . .. (p; > 0, z:'; . Pi = 1D.If Ry = n, R, is selected according
to the density f,(x) = ne™", x > 0; f,(x) =0, x <0. Find the probability
that4 < R, + R, < 6.

4. In Example 3 we specified P, (B) to be interpreted intuitively as the probability
that R, € B, given that R, = z,. This, plus the specification of p(z,),i = 1,2, ...,
determines the probability measure P. Use (4.2.2) to show that if p(x;) > 0 then
P{R, € B| R, = z;} = P, (B), thus justifying the intuition. In order words, the
conditional probability as computed from the probability measure P coincides
with the original specification.

5. A number R, is chosen with density fi(®) = 1/2?, « > 1; fi(®) =0, < 1. If
R, = =, let R, be uniformly distributed between 0 and «. Find the distribution
and density functions of R,.

4.3 CONDITIONAL DENSITY FUNCTIONS

We have seen that specification of the distribution or density function of a
random variable R,, together with P, (B) (for all real  and Borel subsets B
of E'), interpreted intuitively as the conditional probability that R, € B,
given R; = z, determines the probability of all events of the form {(R;, R,) €
C}. However, this has not resolved the difficulty of defining conditional
probabilities given events of probability 0. If we are given random variables
R, and R, with a particular joint distribution function, we can ask whether
it is possible to define in a meaningful way the conditional probability
P{R, € B| R, = z}, even though the event {R, = x} may have probability
0 for some, in fact perhaps for all, . We now consider this question in the
case in which R; and R, have a joint density f.

e
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A reasonable approach to the conditional probability P{R, € B | R, = 2o}
is to look at P{R, € B| %y — h < R, < #, + h} and let & — 0. Now
' 2o+

P{zy — h < R, < #, + h, R, € B} =f Lf(x, y) dy dx

i xo—h
which for small / should look like 24 §8f (o, y) dy. But P{xy — h < R, <
@y + h} looks like 2h f1(%) for small /, where f,(z) = [*,, f(z, y) dy is the
density of R;. Thus, as 4 — 0, it appears that under appropriate conditions
P{Ry€ B|x — h < R, < + h} should approach [z [f(z, y)/f(2)] dy, so
that we find conditional probabilities involving R,, given R, = =, by inte-

grating f(z, y)[f1(x) with respect to y.
We are led to define the conditional density of R, given R, = x (or, for short,
the conditional density of R, given R,) as

Wy | &) =19 (43.1)
Since [©., f(z,y) dy = fy(x) (see Section 2.7), we have {*_, h(y|z)dy = 1,
so that (y | x), regarded as a function of ¥, is a legitimate density.

Notice that the conditional density is defined only when f(x) > 0. How-
ever, we may essentially ignore those (z, y) at which the conditional density
is not defined. For let S = {(z, ): f;(x) = 0}. We can show that P{(R,, R,) €
St=0.

PR R €S) = [[revia=| [
) |

=[  A@dr=0
{x:f1(x)=0}

We define the conditional probability that R, belongs to the Borel set B,
given that R, = x, as

P,B) = P{R,eB|R, =z} = fB h(y | x) dy (4.3.2)

We can ask whether this is a sensible definition of conditional probability.
We have set up our own ground rules to answer this question: “sensible”
means that the theorem of total probability holds. Let us check that in fact
(4.1.1) [and hence (4.1.2)] holds. We have '

P{R, € 4, R, € B} =f . Bf(x, y) dz dy
. x€ yE.

=f Afl(”)U ;1 d?f} do = L P.(B)fy(x) dz
which is (4.1.1). @ ve

e
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We have seen that if (R, R,) has density f(x, ¥) and R, has density f;(x)
we have a conditional density A(y | z) = f(x, y)[fi(x) for R,, given R, = =.
Let us reverse this process. Suppose that we observe a random variable R,
with density f;(x); if R, = x, we observe a random variable R, with density
h(y | x). If we accept the continuous version of the theorem of total prob-
ability, we may calculate the joint distribution function of R, and R, using
(4.1.1).

F(xy, yo) = P{Rl <7, R, < yo} =f P{Rz < Y I R, = x}fl(x) dx

- [ il [l av| oy e = [* [ sty | =)y as

Thus (R,, R,) has a density given by f'(z, y) = f,(x)h(y | ), in agreement with

4.3.1).

To summarize: We may look at the formula f (x, y) = f1(x)h(y | x) in two
ways.

1. If (R, R,) has density f(x, ¥), we have a natural notion of conditional
probability.

P,B) = P{R,€B| R, = z} =th(y| z) dy

2. If R, has density f;(x), and whenever R, = x we select R, with density
h(y | x), then in the natural formulation of this problem (R;, R) has density

f(@9) = fi@h(y| 2).

In both cases “natural’’ indicates that (4.1.1), the continuous version of the
theorem of total probability, is required to hold.

We may extend these results to higher dimensions. For example, if (Ry, R,,
R, R,) has density f(x,, %,, 23, ¥,), we define (say) the conditional density of
(Rs, R,) given (Ry, R,), as
[ (@1, %3, 235, 24)

Sra(@1, @)

h(x:}, Ty I Ly x2) =
where

Sra(@y, %5) =f j f (2, 5, 3, %) doy d,

The conditional probability that (Rs, R,) belongs to the two-dimensional
Borel set B, given that R, = x,, R, = ,, is defined by

P,..(B) = P{(R;, R) € B | R, = 2, R, = %,}

=ffh(x3, Zy I Ty, p) dxs dz,
B

e
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The appropriate version of the theorem of total probability is
PRy, R) € 4, Ry, R) € B} = [ [PciB)fustes, ) s o
A

If (R;, R,) has density fi,(%;, «,), and having observed R, = x;, R, = ,,
we select (R3, Ry) with density A(xs, x4 | Z,, &,), then (Ry, Ry, R;, R,) must
have density f (2, %3, %3, %4) = f12(%1, T2)h(25, 74 ! Ty, Tp).

Let us do some examples.

» Example 1. We arrive at a bus stop at time ¢t = 0. Two buses 4 and B
are in operation. The arrival time R, of bus A4 is uniformly distributed be-
tween 0 and ¢, minutes, and the arrival time R, of bus B is uniformly distrib-
uted between 0 and ¢z minutes, with ¢, < 5. The arrival times are
independent. Find the probability that bus 4 will arrive first.

We are looking for the probability that R; < R,. Since R; and R, are
independent (and have a joint density), the conditional density of R, given
R, is

&9 _popy=L1, o0<y<s
@) f(y) "t <y<itg
If bus 4 arrives at z, 0 < « < ¢, it will be first provided that bus B arrives
between z and #5. This happens with probability (t5 — #)/tz. Thus

P{R1<R2|R1=x}=1—tﬁ, 0<2<t,

B
By (4.1.2),
P{R, < R,} = f P{R; < Ry | R, = =} f() dw
t
=JA(1—£)ldx= s

[Formally, taking the sample space as EZ?, we have C={R, < Ry} =
{(IE,:I/): x< y}s sz{y .’E<y}, Pm(Cm) = P{Rl < R2|R1=x} = 1 -
Alternatively, we may simply use the joint density:

P{R, < Ry} = f f f(z, y) d= dy

= the shaded area in Figure 4.3.1, divided by the total area ¢ 45
4’2 ta
=142 _j_ 4

titp 2y
as before. «

e
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A3

tg 4

x

INL

0 LA
FiGURE 4.3.1 Bus Problem.

» Example 2. Let R, be a nonnegative random variable with density
SoA) =e* 2>0. If Ry= 4, we take n independent observations R,
R, ..., R,, each R, having the exponential density f,(y) = Ae~*, y > 0
(= 0for y < 0). Find the conditional density of R, given (Ry, R, . .. , R,).

Here we have specified f,(4), the density of R,, and the conditional density
of (Ry, Ry, . .., R,) given Ry, namely,

h(@y, @, . . ., @, | A) = fa(®) fo(s) - - - fu(x,) by the independence
assumption

VB

— N,z —
= A", x =)

=1

The joint density of Ry, Ry, ..., R, is therefore
FO, w0, 2,) = fo(Dh(, . .., 2, | 1) = Ane?0HD
The joint density of Ry, ..., R, is given by

oy s ) = f FOy -y ) dh = f Jre20) g
— 0

n,—y

. ®  y"e n!
= (with y = A(1 dy =
(uith y = 201 + =) [ et e

Thus the conditional density of R, given (Ry, ..., R,) is

h(l I Zy, ..., xn) =f(l, Ly ooy xn) — _1_ Ine—}.(1+m)(1 + x)n+1’
g(xy, ..., ) n!

}”’xl"“swaO,x:x1+"'+xn4

PROBLEMS

1. Let (R, R;) have density f(z,y) =e?, 0 <z <y, f(x,y) =0 elsewhere.
Find the conditional density of R, given R,, and P{R, <y|R, =}, the
conditional distribution function of R, given Ry = x.

e
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2. Let (Ry, Ry) have density f(z,y) =k |z|, -1 <2 <1, -1 <y <z;f(x,9) =0
elsewhere. Find k; also find the individual densities of R, and R,, the conditional
density of R, given Ry, and the conditional density of R, given R,.

3. (a) If (Ry, Ry) is uniformly distributed over the set C = {(z,y): 2 + y* < 1},

show that, given R, = x, R, is uniformly distributed between —(1 — ?)'/2
and +(1 — 2?2,

(b) Let (R;, Ry) be uniformly distributed over the arbitrary two-dimensional
Borel set C [i.e., P(B) = (area of B N C)/area of C (= area Bfarea C if
B <= Q)]

Show that given R; = @, R, is uniformly distributed on C, = {y: (»,y) € C}.

In other words, A(y | x) is constant for y € C,, and 0 for y ¢ C,.

4. InProblem 1, let R; = R, — R;. Find the conditional density of R; given R, = =.
Also find P{1 < Ry < 2| R, = z}. .

5. Suppose that (R;, Ry) has density f and Ry = g(Ry, Rp). You are asked to
compute the conditional distribution function of R, given R, = =; that is,
P{R; < z| R, = «}. How would you go about it?

4.4 CONDITIONAL EXPECTATION

In the preceding sections we considered situations in which two successive
observations are made, the second observation depending on the result of
the first. The essential ingredient in such problems is the quantity P,(B),
defined for real « and Borel sets B, to be interpreted as the conditional prob-
ability that the second observation will fall into B, given that the first observa-
tion takes the value z: for short, P{R, € B[ R, = «}. In particular, we may
define the conditional distribution function of R, given R, = x, as Fy(y ‘ x) =
P{RzﬁyiR1=x}-

If R, and R, have a joint density, this can be computed from the con-
ditional density of R, given R,: Fy(y, | %) = [*,, h(y | ) dy.

In any case, for each real  we have a probability measure P, defined on the
Borel subsets of EL. Now if R; = x and we observe R,, there should be an
average value associated with R,, that is, a conditional expectation of R,
given that R, = «. How should this be computed? Let us try to set up an
appropriate model. We are observing a single random variable R,, so let
Q = E', % = Borel sets, Ry,(y) = y. We are not concerned with the prob-
ability that R, € B, but instead with the probability that R, € B, given
that R, = z. In other words, the appropriate probability measure is P,.
The expectation of R,, computed with respect to P,, is called the conditional
expectation of R, given that R, = x (or, for short, the conditional expectation
of R, given R,), written E(R, | R, = ).

Note that if g is a (piecewise continuous) function from E* to E*, then g(R,)
is also a random variable (see Section 2.7), so that we may also talk about

e
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the conditional expectation of g(Ry) given R, = «, written E[g(R,) | R, = ].
In particular, if there is a conditional density of R, given R, = z, then,
by Theorem 2 of Section 3.1,

Em&ﬂ&=ﬂ=fﬂwwwﬂy @.4.1)

if g > 0 or if the integral is absolutely convergent.
There is an immediate extension to n dimensions. For example, if there is a
conditional density of (R4, Rs) given (R;, R., R;), then

E[g(R4, Rs) | R, = z;, Ry = ¥y, Ry = @3]
=fj'mmM%m%%mmm

Note also that conditional probability can be obtained from conditional
expectation. If in (4.4.1) we take g(y) = Iy(y) =1 if y€ B, and = 0 if
y ¢ B, then

EM&H&=ﬂ=HM&H&=ﬂ=f&@WM@@
=fh(y]x)dy=P{RzeB|R1 = z}
B

We have seen previously that P{R,€ B} = E[I ;5 .p,]. We now have a
similar result under the condition that R, = x. [Notice that Iz(R,) =
Iip,en); for Ig(Ry(w)) = 1 iff Ry(w) € B, that is, iff I p,cp,(w) = 1.]

Let us consider again the examples of Section 4.2.

» Example 1. R; is uniformly distributed between 0 and 1; if R, ==,
R, is the number of heads in n tosses of a coin with probability x of heads.

Given that R, = z, R, has a binomial distribution with parameters » and :
P{R, = k| R, = «} = (Pa*(1 — =)"*. It follows that E(R, | R, = ) is the
average number of successes in n Bernoulli trials, with probability = of
success on a particular trial, namely, nx. <

» Example 2. R, has density fi(z) = xe™®, « > 0, fi(*) = 0, * < 0. The
conditional density of R, given R, = « is uniform over [0, z]. It follows
that, for z > 0,

E(R,| R, = %) =f

o]

z 1
mwl@dy=ﬁy;dy=%x
Similarly,

E[eR2|R1=x]=f e”h(y]:c)dy=f e”ldy=e —1 4
© 0 xr x

e
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» Example 3. R, is discrete, with p(z,) = P{R, =#;},i=1,2,.... Given
R, = z,, R, has density f;; that is,

PR, B|R = 5} = [ () dy
Thus

Ble®s) | R = al = | e)fn) dy <
Now let us consider a slightly different case.

» Example 4. Let R, and R, be discrete random variables. If R, = z, then
R, will take the value y with probability

12(%, Y
p(y|x)=P{R2=le1=x}=&2(—)
n(®)
where

Pia(%, y) = P{R, = x, R, = y}, py(2) = P{R, = z}
p(y [ x), which is defined provided that p;(x) > 0, will be called the con-
ditional probability function of R, given R; = = (or the conditional prob-

ability function of R, given R;, for short). We may find the probability that
R, € B given R, = z by summing the conditional probability function.

P{R, = ,R € B} Z,EEBPH(”’ v)
P{R, = x} B pi(2)
=2 py| 2

yEB
Thus, given that R, = =, the probabilities of events involving R, are found
from the probability function p(y | ),y real. Therefore the conditional
expectation of g(R,) given R, = « is

E[g(Ry) | Ry = 2] = g(y)p(y | ) (44.2)

P,(B) = P{R,eB|R, =z} =

In particular,
ER; | Ry = 2) = 3 yp(y | ©) «
Yy

There is a feature common to all these examples. In each case the ex-
pectation of R, (or of a function of R,) can be expressed as a weighted average
of conditional expectations. Let us look at Example 4 first. With probability
p1(%), R, takes the value z; if R, = x, the average value of R, is E(R, | Ry =
x). By analogy with the theorem of total probability, it is reasonable to ex-

pect that
E(R;) = Z Pi(®)E(R, I R, =)

e
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To justify this, write

E(Ry) =Y yps(y) = 2 yP{Ry =y} = X ¥ > P{R, = z, R, = y}
v v v e by (2.7.2)

=2 yP{R, = 2}P{R, = y | R, = o} = 3 py(@)[ X yp(y | 2)]
x,Y x Y
This is the desired result.
In Example 1 the probability that R, will lie in an interval about z is

f1(%) dx = dx; given that R, = x, the average value of R, is E(R; | R, =2) =
nx. We expect that

BRy) = [ @R, | Ry = ) ds

To verify this, notice that we calculated in Section 4.2 that
1

P{R, = k} = > k=0,1,...,n

(R, J n+4+1
Thus

i 1 1 n+Dn n

E(R)=Y kP{R,=k}=——(1+2+ - =— ST P_I
(z)kgo{z }n+1( +n) 1 2 5
But

© 1

[ fi®ER; | R, = 2) do = f nxdm=g

o= 0

In Example 2, the joint density of R, and R, is

(@ 9) = f@h(y| ©) = % —er 2300<y<z
Now
£ =" [ of vy dzay

[Notice that we need not compute f,(y) explicitly ; instead we simply regard
R, as a function of R, and R,; that is, we set g(R;, R,) = R, and compute

Elg(Ry, Ry)] = f ? f ” a(a, 9)f (@, ) de dy]
Thus e

E(Ry) = L e‘”I: L y dy:l e = L 12t dw = IT(3) = 1

But
f(DER,| R, = 2) dx =f e *(3x) dx = 1
o 0

e
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In Example 3 we have [see (4.2.2)]
PIRye B} = 3 p(e) [ fw)dy =[5 )| v

so that R, has density
f) = 2 p(=) fy) (4.4.3)
Thus

BR) = [ o) dy = 3 0w [ ufo) dy
and consequently ' ' -
E(R,) = Z p(z)E(R, | R, = %)
as expected. '
Results of the form

E(R,) = z P(‘”z’)E(Rzl R, =) (449
or

ERy) = | H@BR, | R, = 2) do (445)

are called versions of the theorem of total expectation.

In the situations we are considering, conditional expectations are derived
ultimately from a given set of probabilities P,(B) = P{R,€ B| R, = x}.
In such cases it turns out that if E(R,) exists, (4.4.4) will hold if R, is discrete,
and (4.4.5) will hold if R, is absolutely continuous.

Notice that E(R, | R, = ) will in general depend on z and hence may be
written as g(z); [, g(®)f;(2) dr in (4.4.5) [or X g(x)p(2) in (4.4.4)] is then
the expectation of g(R,). Thus (4.4.4) and (4.4.5) may be rephrased as
follows.

The expectation of the conditional expectation of R, given Ry is the (over-all)
expectation of R,.

» Example 5. Let R be a random variable with the distribution function
shown in Figure 4.4.1. Find E(R®).

F(x)

Ll
»lw

FIGURE 4.4.1

e
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If R were discrete we would compute
E(R®) = 3 «’pp(2)

and if R were absolutely continuous we would compute

E(R®) = fj’ Pf (@) d

In this case, however, R falls into neither category. We are going to show how
to use the theorem of total expectation to compute E(R?).

Wehave P{R = —1} = 1/4,P{R=2} =3/4 — 1/4=1/2,P{R=2} =0
for other values of z. Let F; be a step function that is O for # < —1 and has a
jump of 1/4 at # = —1 and a jump of 1/2 at « = 2. Subtract F, from F to
obtain a continuous function Fj that can be represented as an integral of a
nonnegative function f,. F; is called the “discrete part” of F, and F, the
“absolutely continuous part” (see Figure 4.4.2). F, and F, are monotone,
right-continuous functions, and they approach zero as # — — co. However,
they approach limits that are less than 1 as « — oo, so that they cannot be
regarded as distribution functions of random variables. However, (4/3)F,
and 4F, are legitimate distribution functions.

We shall show that

ERY = 3 w'pya) + [ (0) do
Consider the following random experiment. With probability 3/4 (=
Fy() = 3, pr(®), where pp(z) = P{R = z}), pick a number in accordance

Fi(x) Fy(x)
/

B

x

1
4
| . -~
2 2 3

Pp(x)=P{R=1x} fz(x)=d§i(x)

Ll e 2o
N i
®
N g
lalu
w

FIGURE 4.4.2 Discrete and Absolutely Continuous Parts of a Distribution Function.
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N=—1

1
4

-N uniformly distributed between
2and3

FIGURE 4.43 Tree Diagram for Example 5.

with (4/3)F;; that is, pick —1 with probability 1/3 and 2 with probability
2/3. With probability 1/4 [= F,(0)], pick a number in accordance with
F,, that is, one uniformly distributed between 2 and 3 (see Figure 4.4.3).

If N is the resulting number, then, by the theorem of total probability,

P{N < x} = P(4)P{N < = | 4} + P(B)P{N < x| B}

where 4 and B correspond to the two possible results at the first stage of the
experiment. Thus

Fy(z) = §(3F,(®) + 1(4F5(x)) = Fy(2) + Fy(x) = F(z)

Therefore Fy is the original distribution function F.
Since N and R have the same distribution function, we expect that E(N?) =
E(R®). Now we may compute E(N?) by the theorem of total expectation.

E(N®) = P(A)E(N®| A) + P(B)E(N®| B)

= H(-D% + 2°31 + %f 2’ do = 3& + 45 = 15

2

53

Notice that this may be expressed as
3
(~0P 3+ 24+ [ par
2
that is,

E(R®) = 3 *p(@) + f_wx%(x) de

e
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More generally, the expectation of a function of R-may be computed by

E[g(R)] = X g(*)px(%) +f g() fz) d= (4.4.6)
x —a0
if g > 0 or if both the series and the integral are absolutely convergent. <«

» Example 6. Let R be a random variable on a given probability space,
and 4 an event with P(4) > 0. Formulate the proper definition of the con-
ditional expectation of R, given that 4 has occurred.

- This actually is not a new concept. If I, is the indicator of 4, we are look-
ing for the expectation of R, given that I, = 1. Let the experiment be per-
formed independently » times, n very large, and let R; be the value of R
obtained on trial i, i = 1, 2, . .. , n. Renumber the trials so that A occurs on
the first & trials, and A° on the last n — k [k will be approximately nP(4)].
The average value of R, considering only those trials on which 4 occurs, is

12 n
k - szIj)E

n j=1

where I; = 1 if 4 occurs on trial j; I; = 0 if A does not occur on trial
J- In other words, I; is simply the jth observation of I,. It appears that
1/n 3" R;I; approximates the expectation of RI,; since k/n approximates
P(4), we are led to define the conditional expectation of R given A as

ERLy) .
ER|A)=—= ifPA)>0 4.4.7

(R 4) P(A) (4) (4.4.7)
Let us check that (4.4.7) agrees with previous results when R is discrete. By
(44.2),

E(R]IA=1)=ZyP{R=y|IA=1}=§oyP{R=y|IA=1}

v Yy

Butify # 0,

PR=y,I,=1} P{RI,=y
P{R=y|IA=1}= { A }= { A }

P{I, =1} P(4)
Thus
1 E(RI
ER|L,=1)= ) 2 VTR = v} = 1(?(A;)

T The reader may recognize this as the Riemann-Stieltjes integral [, g(x) dF(x). Alterna-
tively, if one differentiates F formally to obtain f = f, plus “impulses” or “‘delta functions”

at —1 and 2 of strength 1/4 and 1/2, respectively, and then evaluates jfw g(@) f(x) dz, (4.4.6)
is obtained. ‘

e
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Let us look at another special case. For any random variable R and event
A with P(4) > 0, we may define the conditional distribution function of R
given A in a natural way, namely,

P(4 N {R < x})
P(A)
Now assume that R has density fand 4 is of the form {R € B} for some Borel
set B. Then
P(A N {R < %}) = P{REB,R < x,} =f Bf(x) dx

z<x0

Fp(z|4) = PR< z| A} = (4.4.8)

= f (@)p(z) dz

Thus (4.4.8) becomes

" f(2)

F (%, | A4) = o P(4)

Ix(%) dz
In other words, there is a conditional density of R given A, namely,

@ oy f@®
fr(z| A) = PCA) (x)—P(A) ifze B

=0 ifz¢B (4.4.9)

We may then compute the conditional expectation of R given 4.

E(R| 4) =Jjo ofp(x | A) d= =J‘w Z:iz—)f(at:) dx

—o P(A)
E(RIz(R '
= (—é(—l) by Theorem 2 of Section 3.1
P(4)
But , . . .
Ix(R) = Iipep by the discussion preceding Example 1
=1,
Thus
E(RI
E(R I A) = ._Q
P(4)

in agreement with (4.4.7).

REMARK. (4.4.8) and (4.4.9) extend to » dimensions. The conditional

distribution function of (Ry,...,R,) given 4 is Fy,. ,(2,,...,
xnIA)=P{R1Sx1"'-aRnan!A}' If (RI’---aRn) has
density fand 4 = {(R,, . . ., R,) € B}, there is a conditional density of

e
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(Ry, ..., R,) given A.

Fa@s - @, | A) =£(7”1’1;('—75”‘—")13(x1, )

The argument is essentially the same as above. <«

PROBLEMS

1. Let (Ry, Ry) have density f(z,y) = 8zy,0 <y <z < 1;f(z,y) = 0elsewhere.
(a) Find the conditional expectation of R, given R; = =, and the conditional
expectation of R; given R, = y.
(b) Find the conditional expectation of R,* given R, = .
(c) Find the conditional expectation of R, given 4 = {R; < 1/2}.

2. In Example 2 of Section 4.3, find the conditional expectation of Ry™, given
Ry =2,...,R, =2,

3. Let (Ry, Ry) be uniformly distributed over the parallelogram with vertices
(03 0)’ (2" 0)’ (35 1)9 (15 1)' Find E(R2 I Rl = x)’

4. If a single die is tossed independently » times, find the average number of 2’s,
given that the number of 1’s is k.

5. Let R, and R, be independent random variables, each uniformly distributed
between 0 and 2.
(a) Find the conditional probability that R, > 1, given that R, + R, < 3.
(b) Find the conditional expectation of R,, given that R; + R, < 3.

6. Let By, By,... be mutually exclusive, exhaustive events, with P(B,) > 0,
n=1,2,...,and let R be a random variable. Establish the following version
of the theorem of total expectation:

0
E(R) = P(B,)E(R| B,)
[if E(R) exists]. "~
7. Of the 100 people in a certain village, 50 always tell the truth, 30 always lie,
and 20 always refuse to answer. A single unbiased die is tossed. If the result is
1,2, 3, or 4, a sample of size 30 is taken with replacement. If the result is 5 or 6,
a sample of size 30 is taken without replacement. A random variable R is defined
as follows:
R =1 if the resulting sample contains 10 people of each category.
R = 2 if the sample is taken with replacement and contains 12 liars.
R = 3 otherwise.
Find E(R).
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Let R, and R, be independent random variables, each uniformly distributed
between 0 and 1. Define

R3 =g(R1, .Rz) = ‘Rl if R12 + R22 S 1
Ry =2 if Ry + R > 1

(a) Find F3(2) and compute E(R;) from this.

(b) Compute E(Rs) from [© [«  eg(z,y)f15(x, y) dz dy.

(c) Compute E(Ry|Ry® + Ry2 <1) and E(Rg|R;® + R;> > 1); then find
E(R3) by using the theorem of total expectation.

. The density for the time T required for the failure of a light bulb is f(z) =

Ae?= x > 0. Find the conditional density function of T — #,, given that
T > t,, and interpret the result intuitively.
Let R, and R, be independent random variables, each uniformly distributed
between 0 and 1. Find the conditional expectation of (R; + Ry)? given R; — R,.
Let R, and R, be independent random variables, each with density f(x) =
(1/2)e™*, 2 2 0;f(x) =1/2, -1 <z <0;f(x) =0,z < —1. Let Ry = R® +
Ry Find E(Ry | R, = 2).
Let R, be a discrete random variable; if R, =z, let R, have a conditional
density h(y |x). Define the conditional probability that R, =« given that
R2 =Yy as
P{R, = a}h(y | =)
P{R, =2z | R, = = 5 -
o =olRe =9} = SR, = «"h(y [ =)
po

(cf. Bayes’ Theorem).

(a) Interpret this definition intuitively by considering P{R; =2 |y < Ry <
y + dy}.

(b) Show that the definition is natural in the sense that the appropriate version
of the theorem of total probability is satisfied:

P{R,€ A, R,e B} = f fP{R,€ A| R, =y} dy
B

where
P{R,€ 4| R, =y} =2AP{R1 =2 | Ry =y}
fo(¥) =3 P{R, = x}h(y | %)
[see (4.4.3)]. ’

If R, is absolutely continuous and R, discrete, and p(y | x) =P{R, =y | Ry =
x} is specified, show that there is a conditional density of R, given R, namely,

_fi@p | =)
M) =) )

where

s(®) = P(Ry =y} = f ® L @p|2) de

e
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14. Let R be uniformly distributed between 0 and 1. If R = 4, a coin with probability
of heads 4 is tossed independently # times. If Ry, ..., R, are the results of the
tosses (R; = 1 for a head, R; = 0 for a tail), find the conditional density of R
given (Ry, . . ., R,), and the conditional expectation of R given (Ry, ..., Ry,).

15. (Hypothesis testing) Consider the following experiment. Throw a coin with
probability p of heads. If the coin comes up heads, observe a random variable
R with density f,(2); if the coin comes up tails, let R have density f;(%). Suppose
that we are not told the result of the coin toss, but only the value of R, and
we have to guess whether or not the coin came up heads. We do this by means
of a decision scheme, which is simply a Borel set S of real numbers with the
interpretation that if R = 2 and = € S, we decide for tails, that is, f;, and if
x ¢ S we decide for heads, that is; f;.

(a) Find the over-all probability of error in terms of p, fy, f1, and S. [There
are two types of errors: if the actual density is f; and we decide for f; (type
1 error), and if the actual density is f; and we decide for f; (type 2 error).]

(b) For a given p, f;, f1, find the S that makes the over-all probability of error
a minimum. Apply the results to the case in which f; is the normal density
with mean m; and variance o2, i = 0, 1.

REMARK. A physical model for part (b) is the following. The input R to a radar
receiver is of the form 6 + N, where 6 (the signal) and N (the noise) are
independent random variables, with P{0 = my} =p, P{6 = m} =1 —p,
and N normally distributed with mean 0 and variance o2 If 6 = m; (i =0
corresponds to a head in the above discussion, and i = 1 to a tail), then R
is normal with mean m; and variance ¢*; thus f; is the conditional density
of R given 6 = m;. We are trying to determine the actual value of the signal
with as low a probability of error as possible.

16. Let R be the number of successes in » Bernoulli trials, with probability p of
success on a given trial. Find the conditional expectation of R, given that
R >2.
17. Let R, be uniformly distributed between 0 and 10, and define R, by
R,=R? if0<R <6
=3 if6<R L10
Find the conditional expectation of R, given that 2 < R, < 4.

18. Consider the following two-stage random experiment.
(i) A circle of radius R and center at (0, 0) is selected, where R has density

fr(®) =e%,22>0; fRr() =0,z <O0.

(i) A point (R;, R,) is chosen, where (R;, Ry) is uniformly distributed inside
the circle selected in step (i).

(@) If D = (R® + R,®)'?is the distance of the resulting point from the origin,
find E(D).

(b) Find the conditional density of R given R, = =, R, = y. (Leave the answer
in the form of an integral.)

e
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19. (An estimation problem) The input R to a radar receiver is of the form  + N,
where 6 (the signal) and N (the noise) are independent random variables with
finite mean and variance. The value of R is observed, and then an estimate of
6 is made, say, 0* = d(R), where d is a function from the reals to the reals.
We wish to choose the estimate so that E[(6% — 6)2] is as small as possible.
(a) Show that d(z) is the conditional expectation E(6 ] R = x). (Assume that

R is either absolutely continuous or discrete.)
(b) Let 6 = +1 with equal probability, and let N be uniformly distributed
between —2 and +2. Find d(x) and the minimum value of E[(6* — 6)2].

20. A number 6 is chosen at random with density fo(z) = e7®, > 0; fy(x) =0,
z < 0. If 6 takes the value 4, a random variable R is observed, where R has
the Poisson distribution with parameter . For example, R might be the number
of radioactive particles (or particles with some other distinguishing character-
istic) passing through a counting device in a given time interval, where the
average number of such particles is selected randomly. The value of R is
observed and an estimate of 6 is made, say 0% =d(R). The argument of
Problem 19, which applies in any situation when one makes an estimate
0* =d(R) of a parameter 6, and when the distribution function of R depends
on 6, shows that the estimate that minimizes E[(6* — 0)2] is d(x) = E(0 | R =
z). Find d(2) in this case.

REMARK. Problems 15, 19, and 20 illustrate some techniques of statistics. This
- subject will be taken up systematically in Chapter 8. '

4.5 APPENDIX: THE GENERAL CONCEPT
OF CONDITIONAL EXPECTATION

By shifting our viewpoint slightly, we may regard a conditional expectation
as a random variable defined on the given probability space. For example,
suppose that E(R, | R, = z) = 2% We may then say that, having observed
Ry, the average value of R, is R,%. We adopt the notation E(R, | Ry) = R
In general, if E(R,| R, = x) = g(x), we define E(R,| Ry) = g(Ry)). Then
E(R, | Ry) is a function defined on Q; its value at the point  is g(R,(w)).

Let us see what happens to the theorem of total expectation in this notation.
If, for example,

ER) = [~ A@ER, | R, = 9 do = fi0gta) da

then E(R,) = E[g(R,)]; in other words,
E(R;) = E[E(R, | R,)] 4.5.1)

The expectation of the conditional expectation of R, given R, is the ex-
pectation of R,.

e
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Let us develop this a bit further. Let 4 be a Borel subset of E'. Then,
assuming that (4.5.1) holds for the random variable Ryl(p ¢ 4,, We have

E(Rol(p,ca;) = EIE(Ro] p,c4y | RD)]

But having observed R;, Rol(p « 4, Will be R, if R, € 4, and 0 otherwise;
thus we expect intuitively that

E(Ryl {Ry€4} | R)) = I{RleA }E(R2 | Ry)
It appears reasonable to expect, then, that
E(Ryl g csy) = Ellg,c4,E(Ry | R))]  forall Borel subsets 4 of E*  (4.5.2)

It turns out that if R, is an arbitrary random variable and R, a random
variable whose expectation exists, there is a random variable R, of the form
g(R,) for some Borel measurable function g, such that

E(Rol (g cay) = Ell(g,e4)R] for all Borel subsets 4 of E*

We set R = E(R, | R)). Furthermore, R is essentially unique: if R’ = g'(R,)
for some Borel measurable function g’, and R’ also satisfies (4.5.2), then
R = R’ except perhaps on a set of probability 0.

In the cases considered in this chapter, the conditional expectations all
satisfy (4.5.2) (which is just a restatement of the theorem of total expecta-
tion), and thus the examples of the chapter are consistent with the general
notion of conditional expectation.
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Characteristic Functions

5.1 INTRODUCTION

In Chapter 2 we examined the problem of finding probabilities of the form
P{(Ry, ..., R,) € B}, where R,, ..., R, were random variables on a given
probability space. If (Ry, . . ., R,) has density f, then

P{Ry,...,R,)€B)} =f---ff(xl,...,xn)dzl---dxn
B

In general, the evaluation of integrals of this type is quite difficult, if it is
possible at all. In this chapter we describe an approach to a particular class
of problems, those involving sums of independent random variables, which
avoids integration in n dimensions. The approach is similar in spirit to the
application of Fourier or Laplace transforms to a differential equation.

Let R be a random variable on a given probability space. We introduce the
characteristic function of R, defined by

Mg(u) = E(e™F),  u real (5.1.1)

Here we meet complex-valued random variables for the first time. A
complex-valued random variable on (Q, &, P)is a function T from Q to the
complex numbers C, such that the real part T, and the imaginary part T,
of T are (real-valued) random variables. Thus T(w) = T} (w) + iTy(w),

154
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e Q. We define the expectation of T as the complex number E(T) =
E(Ty) + iE(Ty); E(T) is defined only if E(T;) and E(T,) are both finite. In
the present case we have Mg(u) = E (cos uR) — iE (sin uR); since the cosine
and the sine are <1 in absolute value, all expectations are finite. Thus Mg
is a function from the reals to the complex numbers. If R has density fz we
obtain

oo

Mp(u) = f e~ief(z) da (5.1.2)

—00
which is the Fourier transform of fg.
It will be convenient in many computations to use a Laplace rather than a
Fourier transform. The generalized characteristic function of R is defined by

Ng(s) = E(e*®) s complexf (5.1.3)

Ng(s) is defined only for those s such that E(e—*F) is finite. If s is imaginary,
that is, if s = iu, u real, then Np(s) = Myz(u), so that Ny(s) is defined at
least for s on the imaginary axis. There will be situations in which Ng(s)
is not defined for any s off the imaginary axis, and other situations in which
Ng(s) is defined for all s.
If R has density f5, we obtain
Ng(s) = f

e

e fp(x) dx (5.1.9)

This is the (two-sided) Laplace transform of fx.
The basic fact about characteristic functions is the following.

Theorem 1. Let Ry, ..., R, be independent random variables on a given
probability space, and let Ry = Ry + -+ + R,. If Ng/(s) is finite for all
i=1,2,...,n,then Ng (s) is finite, and

NRO(S) = NRI(S)NRz(S) e NR,,(S)
In particular, if we set s = iu, we obtain
MRo(u) = MRL(M)MRZ(U) A MR”(u)

Thus the characteristic function of a sum of independent random variables
is the product of the characteristic functions.

T In doing most of the examples in this chapter, the student will not come to grief if he
regards s as a real variable and replaces statements such as “a < Re s < b” by “a < s <5.”
Also, a comment about notation. We have taken E(e~%+R) as the definition of the charac-
teristic function rather than the more usual E(e?*R) in order to preserve a notational
symmetry between Fourier and Laplace transforms (f e5%f () dw, not je”’f () dz, is the
standard notation for Laplace transform). Since u ranges over all real numbers, this change
is of no essential significance.

e



46628-0 Ash 1 4/14/08 8:26 AM Page$56

156 CHARACTERISTIC FUNCTIONS

PROOF.

n

E(e—sRo) — E(e—s(R1+...+R,.)) — E[

k=1

e—stJ — H E(e—st)
by independence. =

We have glossed over one point in this argument. If we take » = 2 for
simplicity, we have complex-valued random variables V = V; + iV, and
W= W, + iW, (V = e sE1, W = e~*F2), where, by Theorem 2 of Section
2.7, V; and W, are independent (j, k = 1, 2), and all expectations are finite.
We must show that E(VW) = E(V)E(W), which we have proved only in the
case when 7 and W are real-valued and independent. However, there is no
difficulty. ' v

E(VW) = E[V\W, — VoW, + i(ViW, + Vo))

= E(VDE(Wy) — E(V)E(Ws) + i(E(VDE(W)) + E(VR)E(Wy))
= [E(V) + iIE(WDIE(V,) + iE(Wy)] = E(V)E(W)
The proof for arbitrary n is more cumbersome, but the idea is exactly the
same.

Thus we may find the characteristic function of a sum of independent
random variables without any n-dimensional integration. However, this
technique will not be of value unless it is possible to recover the distribution

function from the characteristic function. In fact we have the following
result, which we shall not prove.

Theorem 2 (Correspondence Theorem). If My (u) = Mg, (u) for all u, then
Fp (%) = Fg,(x)  forallz
For computational purposes we need some facts about the Laplace trans-

form. Let f be a piecewise continuous function from E* to E* (not necessarily
a density) and L, its Laplace transform:

Ly(s) = f_w F(@)e™® da

Laplace Transform Properties

1. If there are real numbers K, and K, and nonnegative real numbers 4,
and A, such that |f(z)| < 4,eX forz > 0, and |f ()| < 4,eX* forz <0,
then L,(s) is finite for K; < Re s < K. This follows, since

f |f(@)e*"| dz < f A, B0 gy
0 0
and

0 0
f | f(®)e™*"| d= SJ\ Aze(Kz-—a)x dz

—0

e
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where a = Re 5. The integrals are finite if K; < a < Kj. Thus the class of
functions whose Laplace transform can be taken is quite large.

2. If g(x) = f(x — a) and L, is finite at s, then L, is also finite at s and
L,(s) = e L/(s). Thus follows, since

fw fx — a)e ™ dx = e ro f(x — a)e*" d(x — a)

3. If h(x) = f(—=)and L, is finite at s, then L, is finite at —s and L,(—s) =
L(s) [or L,(s) = L,(—s)if L, is finite at —s]. To verify this, write

f ® h(2)e” dw = (with y = —a) | f(y)e dy

4. If g(x) = e**f(x) and L, is finite at s, then L, is finite at s — a and
L,(s — a) = L(s) [or L,(s) = L,(s + a)if L, is finite at s + a]. For

f ® e t-aag(y) do — f * () du

—® —

We now construct a very brief table of Laplace transforms for use in the
examples. In Table 5.1.1, u(x) is the unit step function, defined by u(z) = 1,

Table 5.1.1 Laplace Transforms

f@) L(s) Region of Convergence
u(x) 1/s Res >0
e %y (x) 1/(s + @) Res > —a
ae—y(x), n=0,1,... n!/(s + ayr+l Res > —a
2%y (x), a>—1 T'(x + 1)/(s + @)+t Res > —a

z > 0;u(x) =0,z < 0. If we verify the last entry in the table the others will
follow. Now

w o © ytze—y
& _—ax smd — Wth — [ d
[Foeeds = withy = 6 + a1 | At
_Te+1)
(s + a)***

T Strictly speaking, these manipulations are only valid for s real and > —a. However, one
can show that under the hypothesis of property 1 Lyis analytic for K; < Re s < K,. In the
present case K; = —a and K, can be taken arbitrarily large, so that L, is analytic for
Res > —a. Now L(s) = I'(ax + 1)/(s + a)*+1 for s real and > —a, and therefore, by the
identity theorem for analytic functions, the formula holds for all s with Re s > —a. This
technique, which allows one to treat certain complex integrals as if the integrands were
real-valued, will be used several times without further comment.

e
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REMARK. u(z) and —u(—=) have the same Laplace transform 1/s, but the
regions of convergence are disjoint:

f u(x)e *dx =f e‘”dx=1, Res >0
—00 (] S
and

© 0
f —u(—x)e** dx =f —e % dr = 1, Res <0

—o —o0 N

This indicates that any statement about Laplace transforms should be
accompanied by some information about the region of convergence.

We need the following result in doing examples; the proof is measure-
theoretic and will be omitted.

5. Let R be an absolutely continuous random variable. If 4 is a nonnega-
tive (piecewise continuous) function and L,(s) is finite and coincides with the
generalized characteristic function Ng(s) for all s on the line Re s = a, then
h is the density of R.

5.2 EXAMPLES

We are going to examine some typical problems involving sums of independ-
ent random variables. We shall use the result, to be justified in Example 6,
that if Ry, R,,..., R, are independent, each absolutely continuous, then
R, + -+ - + R, is also absolutely continuous.

In all examples N,(s) will denote the generalized characteristic function of
the random variable R,.

> Example 1. Let R, and R, be independent random variables, with R,
uniformly distributed between —1 and +1, and R, having the exponential
density e~*u(y). Find the density of R, = R, + R,.

We have

1
Ny(s) = f e do = 2_1s (& —e), alls

Nys) = | eevdy = Res> —1
2(s) L ereTdy = s>
Thus, by Theorem 1 of Section 5.1,
1
Ny(s) = Ny(s)Ny(s) = ———(e* — ¢°
o(5) 1(S)No(s) 25 + 1)( e”’)

e
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fo®)

11 = o~ (x+1)) /w_(xﬂ)]

‘ x
-1 0 1

FIGURE 5.2.1

at least for Re s > —1. To find a function with this Laplace transform, we
use partial fraction expansion of the rational function part of Ny(s):

1 1 1

25(s +1) 25 2(s+ 1)

Now from Table 5.1.1, u(zx) has transform 1/s (Res > 0) and e*u(z)
has transform 1/(s + 1) (Res > —1). Thus (1/2)(1 — e®) wu(x) has
transform 1/2s(s + 1) (Res > 0). By property 2 of Laplace transforms
(Section 5.1), (1/2)(1 — e~*V)y(x + 1) has transform e%/2s(s + 1) and
(1/2)(1 — e=@yy(xz — 1) has transform e=*/2s(s + 1) (Re s > 0). Thus a
function / whose transform is Ny(s) for Re s > 0 is

he) = }(1 — et + 1) — (1 — ez — 1)

By property 5 of Laplace transforms, % is the density of R,; for a sketch, see
Figure 5.2.1. «

» Example 2. Let R, = R, + R, + R,, where R;, R,, and R; are independ-
ent with densities f1(z) = fy(2) = e®u(—=2), f3(x) = e~*Vy(x — 1). Find
the density of R,.

We have

0
Ny(s) = Ny(s) =f efe ™ dz = : > Res <1
—o0 - S

and
Ny(s) = we“”‘”e—s” de = e s Res> —1
© =, -

—S

Thus
e

No(s) = Ny(s)No(s)Ns(s) = m , —1<Res<1

e
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We expand the rational function in partial fractions.

1 __ 4 B, _C
=1+ (—1D* s—1 s+1
The coefficients may be found as follows.

A=[s — ’6($)ln = }

B=[LG-160)] =-1

§=

C=1[s+ DGWoy =

From Table 5.1.1, the transform of xze—®u(z) is 1/(s + 1)?, Res > —1.
By Laplace transform property 3, the transform of —ze®u(—x)is 1/(1 — s)?,
Re s < 1. The transform of e~*u(z) is 1/(s + 1), Re s > —1, so that, again
by property 3, the transform of e®u(—x) is 1/(1 — 5), Re s < 1.

Thus the transform of

—ixeu(—x) + re®u(—=x) + reu(x)

is

12 1/4 1/4
s—1D* s—1 s+1°
By property 2, the transform of

G(s) =

—1<Res<1

h(@) = [} — 3(= — Dl u(—(= — D) + te“Pu(z — 1)
is :
e—*G(s) = Ny(s), —1<Res<1
By property 5, 4 is the density of R, (see Figure 5.2.2). «

h(x)
| X
0 1
FIGURE 5.2.2

h(z) = (1 + 31 —2)e™?,  2<1
— %e—(z_v’ x>1

e
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» Example 3. Let R have the Cauchy density; that is,
f(:v)—————l— —oo<x<‘oo
E (1l + 2?)’

The characteristic function of R is

Ma(u) = f " eive(2) da

—00

161

[In this case Ng(s) is finite only for s on the imaginary axis.] Mz(u) turns

out to be e~!*l. This may be verified by complex variable methods (see

Problem 9), but instead we give a rough sketch of another attack. If the

characteristic function of a random variable R is integrable, that is,

f |M g(uw)| du <

it turns out that R has a density and in fact f5 is given by the inverse Fourier

transform.

1 @ tux
Fal@) = - f M gf)e®™® du
27 J-o
In the present case
@ 0 @
J e 1l du =f e du +J‘ etdu=2< o
o — (i}

and thus the density corresponding to e~!*! is

1 ° —lul| jiux 1 0 u(1+42) 1 * —u(1—ix)
— e et dy = — e du + — e du
27 J-w 27 Jo

277 —

_L[l N 1}_ 1
2all +iz 1 —ix (1 + 2%)

(5.2.1)

Thus the Cauchy density in fact corresponds to the characteristic function

e—lul,

This argument has a serious gap. We started with the assumption that
e~!l was the characteristic function of some random variable, and deduced
from this that the random variable must have density 1/7(1 + 22). We must

establish that e~!*! is in fact a characteristic function (see Problem 8).

Now let Ry = R, + * * + + R, where the R; are independent, each with

the Cauchy density. Let us find the density of R,. We have

My(u) = My@Ma) - - My(ai) = (e-1ly = ¢l

e
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If instead we consider Ry/n, we obtain

Mgy a(4) = E[e B/ = M, (E) = ¢ lul
n

Thus Ry/n has the Cauchy density. Now if R, = nR;, then fy(y) =
(1/n)f1(y[n) (see Section 2.4), and so the density of R, is

1 n
na(l + y¥n®)  m(y® + n?

fo(y) =

REMARKS.

1. The arithmetic average Ry/n of a sequence of independent Cauchy

distributed random variables has the same density as each of the
components. There is no convergence of the arithmetic average to
a constant, as we might expect physically. The trouble is that E(R)
does not exist.

. If R has the Cauchy density and R, = ¢;R, R, = c,R, ¢, Cs

constant and > 0, then

My(u) = E(e ™) = E(e*R) = Mg(equ) = 1"l
and similarly
My(u) = eI"l
Thus, if Ry = R, + R, = (¢; + ¢,)R,
My(u) = e—(ertealul

which happens to be M;(u)M,(u). This shows that if the char-
acteristic function of the sum of two random variables is the prod-
uct of the characteristic functions, the random variables need not
be independent.

. If R has the Cauchy density and R, = 6R, 6 > 0, then by the

calculation performed before Remark 1, R, has density fi(y) =
6/m(y*> + 62) and (as in Remark 2) characteristic function M,(u) =
e~®1“l. A random variable with this density is said to be of the
Cauchy type with parameter 6 or to have the Cauchy density with
parameter 0. The formula for M,(u) shows immediately that if
Ry, ..., R, are independent and R; is of the Cauchy type with
parameter 0,,i = 1,...,n, then R, + - - - + R, is of the Cauchy
type with parameter 6; + - -- + 0,,. <

» Example 4. If R,, R,, ..., R, are independent and normally distributed,
then Ry = R, + - - - + R, is also normally distributed.

e
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‘We first show that if R is normally distributed with mean m and variance
o2, then

Ng(s) = e ™"’z (all 5) (5.2.2)
Now

—(ar:—m)2/2¢)'2 dz

N = | e ule) da = [ sz -

Lety = (z — m)/\/ 2 o and complete the square to obtain

1 —sm ° 2 5262 5202/2
NR(s)=:/-—-;e _exp —(y +s\/§ay+7 e dy

= —1-: esmes o[ f et dt = e=5mesN2 by (2.8.2)

\/'n' —a0 .

(See the footnote on page 157.) Now if E(R;) = m;, Var R, = ¢2, then
ND(S) — NI(S)Nz(S) e N,,(s) — e—s(m1+...+m,.) esz(a12+...+a,,2)/2

But this is the characteristic function of a normally distributed random
vanable and the result follows. Note that my=m; + - -+ + m,, 0,2 =
oy® + 4 0,2, as we should expect from the results of Section 3.3. <«

» Example 5. Let R have the Poisson distribution.

e )k

prlk) = o k=0,1,...
We first show that the generalized characteristic function of R is
Ng(s) = exp [Me™* — 1)] (all 5) (5.2.3)
We have
—sR X —sk < e_lj'k —sk
Na®) = B =3¢ ) = 3 © e
Fan ) o k!
—S\k
‘lkzo Ge ) _ o exp (le™®)

as asserted.

We now show that if R,,..., R, are independent random variables,
each with the Poisson distribution, then R, = R, + + - - + R, also has the
poisson distribution.

If R; has the Poisson distribution with parameter 2;, then

No(s) = Ni()Nyfs) -+ * Nu(s) = exp [(Ay + * - - + 2,)(e=* — D]

This is the characteristic function of a Poisson random variable, and the
result follows. Note that if R has the Poisson distribution with parameter

e
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A, then E(R) = Var R = 1 (see Problem 8, Section 3.2). Thus the result that
the parameter of Ryis 4; + - - - + A, is consistent with the fact that E(R,) =
E(R)) + -+ + E(R,) and Var R, = Var R, + - -+ + Var R,. «

» Example 6. In certain situations (especially when the Laplace transforms
cannot be expressed in closed form) it may be convenient to use a convolu-
tion procedure rather than the transform technique to find the density of a
sum of independent random variables. The method is based on the following
result.

Convolution Theorem. Let R, and R, be independent random variables,
having densities f, and f,, respectively. Let Ry = R, + R,. Then R, has a
density given by

fi@) = f " fie — @) fi(a) dar = f_ G- 0hwdy (624

(Intuitively, the probability that R, lies in (z, x + dz] is f,() dx; given that
R, = =z, the probability that R, lies in (2, z + dz] is the probability that R,
lies in (z — =, z — x + dz], namely, fy(2 — ) dz. Integrating with respect to
x, we obtain the result that the probability that R, lies in (z, z + dz] is

& 16 — (@) d
Since the probability is f(z) dz, (5.2.4) follows.)

Proor. To prove the convolution theorem, observe that

Fo(2) = P{R; + R, < 2z} = f fi() fo(y) dz dy

z+y<z

N ﬁ, [ f_; fo) dy} fi(#) do

Let y = u — x to obtain

f:o [fwfz(u — %) du] fi(z) dz =fjm[f_wwfl(x) folu — @) dx} du

This proves the first relation of (5.2.4); the other follows by a symmetrica
argument. :
We consider a numerical example. Let fi(x) = 1/x2?, = > 1; fi(x) = 0,
z< 1. Let f(y) =1, 0 <y < 1; fo(y) = 0 elsewhere. If z < 1, f3(z) = 0;

ifl1<2<L2,
56 = [ fofe - da=[Law=1-1

2

e
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fo = (x=2))=fo(z=x),
1 1=2=2

Il_]f2<-x)
. [1..

Ifz> 2,

0 z=1 2z

fl(x)

5.2 EXAMPLES

Afo(z—2), z2>2
1

z=1 z

fi(x)

FiGURE 5.2.3 Application of the Convolution Theorem.

50 = Sda=—

—1 X z—1

(see Figure 5.2.3).

1

2

165

RemMARk. The successive application of the convolution theorem shows that

if Ry, ..

PROBLEMS

., R, are independent, each absolutely continuous, then
R, 4+ -+ - 4+ R, is absolutely continuous. <«

1. Let Ry, R,, and R be independent random variables, each uniformly distrib-
uted between —1 and +1. Find and sketch the density function of the random
variable Ry = R; + R, + Rs.

2. Two independent random variables R, and R, each have the density function
f@) =1/3, —1 <z <0; f(x) =2/3, 0 <z <1; f(») =0 elsewhere. Find
and sketch the density function of R; + R,.

3. Let R = R 4 - -+ + R,2, where Ry, ..

is normal with mean 0 and variance 1. Show that the density of R is

an/2-1a/2

1
T = )

X

>0

., R, are independent, and each R;

(R is said to have the “chi-square” distribution with » “degrees of freedom.”)

e
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A random variable R is said to have the “gamma distribution” if its density is,
for some «, 8 > 0,
xa“le“w/ B

f(x)=_IW;,m20;f(x)=0,x<0

Show that if R, and R, are independent random variables, each having the
gamma distribution with the same B, then R; + R, also has the gamma
distribution.

. If Ry, . . ., R, are independent nonnegative random variables, each with density

Ae~*®y(z), find the density of Ry = Ry + - -+ + R,.

. Let 6 be uniformly distributed between —=/2 and /2. Show that tan 6 has the

Cauchy density.

. Let R have density f(x) =1 — 2], |z] < 1; f(®) =0, |z] > 1. Show that

Mp(u) =2(1 — cos w)[u®.

(a) Suppose that f is the density of a random variable and the associated
characteristic function M is real-valued, nonnegative, and integrable.
Show that kf (1), — < u < o, is the characteristic function of a random
variable with density kM (x)/2n, where k is chosen so that kf(0) =1,
that is,

J ? (kM ()[2x] dz = 1

— 00

(b) Use part (a) to show that the following are characteristic functions of
random variables: (i) e ¥, (i) M@) =1 —|u|, |u]l <1; M(@u) =0,
[u] > 1.

Use the calculus of residues to evaluate the characteristic function of the Cauchy

density.

Calculate the characteristic function of the normal (0, 1) random variable as

follows. Differentiate

© e—%%/2
M) = cos ux) ——dx
()] f_w ( ) Vo
under the integral sign; then integrate by parts to obtain M'(x) = —uM(u).
Solve the resulting differential equation to obtain M(u) = ¢~»*2 From this,
find the characteristic function of a random variable that is normal with mean

m and variance o2.

5.3 PROPERTIES OF CHARACTERISTIC FUNCTIONS

Let R be a random variable with characteristic function M and generalized
characteristic function N. We shall establish several properties of M and N.

e
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1. M(0) = N(0) = 1.

This follows, since- M(0) = N(0) = E(e°).
2. |[IM()| < 1 for all u.

If R has a density £, we have

|M(u)| =

Jaw/e—"“”” f() dx

—00

<T@l =@ as=1
The general case can be handled by replacing f(x) dx by dF(x), where F
is the distribution function of R. This involves Riemann-Stieltjes integration,
which we shall not enter into here.

3. If R has a density f, and f is even, that is, f(—x) = f(z) for all =,
then M(u) is real-valued for all «. For

M(u) = f_w £(®) cos uz dz — i f (@) sin uz dz

Since f(x) is an even function of # and sin ux is an odd function of =z,
f (@) sin ux is odd; hence the second integral is 0.

It turns out that the assertion that M (u) is real for all # is equivalent to the
statement that R has a symmetric distribution, that is, P{R € B} = P{R € — B}
for every Borel set B. (—B = {—x:x € B}.)

4. If R is a discrete random variable taking on only integer values, then
M@u + 27) = M(u) for all u.

To see this, write

M(u) = E(e™B) = ¥ p,e ™" (5.3.1)

where p, = P{R = n}. Since e~i*" = e~ilut2mn_the result follows.
Note that the p, are the coefficients of the Fourier series of M on the
interval [0, 27]. If we multiply (5.3.1) by e*** and integrate, we obtain

2
P = 2—17; L M(u)e™™ du (5.3.2)

We come now to the important moment-generating property. Suppose
that N(s) can be expanded in a power series about s = 0.

N(s) =D a;,s"
£=0

where the series converges in some neighborhood of the origin. This is just
the Taylor expansion of N; hence the coefficients must be given by

1 d"’N(s)}
k! ds* oo

ag

e



46628-0 Ash 1 4/14/08 8:26 AM Page$68

168  CHARACTERISTIC FUNCTIONS

But if R has density f and we can differentiate N(s) = [, e~** f(x) dx under
the integral sign, we obtain N'(s) = *, — xe=**f(x) dz; if we can
differentiate k times, we find that

N®(s) = f ? (—D*2*e**f (x) da
Thus o
N®(0) = (—1)*E(R") (5.3.3)
and hence

—1)*
The precise statement is as follows.

5. If Ng(s) is analytic at s = 0 (i.e., expandable in a power series in a
neighborhood of s = 0), then all moments of R are finite, and

Ng(s) =§0 %ZC E(Rb)s* (5.3.4)

within the radius of convergence of the series. In particular, (5.3.3) holds
for all k.

We shall not give a proof of (5.3.4). The above remarks make it at least
plausible; further evidence is presented by the following argument. If R
has density f, then

N(s) = f () d

_(° s s (=D
_fw(l_sx+2!_3!+ t gt )f(x)dx

If we are allowed to integrate term by term, we obtain (5.3.4).

Let us verify (5.3.4) for a numerical example. Let f(z) = e~*u(), so that
N(s) = 1/(s + 1), Re s > —1. We have a power series expansion for N(s)
about s = 0.

1
1+

Equation 5.3.4 indicates that we should have (—1)*E(R¥)/k! = (—1)¥, or
E(R*) = k! To check this, notice that

=1—-s+s8 =4+ -+ (=DsF+--+ |s/<1

E(RF) = f " e de = T(k + 1) = k!
1]

e
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REMARK. Let R be a discrete random variable taking on only nonnegative
integer values. In the generalized characteristic function

N(s) =>pe™  p.=P{R=k}
¥=0

make the substitution z = e—5. We obtain

AR) = N)],_i = EGP) =§ Pt

A is called the generating function of R; it is finite at least for || < 1,
since >°  p, = 1. :

We consider generating functions in detail in connection with the random
walk problem in Chapter 6.

PROBLEMS

1. Could [2/(s + 1)] — (1/s)d — e~*)(Re s > 0) be the generalized characteristic
function of an (absolutely continuous) random variable? Explain.

2. If the density of a random variable R is zero for = ¢ the finite interval [a, b]
show that Ny(s) is finite for all s.

3. We have stated that if Mp(u) is integrable, R has a density [see (5.2.1)]. Is the
converse true?

4. Let R have a lattice distribution; that is, R is discrete and takes on the values
a + nd, where a and d are fixed real numbers and » ranges over the integers.
What can be said about the characteristic function of R?

5. If R has the Poisson distribution with parameter 1, calculate the mean and
variance of R by differentiating Np(s). ’

5.4 THE CENTRAL LIMIT THEOREM

The weak law of large numbers states that if, for each n, R;, Ry, ..., R,
are independent random variables with finite expectations and uniformly
bounded variances, then, for every ¢ > 0,

1 n
Pi- 2 (R; — ER)

Ni=1

28}——»0 as n— oo

e



46628-0 Ash 1 4/14/08 8:26 AM Page$70

170 CHARACTERISTIC FUNCTIONS

In particular, if the R; are independent observations of a random variable R
(with finite mean m and finite variance ¢%), then

d

The central limit theorem gives further information; it says roughly that

lzRi—m\Zs:—»O as n— ©

ni=1

for large n, the sum R, + -+ - 4+ R, of n independent random variables is
approximately normally distributed, under wide conditions on the individual
R,.

To make the idea of “approximately normal” more precise, we need the
notion of convergence in distribution. Let R;, R,, ... be random variables
with distribution functions Fy, F,,..., and let R be a random variable with
distribution function . We say that the sequence R;, R,, . .. convergesin
distribution to R (notation: R, 2 R) iff F,(x) — F(x) at all points z at
which Fis continuous.

To see the reason for the restriction to continuity points of F, consider
the following example.

» Example 1. Let R, be uniformly distributed between 0 and 1/n (see
Figure 5.4.1). Intuitively, as n— co, R, approximates more and more
closely a random variable R that is identically 0. But F,(x) — F(x) when
xz # 0, but not at z = 0, since F,(0) = 0 for all n, and F(0) = 1. Since

. .. . d
« = 0 is not a continuity point of F, we have R, —> R. «

Fn(x) F(x)
1 1
»~-~— e
x x
0 1 0
n

fn(x)‘

n
0 1 *

n

Ficure 5.4.1 Convergence in Distribution.

e
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REMARK. The type of convergence involved in the weak law of large
numbers is called convergence in probability. The sequence R,,

R,, . .. is said to converge in probability to R (notation: R, i R)
iff for every ¢ > 0, P{|R, — R| > &} — 0 as n— co. Intuitively, for
large n, R, is very likely to be very close to R. Thus the weak law of

large numbers states that (1/n) >, (R, — E(R,)) L, 0; in the case
in which E(R;) = m for all i, we have

13 P

- z Ri —_—>m

ni=1
The relation between convergence in probability and convergence in
distribution is outlined in Problem 1.

The basic result about convergence in distribution is the following.

Theorem 1. The sequence Ry, R, . . . converges in distribution to R if and
only if M, (u) — M(u) for all u, where M, is the characteristic function of
R,, and M is the characteristic function of R.

The proof is measure-theoretic, and will be omitted.

Thus, in order to show that a sequence converges in distribution to a
normal random variable, it suffices to show that the corresponding sequence
of characteristic functions converges to a normal characteristic function.
This is the technique that will be used to prove the main theorem, which we
now state.

Theorem 2. (Central Limit Theorem). For each n, let Ry, R,, ..., R, be
independent random variables on a given probability space. Assume that the
R, all have the same density function f (and characteristic function M) with
finite mean m and finite variance o® > 0, and finite third moment as well. Let

n

’lej—nm
T, ==L ——
Jno

(=[S, — E(S))/o(S,), where S,=R;+ -+ R, and o(S,) is the
standard deviation of S,) so that T, has mean 0 and variance 1. Then Ty,
T,, . . . converge in distribution to a random variable that is normal with mean
0 and variance 1.

*Before giving the proof, we need some preliminaries.

e
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Theorem 3. Let f be a complex-valued function on E' with n continuous
derivatives on the interval V = (—b, b). Then, on V,

—n—lf(k)(o)u (1 )n—l n
=3 4w [ 0 ) a

Thus, iflf(n)| <MonV,

n—1 ok k n
fw) =73 Ol + 9 lul”

where |0] < M (0 depends on u)
=0 k! n!

Proor. Using integration by parts, we obtain

N ) i u—=0"" () ey (U — "2
ff 0= = [( el ()] ff 0=

_ [ ("—1)'(0)14”_ () (U — t)"_
B (n — 1)! Jf (t)( —2)! at
_f(n—l)(o)un—-l _ f(n—2)(0)un—

(n =1 (n—2)!

* (n—2) (u )n—3
+ [ 7o = —
n—1 f(k) (O)u J’
= 21 + | f'(t) dt by iteration

Thus

n—lf(k)(O)u (n) (u t)n—-l
s =3 =0 4 [ = a

The change of variables = ut’ in the above integral yields the desired ex-
pression for f(u).

Now if
I = ((ln _t)l';'lf(m(m) dt
then
1| <M|u["f L= " Mlul”
(n— 1! n!

Let 6 = In!/|u|”; then || < M and the result follows.

e
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Theorem 4.

Oy*

@ ei”=1+i2/+7, 6] <1

2 3
e =t1+iy-Lp Bl <y

where y is an arbitrary real number, 0, 6, depending on y.
Proor. This is immediate from Theorem 3.

(b) If z is a complex number and |2| < 12, then In (1 +2z) =z + 0 |22,
where |0] < 1, 0 depending on z. (Take In 1 = 0 to determine the branch of the

logarithm.)
PRrOOF.
22 2% 2t
In(1 =z2——4+ - —— 4
1+2==z 2+3 4
-—z_|_z2 __1.+E__Z_2+...
( 2 3 4 )
Now

=3+ -+ <3+ +HIP+ - <2IFH =1
=1
Since 22 = |z|21%77'#" and |ei*r*="| = 1, the result follows.

PROOF OF THEOREM 2. By Theorem 1, we must show that M, (u) — e=**/2,
the characteristic function of a normal (0, 1) random variable. Now we
may assume without loss of generality that m = 0. For if we have proved
the theorem under this assumption, then write

n
Zl(Ra' —m)
T — 7_=.—___...
" Jnoe
The random variables R; — m have mean 0 and variance o2, and the result
will follow.
The characteristic function of > | R; is (M(u))"; hence the characteristic
function of T, is

scors = fe (=2 5] - ()]

e
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Now

M( \71_;_0 ) _ f:oe_m/\/;a 7(2) dw

® iuz w2 0 |ul® |z
=f_w (1 - Jno T one? + 16|n3|/2cl>-3| )f(x) dx by Theorem4a

But

f fo(x) dz=m =0, f szf(x) dx = o

(G = (5

where ¢ depends on u. Take logarithms to obtain, by Theorem 4b,

2 u2
)~ -5

as n— oo

Thus

which is the desired result.*

ReMARK. Convergence in distribution of T, =[S, — E(S,)l/a(S,), S, =
>, Ry, 0(S,) = standard deviation of S,, can be established under
conditions much more general than those given in Theorem 2. For
example, the finiteness of the third moment is not necessary in
Theorem 2; neither is the assumption that the R; have a density.
We give two other sufficient conditions for normal convergence.

1. The R, are uniformly bounded; that is, there is a constant k such
that |R;| < k for all i, and also Var (S,) — co.
The requirement that Var S, — oo is necessary, for otherwise
we could take R, to have an arbitrary distribution function, and
R, =0forn > 2.-Then S, = R,

_S,—ES, R, —ER,
o(S,) o(Ry)

Thus the functions Fp_are the same for all » and hence in general
cannot approach,

n



46628-0 Ash 1 4/14/08 8:26 AM Page$75

5.4 THE CENTRAL LIMIT THEOREM 175

which is the normal distribution function with mean 0 and
variance 1.

2. (The Liapounov condition)

2 E|R, — ER,[*"

=1 GO —~0  forsomed >0
(o,

REMARK. For each n, let Ry, R,, . .., R, be independent random variables,
where all R, have the same distribution function, with finite mean m,
finite variance o2, and also finite third moment. It can be shown that
there is a positive number k such that |Fp (x) — F*(»)| < k/ V'n for
all  and all n. It follows that, for large n, S, is approximately normal
with mean nm and variance no?, in the sense that for all x,

Fs,,(“') _f L —(t—nm) /2na” dt‘ < A

- \/27n & Jn

{S — nm x—nm}

For

Fg (x) = P{S, <L 2} = <

Jne T Jno

and this differs from F*((x — nm)/\/n o) by gk/\/;'z. But

—MN V’ILO’
F*(ﬂ) =J‘(z ! 1 2 gy

Jno — 27

= [sett = Yy —_nm) 1 fw e—(y—’nm)”/wm2 dy
Jno )\ 2mno J-

and the result follows.

In particular, let R be the number of successes in n Bernoulli
trials; then (Example 1, Section 3.5) R = R; + -+ - + R,, where the
R; are independent, and P{R, = 1} = p, P{R;, = 0} = 1 — p. Thus,
for large n, R is approximately normal with mean np and variance
np(1 — p), in the sense described above.

PROBLEMS

1. Show that R, £, R implies R, %, R, asfollows. Let F, be the distribution
function of R,,, and F the distribution function of R.
(a) If € > 0, show that

P{R, <a} <P{IR, —R| > ¢} + PR < + ¢}
and
P{R <2 — ¢} <P{R, — R| > ¢} + P{R, <}

e
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Conclude that
F — ¢ —P{|R, — Rl > ¢} < F,(x) <P{IR, —R| > ¢} + F(z + ¢)

(b) If R, i> R and F is continuous at x, show that F,(x) — F(x).

2. Give an example of a sequence Ry, R,, .. . that converges in distribution to a
random variable R, but does not converge in probability to R.

3. If R, converges in distribution to a constant c, that is, lim,_, , F,(x) = 1 for
x > ¢,and =0 for z < ¢, show that R, _P., c.

4. Let R, R,, . . . be random variables such that P{R, = e"} = 1/n, P{R, =0} =
1 — 1/n. Show that R, —5 0, but E(R,*) — o as n — w, for any fixed k > 0.

5. Two candidates, 4 and B, are running for President and it is desired to predict
the outcome of the election. Assume that n people are selected independently
and at random and asked their preference. Suppose that the probability of

selecting a voter who favors A in any particular observation is p. (p is fixed but
unknown.) Let Q,, be the relative frequency of “A4” voters in the sample; that is,

0 number of “4” voters in sample
" size of sample

(a) We wish to choose n large enough so that P{|Q, — p| <.001} > .99 for
all possible values of p. In other words, we wish to predict 4’s percentage
of the vote to within .19, with 999 confidence. Estimate the minimum
value of n.

(b) Estimate the minimum value of n if we wish to predict A’s percentage to
within 19, with 959 confidence. (Use the central limit theorem.)

6. (a) Show that the normal density function (with mean 0, variance 1) satisfies
the inequality
L | 1
— e dt < —— e, x>0
x 2 27

HINT: show that

1 . 1 @ 1
—— " = —— e 21 + <) dr
V2rx Vi Js I

by differentiating both sides.
(b) Show that

fw 1 2/2 4, 1 x2/2
—_— e { ~ — e %
x \/277 \/271-’/5

in the sense that the ratio of the two sides approaches 1 as # — .

7. Consider a container holding » = 10° molecules. In the steady state it is reason-
able that there be roughly as many molecules on the left side as on the right.
Assume that the molecules are dropped independently and at random into the

e
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container and that each molecule may fall with equal probability on the left
or right side.

If R is the number of molecules on the right side of the container, we may
invoke the central limit theorem to justify the physical assumption that for the
purpose of calculating P{a < R < b} we may regard R as normally distributed
with mean #p = n/2 and variance np(1 — p) = n/4.

Use Problem 6 to bound P{|R — n/2| > .005n}, the probability of a fluctuation
about the mean of more than +.59% of the total number of molecules.

8. Let R be the number of successes in 10,000 Bernoulli trials, with probability
of success .8 on a given trial. Use the central limit theorem to estimate
P{7940 < R < 8080}.
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Infinite Sequences of
Random Variables

6.1 INTRODUCTION

We have not yet encountered any situation in which it is necessary to con-
sider an infinite collection of random variables, all defined on the same prob-
ability space. In the central limit theorem, for example, the basic underlying
hypothesis is “For each n, let Ry, . . . , R, be independent random variables.”
As n changes, the underlying probability space may change, but this is of
no consequence, since a convergence in distribution statement is a statement
about convergence of a sequence of real-valued functions on EL. If R;, ..., R,
are independent, with distribution functions Fy,...,F,, and T, =
(S, — E(S))|o(S,), S, = Ry + - - - + R, the distribution function of T,
is completely determined by the F;, and the validity of a statement about
convergence in distribution of T, is also determined by the F;, regardless of
the construction of the underlying space.

However, there are occasions when it is necessary to consider an infinite
number of random variables defined on the same probability space. For
example, consider the following random experiment. We start at the origin
on the real line, and flip a coin independently over and over again. If the
result of the first toss is heads, we take one step to the right (i.e., fromz = 0

178

e
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to z = 1), and if the result is tails, we move one step to the left (to z = —1).
We continue the process; if we are at = k after  trials, then at trial # + 1
we move to x = k + 1 if the (n + 1)th toss results in heads, ortor =k — 1
if it results in tails. We ask, for example, for the probability of eventually
returning to the origin.

Now the position S, after n steps is the sum R, + - -+ 4+ R, of n independ-
ent random variables, where P{R, = 1} = p = probability of heads,
P{R,, = —1} =1 — p. We are looking for P{S, = 0 for some n > 0}.

We must decide what probability space we are considering. If we are
interested only in the first » trials, there is no problem. We simply have a
sequence of n Bernoulli trials, and we have considered the assignment of
probabilities in detail. However, the difficulty is that the event {S, = 0 for
some n > 0} involves infinitely many trials. We must take Q = E® = all
infinite sequences (z;, %,, . . .) of real numbers. (In this case we may restrict
the z; to be 41, but it is convenient to allow arbitrary z; so that the discussion
will apply to the general problem of assigning probabilities to events in-
volving infinitely many random variables.)

We have the problem of specifying the sigma field # and the probability
measure P. The physical description of the problem has determined all
probabilities involving finitely many R;; thatis, we know P{(R,, . . . , R,) € B}
for each positive integer n and n-dimensional Borel set B. What we would
like to conclude is that a reasonable specification of probabilities involving
finitely many R; determines the probability of events involving all the R,.
For example, consider {all R; = 1}. This event may be expressed as

N{R,=1...,R, =1}
n=1
The sets {R, = 1, ..., R, = 1} form a contracting sequence; hence
P{allR; =1} =limP{R,=1,...,R, =1} =limp"=0 ifp<1
As another example,
1R, = 1 for infinitely many n}
= {for every n, there exists k > n such that R, = 1}

=N U{R, =1}
n=1k=n
Thus
P{R,, =1 for infinitely many n} = lim P[U {R, = 1}]
n=> o0 k=n

— lim lim P[kl?" (R, = 1}]

n—*o m-—*ow

e
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Thus again the probability is determined once we know the probabilities
of all events involving finitely many R,.

We now sketch the general situation. Let 2 = E®. A set of the form
{(%1, 25, ...): (%1, ...,%,) €B,}, where B, < E", is called a cylinder with
base B,, a measurable cylinder if B, is a Borel subset of E™.

Suppose that for each n we specify a probability measure P, on the Borel
subsets of E”; P,(B,) is to be interpreted as P{(R,, ..., R,) € B,}, where
Ri(xy, 2y, ...) =,

Suppose, for example, that we have specified P;. Then P, k < 5, is
determined. In particular, in the discrete case we have

P{(Rla R2’ R3) € Ba}
= > P{R,=,Ry=u,, Ry = 23, Ry = 24, Ry = x;}
(x1,22,23)€B3,
—o<gg<ow,
—o0 <g5<o00

and in the absolutely continuous case we have

P{(Rb Ry, Ry) € Bs} = J : ’Jf(xl, Ty, T3, Ty, T5) Ay Ay dwy duy dug

(x1,22,23)€B3
—o<xg<ow,
—o0 <5< 00

In general, once P, is given, Py, k < n, is determined. But we have specified
Py, k < n, at the beginning; if our assignment of probabilities is to make
sense, the original P, must agree with that derived from P,, n > k.

If, for all» = 1,2, ...and all kK < n, the probability measure P, origi-
nally specified agrees with that derived from P,, n > k, we say that the prob-
ability measures are consistent. Under the consistency hypothesis, the
Kolmogorov extension theorem states that there is a unique probability
measure P on & = the smallest sigma field of subsets of Q containing the
measurable cylinders, such that

P (the measurable cylinder with base B,) = P,(B,)

foralln =1,2,... and all Borel subsets B,, of E™.

In other words, a consistent specification of finite dimensional probabilities
determines the probabilities of events involving all the R,.

We now consider the case in which the R, are discrete. Here we determine
probabilities involving (R,, ..., R,) by prescribing the joint probability
function

Proon@yy ... 2,) =P{R =2,,...,R,=2,}

We may then derive the joint probability function of Ry, . .., Ry:
PRiy==,...,Ry=x}= Y P{Ri=2,...,R,=2,} (6.11)
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If this coincides with the given p;,.., (for all # and all k < n) we say that the
system of joint probability functions is consistent. If we sum (6.1.1) over
(2, . . . , %) € By, we find that consistency of the joint probability functions
is equivalent to consistency of the associated probability measures P,.
Thus in the discrete case the essential point is the consistency of the joint
probability functions. In particular, suppose that we require that for each n,
R,, ..., R, be independent, with R, having a specified probability function
ps- Then (6.1.1) becomes

P{R1 =x,..., R, = “’k} = Z pi(@y) -+ - pu(®,) = (@) - ()

£20s CRERRTA)

and thus the joint probability functions are consistent. The point we are
making here is that there is a unique probability measure on & such that the
random variables R,, R,, ... are independent, each with a specified prob-
ability function. In other words, the statement “Let R;, Ry, . . . be independ-
ent random variables, where R, is discrete and has probability function p;,”
is unambiguous.

In the absolutely continuous case, probabilities involving R,,..., R,
are determined by the joint density function fy,...,. The joint density of
R,, ..., R, is then given by

gy, ..., 7)) = [ o f Srgeon(®yy o0 @) ATy dz, (6.1.2)

If this coincides with the given fi5.., (n, k = 1,2, ...,k < n), we say that
the system of joint densities is consistent. By integrating (6.1.2) over Borel
sets B, < E*, we find that consistency of joint density functions is equivalent
to consistency of the associated probability measures P, In particular, if we
require that for each n, Ry,..., R, be independent, with R, having a
specified density function f;, then (6.1.2) becomes

g(xy, . .., ) =Jj° .. 'J‘_wf1(f"1) e fl@,) ATy - - dy,
= fu(®) - Sl @)

Therefore the joint density functions are consistent, and the statement
“Let Ry, Ry, ... be independent random variables, where R; is absolutely
continuous with density function f;,” is unambiguous.

PROBLEMS

1. By working directly with the probability measures P,, give an argument shorter
than the one above to show that the statement “Let R;, R, . . . be independent
random variables, where R; is absolutely continuous with density f;,” is
unambiguous.

e
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2. If Ry, R,, ... are independent, with P{R; =1} =p, P{R; = —1} =1 —p, as
at the beginning of the section, find P{R, = 1 for infinitely many n}; also, find
P{lim,,_, , R, = 1}. (Assume 0 < p < 1.)

6.2 THE GAMBLER’S RUIN-PROBLEM

Suppose that a gambler starts with a capital of « dollars and plays a sequence
of games against an opponent with b — z dollars. At each trial he wins a
dollar with probability p, and loses a dollar with probability g = 1 — p.
(The trials are assumed independent, with 0 < p < 1, 0 <z < b.) The
process continues until the gambler’s capital reaches 0 (ruin) or b (victory).
We wish to find A(x), the probability of eventual ruin when the initial capital
is .

Let 4 = {eventual ruin}, B, = {win on trial 1}, B, = {lose on trial 1}.
By the theorem of total probability,

P(A) = P(B,)P(A| B,) + P(By)P(4 | B,)

We are given that P(B,) = p, P(B;) = ¢; P(A) is the unknown probability
h(x). Now if the gambler wins at the first trial, his capital is then = + 1;
thus P(4 | B,) is the probability of eventual ruin, starting at « + 1, that is,
h(z + 1). Similarly, P(4 | B,) = h(xz — 1). Thus

h(x) = ph(x + 1) + gh(x — 1),z =1,2,...,b—1 (6.2.1)

[The intuition behind the argument leading to (6.2.1) is compelling; how-
ever, a formal proof involves concepts not treated in this book, and will be
omitted.]

We have not yet found A(x), but we know that it satisfies (6.2.1), a linear
homogeneous difference equation with constant coefficients. The boundary
conditions are A(0) = 1, A(b) = 0. To see this, note that if x = 1, then with
probability p the gambler wins on trial 1; his probability of eventual ruin is
then 4(2). With probability g he loses on trial 1, and then he is already ruined.
In other words, if (6.2.1) is to be satisfied at + = 1, we must have 4(0) = 1.
Similarly, examination of (6.2.1) at # = b — 1 shows that A(b) = 0.

The difference equation may be put into the standard form

ph(z + 2) — h(x + 1) + gh(x) = 0,
x2=0,1,...,6—2,h(0)=1,h(b) =0

It is solved in the same way as the analogous differential equation

d dy
2Jd__ %I =0
Pt
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We assume an exponential solution; for convenience, we take A(z) = A*
(= e* ™), Then pA®t? — 2%t 4 g1* = A%(pA2 — A + q) = 0. Since A% is
never 0, the only allowable A’s are the roots of the characteristic equation
pAt — A + g = 0, namely,

h=1 0 T 4p)
2p

Now
(p—q?=p*—2pq +q*=p*>+2pq + ¢ — 4pg = (p + q)* — 4pq
=1—4pq (6.2.2)
Hence

. ‘
A=—0%x|p—4l)
The two roots are
jo=ttrp—d_, 5 _l¥a-p_4a
2p 2p p
CaseE 1. p $¢. Then 4, and 4, are distinct; hence
h(z) = A7 + Cly® = A + C (ﬂ)
P
W) =A+C=1
q b
h(b) = A + c(—) —0
P

Solving, we obtain

_ _—(a/p’ Ce— L
1 —(q/p) 1 — (q/p)
Therefore
(g/p)* — (a/p)°
h(x) = 4LP2_— MIP) 6.2.3
®) 1 —(q/p)’ (623

CasE 2. p =g =1/2. Then A, = A, = A = 1, a repeated root. In such a
case (just as in the analogous differential equation) we may construct
two linearly independent solutions by taking A* and xA”; that is,

h(z) = AA* + Cxl®* = A + Cx
h(0)=A4=1
h(b) = A + Cb =0 soC=—i
Thus
r b—=x
b

h(z) =1 — (6.2.4)

S IR
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k(=)
1
2
s \0
o ©
\\.o
00 b x

FIGURE 6.2.1 Probability of Eventual Ruin.

so that the probability of eventual ruin is the ratio of the adversary’s
capital to the total capital. A sketch of 4(z) in the various cases is
shown in Figure 6.2.1.

Similarly, let g(x) be the probability of eventual victory, starting with a
capital of x dollars. We cannot conclude immediately that g(x) = 1 — h(z),
since there is the possibility that the game will never end; that is, the
gambler’s fortune might oscillate forever within the limits # = 1 and z =
b — 1. However, we can show that this event has probability 0, as follows.
By the same reasoning as that leading to (6.2.1), we obtain

g@) =pglx + 1) +qgx — 1) (6.2.5)

The boundary conditions are now g(0) = 0, g(b) = 1. But we may verify
that g(x) = 1 — h(x) satisfies (6.2.5) with the given boundary conditions;
since the solution is unique (see Problem 1), we must have g(z) = 1 — A(z);
that is, the game ends with probability 1.

We should mention, at least in passing, the probability space we are work-
ingin. We take Q = E*, % = the smallest sigma field containing the measur-
able cylinders, R,(%;, 2,,...) = ;, i =1,2,..., P the probability measure
determined by the requirement that R,, R,,... be independent, with
P{R; = 1} = p, P{R, = —1} = q. Thus R, is the gambler’s net gain on trial
i,and z + X7 R, is his capital after n trials. We are looking for h(z) =
P{for some n, x+>* R, =0, 0<z+>* R, <b, k=1,2,...,
n— 1}

A sequence of random variables of the form x + 2;;1 Ryn=1,2,...,
where the R; are independent and have the same distribution function (or,
more generally, R, + >* R, n=1,2,..., where Ry, R, R,,... are
independent and R;, R,, . . . have the same distribution function), is called a
random walk, a simple random walk if R,(i > 1) takes on only the values +1.
The present case may be regarded as a simple random walk with absorbing
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barriers at 0 and b, since when the gambler’s fortune reaches either of these
figures, the game ends, and we may as well regard his capital as forever
frozen.

We wish to investigate the effect of removing one or both of the barriers.
Let 4,(z) be the probability of eventual ruin starting from z, when the total
capital is b. It is reasonable to expect that lim,_, ., #,(2) should be the prob-
ability of eventual ruin when the gambler has the misfortune of playing
against an adversary with infinite capital. Let us verify this.

Consider the simple random walk with only the barrier at = 0 present;
that is, the adversary has infinite capital. If the gambler starts at z > 0,
his probability #*(x) of eventual ruin is

P(A) = P{for some positive integer b, 0 is reached before b}

Let A, = {0 is reached before b}. The sets 4,, b = 1,2, ... form an expand-
ing sequence whose union is 4; hence

P(A) = lim P(4,)

But
P(4,) = hy()
Consequently
h*(z) = lim hy(x)
b= o0
=1 ifqg>p

- (ﬂ) if g < p, by (6.2.3) and (6.2.4) (+ = 1,2, ...) (6.2.6)
p
Thus, in fact, lim,_, ., A,() is the probability £*(x) of eventual ruin when the
adversary has infinite capital; 1 — A*(x) is the probability that the origin will
never be reached, that is, that the game will never end. If g < p, then A*(z) <
1, and so there is a positive probability that the game will go on forever.
Finally, consider a simple random walk starting at 0, with no barriers.
Let r be the probability of eventually returning to 0. Now if R, = 1 (a win
on trial 1), there will be a return to 0 with probability A*(1). If R, = —1
(a loss on trial 1), the probability of eventually reaching 0 is found by evaluat-
ing h*(1) with g and p interchanged, thatis, 1 forg < p,and p/qifp < q.
Thus, if g < p, .

r=p(%) +aw=2
Ifp<yq,
r=MD+qG)=b

e
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One expression covers both of these cases, namely,

r=1—|p—yql
<l1 ifps#gq (6.2.7)

PROBLEMS

1. Show that the difference equation arising from the gambler’s ruin problem has a
unique solution subject to given boundary conditions at # = 0 and = = b.

2. In the gambler’s ruin problem, let D(x) be the average duration of the game
when the initial capital is . Show that D(z) =p(1 + D(z + 1)) +q(1 +
D@ — 1)),z =1,2,...,b — 1 [the boundary conditions are D(0) = D(b) =
0].

3. Show that the solution to the difference equation of Problem 2 is

_ _Glg —p( -G .
D(x) = e T = QP ifp #gq

=z(b — ) ifp=q=1/2

[D(x) can be shown to be finite, so that the usual method of solution applies;
see Problem 4, Section 7.4.]

Remark. If Dy() is the average duration of the game when the total capital is b,
then lim,_, , Dy(x) (= «© if p >¢q, =2z/g — p if p < ¢) can be interpreted
as the average length of time required to reach 0 when the adversary has
infinite capital.

4. In a simple random walk starting at 0 (with no barriers), show that the average
length of time required to return to the origin is infinite. (Corollary: A couple
decides to have children until the number of boys equals the number of girls.
The average number of children is infinite.)

5. Consider the simple random walk starting at 0. If b > 0, find the probability
that x = b will eventually be reached.

6.3 COMBINATORIAL APPROACH TO THE RANDOM
WALK; THE REFLECTION PRINCIPLE

In this section we obtain, by combinatorial methods, some explicit results
connected with the simple random walk. We assume that the walk starts at
0, with no barriers; thus the position at time n is S, = > | R,, where
Ry, R,, ... are independent random variables with P{R, = 1} = p,

e
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P{R, = —1} = g = 1 — p. We may regard the R, as the results of an infinite
sequence of Bernoulli trials; we call an occurrence of R, = 1 a “‘success,”
and that of R, = —1 a “failure.” {

Suppose that among the first » trials there are exactly a successes and b
failures (@ 4+ b = n); say a > b. We ask for the (conditional) probability
that the process will always be positive at times 1, 2, . . . , n, that is,

P{S1>0,S2>0,...,Sn>0|Sn=a—b} (6.3.1)

(Notice that the only way that S, can equal @ — b is for there to be a suc-
cesses and b failures in the first # trials; for if « is the number of successes and
y the number of failures, then z +y=n=a + b, x — y = a — b; hence
x =a, y =b. Thus {S, = a — b} = {a successes, b failures in the first n
trials}.) }

Now (6.3.1) may be written as

P{S;>0,...,5,>0,8,=a— b}
" P{S,=a—b}

(6.3.2)

A favorable outcome in the numerator corresponds to a path from (0, 0)
to (n, a — b) that always lies above the axis,t and a favorable outcome
in the denominator to an arbitrary path from (0,0) to (n,a — b) (see
Figure 6.3.1). Thus (6.3.2) becomes

p°q°[the number of paths from (0, 0) to (n, a — b) that are always above 0]
p°q°[the total number of paths from (0, 0) to (n, a — b)]

A path from (0, 0) to (n, a — b) is determined by selecting a positions out
of n for the successes to occur; the total number of paths is (?) = (*?). To
count the number of paths lying above 0, we reason as follows (see Figure
6.3.2).

Let 4 and B be points above the axis. Given any path from A4 to B that
touches or crosses the axis, reflect the segment between A and the first zero
point T, as shown. We get a path from A’ to B, where A’ is the reflection of
A. Conversely, given any path from A’ to B, the path must reach the axis at
some point T. Reflecting the segment from A4’ to T, we obtain a path from 4
to B that touches or crosses the axis. The correspondence thus established is
one-to-one; hence

the number of paths from A to B that touch or cross the axis
= the total number of paths from A’ to B

T Terminology: For the purpose of determining whether or not a path lies above the axis
(or touches it, crosses it, etc.), the end points are not included in the path.
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Sp

FIGURE 6.3.1 A Path in the Random Walk.
n==6
a=4, b=2
P{Ri=Ry=1,Ry=—1,R,=R;=1,Rg = —1} = piq%;
this is one contribution to
P{S;>0,...,8>0,S; =2}

This is called the reflection principle. Now
the number of paths from (0, 0) to (n, a — b) lying entirely above the axis

= the number from (1, 1) to (n, a — b) that neither touch nor cross
the axis (since R; must be +1 in this case)

= the total number from (1, 1) to (n, a — b) — the number from
(1, 1) to (n, a — b) that either touch or cross the axis

= the total number from (1, 1) to (n, @ — b) — the total number
from (1, —1) to (n, @ — b) (by the reflection principle)

_ (n— 1) _ (n— 1)
(a -1 ( a
[Notice that in a path from (1, 1) to (n, @ — b) there are « successes and y

failures, where x + y=n—1=a + b — 1,2 —y=a — b — 1, s0

B

FIGURE 6.3.2 Reflection Principle.
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x = a — 1, y = b. Similarly, a path from (1, —1) to (n, a — b) must have a
successes and b — 1 failures.]

rp=1D! (@-=1!  n! (a b)

@—'b! al—1! a'b\n n

Thus
ifa + b = n, the number of paths from (0, 0) to (n,a — b)

lying entirely above the axis = (a — b) (n) (6.3.3)

n a
Therefore
P{S1>0,...,S,,>0[S,,=a—b}=a_b=a—-:£) (6.3.4)
a+b

Remark. This problem is equivalent to the ballot problem: In an election
with two candidates, candidate 1 receives a votes and candidate 2
receives b votes, with @ > b, a + b = n. The ballots are shuffled and
counted one by one. The probability that candidate 1 will lead
throughout the balloting is (@ — b)/(a + b). [Each possible sequence
of ballots corresponds to a path from (0, 0) to (n, a — b); a sequence
in which candidate 1 is always ahead corresponds to a path from
(0, 0) to (n, @ — b) that is always above the axis.]

We now compute
h; = P{the first return to 0 occurs at time j}
Since h; must be 0 for j odd, we may as well set j = 2n. Now
heyy =P{S; #0,...,85,1 #0,S,, =0}

and thus h,,, is the number of paths from (0, 0) to (2n, 0) lying above the axis,
times 2 (to take into account paths lying below the axis), times p"g", the
probability of each path (see Figure 6.3.3). '

The number of paths from (0, 0) to (2n, 0) lying above the axis is the num-
ber from (0, 0) to (2n — 1, 1) lying above the axis, which, by (6.3.3), is
(") (@ —b)/2n — 1) (Where a +b=2n—1, a— b =1, hence a = n,

FIGURE 6.3.3 A First Return to 0 at Time 2n.
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(y+2k,y)

©,0)

FIGURE 6.3.4 Computation of First Passage Times.

b =n — 1), that is,
(2n—1) 1 (2n-=2)! _1(2n—2)

n Joan—1 nln—=1! n\n-—1

Thus

h2n=_

2/2n —2
i

)(pq)" (6.3.5)

n—1
We now compute probabilities of first passage times, that is, P{the first

passage through y > 0 takes place at time r}. The only possible values of r
are of the formy + 2k, k =0, 1, ... ; hence we are looking for

h",, = P{the first passage through » > 0 occurs at time y + 2k}

To do the computation in an effortless manner, see Figure 6.3.4. If we look
at the path of Figure 6.3.4 backward, it always lies below y and travels a
vertical distance y in time ¥ + 2k. Thus the number of favorable paths is the
number of paths from (0, 0) to (y + 2k, y) that lie above the axis; that is,
by (6.3.3),

(y+2k)_a—_b wherea + b=y +2k,a—b=y

a y + 2k
Thus a = y + k, b = k. Consequently
. 2k ‘
W=t () (63.6)

PROBLEMS

The first five problems refer to the simple random walk starting at 0, with no
barriers. \

1. Show that P{S; > 0,8, >0,..., S5, 4 >0, Sy, =0} = up,/(n + 1), where
Uy = P{S,, = 0} is the probability of z successes (and # failures) in 2z Bernoulli
trials, that is, (27)(pg)™.
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N

. Letp =q =1]2.
(a) Show that hy, = us, of2n, wWhere up, = (27)(1/2)*".
(b) Show that uy,[us, » =1 — 1/2n; hence hyy = Upy o — Usp-

. Ifp =g = 1/2, show that P{S; #0, ..., Say # 0}, the probability of no return
to the origin in the first 27 steps, is #,, = (2#)2‘2"‘. Show also that P{S; %0, ...,
Sony # 0} = hon + Uop.

. If p =g = 1/2, show that P{S; >0, ..., Sy, > 0} = (2m272,

. If p = g = 1/2, show that the average length of time required to return to the
origin is infinite, by using Stirling’s formula to find the asymptotic expression
for hy,, and then showing that > ® | nky, = .

w

19 N

(=)

. Two players each toss an unbiased coin independently » times. Show that the
probability that each player will have the same number of heads after » tosses

is (122 3n_ (2.
. By looking at Problem 6 in a slightly different way, show that >0 (= (.

. A spider and a fly are situated at the corners of an n by # grid, as shown in
Figure P.6.3.8. The spider walks only north or east, the fly only south or west;

0

Fly 3 Fly

D ? <_1%

1
2
1

2
& Spider

Spider
FiGure P.6.3.8

they take their steps simultaneously, to an adjacent vertex of the grid.

(a) Show that if they meet, the point of contact must be on the diagonal D.

(b) Show that if the successive steps are independent, and equally likely to go
in each of the two possible directions, the probability that they will meet is

Gnaj2e.

6.4 GENERATING FUNCTIONS

Let {a,,n > 0} be a bounded sequence of real numbers. The generating
Sfunction of the sequence is defined by.

A() =Y a,z", =z complex

n=0
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The series converges at least for |z| < 1. If R is a discrete random variable
taking on only nonnegative integer values, and P{R =n} =a,, n =0,
1,..., then A(2) is called the generating function of R. Note that A(z) =

o 02" P{R = n} = E(zP), the characteristic function of R with z replacing

e,

We have seen that the characteristic function of a sum of independent
random variables is the product of the characteristic functions. An analogous
result holds for generating functions.

Theorem 1. Let {a,} and {b,} be bounded sequences of real numbers. Let
{c.} be the convolution of {a,} and {b,}, defined by

Cp = z akbn—k(= z bjan—j)
k=0 =0
Then C(z) = > %_, c,2" is convergent at least for |z| < 1, and
C(z) = A(2)B(z)

Proor. Suppose first that a, = P{R, = n}, b, = P{R, = n}, where R,
and R, are independent nonnegative integer-valued random variables. Then
¢, = P{R, + R, = n}, since {R, + R, = n} is the disjoint union of the
events {R, =k, R,=n—k},k=0,1,...,n Thus

C(z) = E(zFrtEB2) = E(2P12F2) = E(®)E(z®2) = A(2)B(2)
In general,

0

et =3 Tabe" =3 3 b, = AG)BE)
n=0x= n=

n=0 k=0

We have seen that under appropriate conditions the moments of a random
variable can be obtained from its characteristic function. Similar results hold
for generating functions. Let A(z) be the generating function of the random
variable R; restrict z to be real and between 0 and 1. We show that

E(R) = A'(1) (6.4.1)
where

A’'(1) = lim A'(2)
z—1
If E(R) is finite, then the variance of R is given by
Var R = A"(1) + A’(1) — [4'()]? (6.4.2)
To establish (6.4.1) and (6.4.2), notice that ‘

A(R) = E_:Da,,z", a, = P{R = n}
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Thus
o]
A'(z) = Y naz""

n=1

Let z— 1 to obtain
A'(1) =3 na, = E(R)

n=1

proving (6.4.1). Similarly,

AG) =S n(n — Va2 so A1) = ER®) — E(R)
Therefore i
Var R = E(R?) — [E(R)E = 4"(1) + 4'(1) — [A' (D]

which is (6.4.2).

Now consider the simple random walk starting at 0, with no barriers. Let
u, = P{S, = 0}, h, = the probability that the first return to 0 will occur at
time n = P{S; #0,...,S,, #0, S, = 0}. Let

URz) = 2_:0”"2”’ HR) = z_:oh,,z"

(For the remainder of this section, z is restricted to real values.)

If we are at the origin at time , the first return to 0 must occur at some time
k,k=1,2,...,n. If the first return to 0 occurs at time k, we must be at the
origin after n — k additional steps. Since the events {first return to O at
time k}, k = 1,2, ..., n, are disjoint, we have

n
U, = 2 hy_y, n=12,...
k=1
Let us write this as

Uy, = g, n=12,...
%=0
This will be valid provided that we define 4, = 0. Now u, = 1, since the

walk starts at the origin, but iy, = 0. Thus we may write

Vy=2hu,;,, n=0,1,... (6.4.3)

x=0
where v, = u,,n > 1; 0 =0=1uy — 1.
Since {v,} is the convolution of {A,} and {u,}, Theorem 1 yields

V(z) = H(z)U(2)
But

V() = govnz” = zlunz" =U(z) —1

e
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Thus
UR)(1 — H(z)) =1 (6.4.4)

We may use (6.4.4) to find the A, explicitly. For
) < n < 2n < (2n n,2n
U0 = 2" =S =3 () oy
n=0 n=0 n=0\ N

This can be put into a closed form, as follows. We claim that

(2:) - (‘nl/z)(—4)" (6.4.5)

where, for any real number «, (¢) denotes

e — 1) (e —n+1)
n!

To see this, write

(—1/2) _ (=1/2)(=3/2) - - - [=(2n — D/2]

n n!
=(_1)n1-3~5-;-£2n—1)n_!
n!2 n!
_1-3-5---2n — 1)(2/2)(4/2)(6/2) - - - (2n/2) (—1)"
n! n!2"
_@enl(=D"
nln! 4%
proving (6.4.5). Thus
0@ =3 (7, 7) (et = (@ - aparty
by the binomial theorem. By (6.4.4) we have
1
HF) =1——=1— (1 — 4pgz*)"/? 6.4.6
(©) UG ( Pqz") (6.4.6)

This may be expanded by the binomial theorem to obtain the 4, (see Problem
1); of course the results will agree with (6.3.5), obtained by the combinatorial
approach of the preceding section. Notice that we must have the positive
square root in (6.4.6), since H(0) = h, = 0.

Some useful information may be gathered without expanding H(z).
Observe that H(1) = > _ h, is the probability of eventual return to O.

n=0
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By (6.4.6), '
H(1) =1~ (1 — 4pgi”
=1—|p—gql by(622)
This agrees with the result (6.2.7) obtained previously.
Now assume p = g = 1/2, so that there is a return to 0 with probability 1.
We show that the average length of time required to return to the origin is
infinite. For if T is the time of first return to 0, then

o]

E(T) =§ nP{T = n} = 2 nh, = H'(1)
as in (6.4.1). By (6.4.6), B

H'(z) = —c-ld— 1-22)2=2(1=2"2>00 asz—1
2

Thus E(T) = oo, as asserted (see Problem 5, Section 6.3, for another ap-
proach).

PROBLEMS

1. Expand (6.4.6) by the binomial theorem to obtain the A,.

2. Solve the difference equation a,,; — 3a, = 4 by taking the generating function
of both sides to obtain
4z (21}

A—»d -3 T 1T—3

Expand in partial fractions and use a geometric series expansion to find a,.

A@) =

3. Let A(z) be the generating function of the sequence {an}‘; assume that
> o lan — any| < . Show that if lim _, , a, exists, the limit is
lim (1 — 2)A4()
z—>1
4. If R is a random variable with generating function A(2), find the generating
function of R + k and kR, where k is a nonnegative integer. If F(n) = P{R < n},
find the generating function of {F(n)}.

5. Let Ry, Ry, . . . be independent random variables, with P{R; = 1} = p, P{R; =
0} =¢g=1-—p,i=1,2,.... Thus we have an infinite sequence of Bernoulli
trials; R; = 1 corresponds to a success on trial /, and R; = 0is a failure. (Assume
0 < p < 1) Let R be the number of trials required to obtain the first success.
(a) Show that P{R =k} =q¢*p, k =1,2,... .

(b) Use generalized characteristic functions to show that E(R) = 1/p, Var R =
(1 — p)[p?; check the result by calculating the generating function of R
and using (6.4.1) and (6.4.2). R is said to have the geometric distribution.

e
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6. With the R; as in Problem 5, let N, be the number of trials required to obtain
the rth success (r =1, 2,...).
(a) Show that P{N, =k} = CDpg=r k=r,r+1,...

=P (—F " k=rr+1,...

where (—;) is defined as (—r)(—r — 1) (=r —j + DJj!, j =1, 2,...,
) =1

(b) Let T; = the number of trials required to obtain the first success, 7, = the
number of trials following the first success up to and including the second
success, . . . , T, = the number of trials following the (r — 1)st success up
to and including the rth success (thus N, = T; + - - - + T,). Show that the
T; are independent, each with the geometric distribution.

(c) Show that E(N,) =r[p, Var N, =r(1 — p)/p®. Find the characteristic
function and the generating function of N,. N, is said to have the negative
binomial distribution. )

7. With the R; as in Problem 5, let R be the length of the run (of either successes

or failures) started by the first trial. Find P{R =k}, k = 1,2, ..., and E(R).

8. In Problem 6, find the joint probability functions of N, and N,; also find (in a

relatively effortless manner) the correlation coefficient between N, and N,.

6.5 THE POISSON RANDOM PROCESS

We now consider a mathematical model that fits a wide variety of physical
phenomena. Let T, T, . . . by a sequence of independent random variables,
where each T is absolutely continuous with density f(z) = le=*¢, x > 0;
f(@) =0, 2 <0 (4is a fixed positive constant). Let 4, = T; + -+ + T,,
n=1,2,....Wemay think of 4, as the arrival time of the nth customer at a
serving counter, so that T, is the waiting time between the arrival of the
(n — D)st customer and the arrival of the nth customer. Equally well, 4,
may be regarded as the time at which the nth call is made at a telephone
exchange, the time at which the nth component fails on an assembly line, or
the time at which the nth electron arrives at the anode of a vacuum tube.

If t > 0, let R, be the number of customers that have arrived up to and
including time ¢; that is, R, =n if 4, <t < A,, (n=0,1,...; define
Ay = 0). A sketch of (R, ¢ > 0) is given in Figure 6.5.1.

Thus we have a family of random variables R, # > 0 (not just a sequence,
but instead a random variable defined for each nonnegative real number).
A family of random variables R,, where ¢ ranges over an arbitrary set 7, is
called a random process or stochastic process. Note that if I is the set of positive
integers, the random process becomes a sequence of random variables; if
I is a finite set, we obtain a finite collection of random variables; and if I
consists of only one element, we obtain a single random variable. Thus the
concept of a random process includes all situations studied previously.

e
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R,
o N
3| — Tp=Ap=An-1
2 -—
1 o——
0 1 L1
0 A A, Ay A, t

FIGURE 6.5.1 Poisson Process.

If the outcome of the experiment is w, we may regard (Ry(w), t€l) as a
real-valued function defined on I. In Figure 6.5.1 what is actually sketched is
R,(w) versus t, t € I = the nonnegative reals, for a particular . Thus,
roughly speaking, we have a “random function,” that is, a function that
depends on the outcome of a random experiment.

The particular process introduced above is called the Poisson process
since, for each ¢ > 0, R, has the Poisson distribution with parameter Az.
Let us verify this.

If k is a nonnegative integer,

P{R, < k} = P{at most k customers have arrived by time ¢}
= P{(k + 1)st customer arrives after time ¢}
=P{T +  + Tpya > t}

But 4,y =Ty + -+ + T,y is the sum of k 4 1 independent random
variables, each with generalized characteristic function [§° Ae~*%e~** dz =
Al(s + 2), Re s > —A; hence 4, has the generalized characteristic function
[A/(s + )11, Re s > —A. Thus (see Table 5.1.1) the density of 4, is

Faal®) = 4 B () BRCER)
where u is the unit step function. Thus
PR, <k} =P{Ty+ '+ + Tpys > t}
=f°° 1 Jtlgko—Az o
¢t k!

= ® —1— Aft1gk d -
¢ k! A

- %(lt)"e‘“ + f (k—ll)-; NexFle~*2dy  (integrate by parts)
. 1 - H

e
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Integrating by parts successively, we obtain

P{R, <L k} = i e @f
il

=0

Hence R; has the Poisson distribution with parameter Az.

Now the mean of a Poisson random variable is its parameter, so that
E(R;) = At. Thus 1 may be interpreted as the average number of customers
arriving per second. We should expect that A~ is the average number of
seconds per customer, that is, the average waiting time between customers.
This may be verified by computing E(T;).

o

E(T) = f ® Jaee 4 = L
0

o>

We now establish an important feature of the Poisson process. Intuitively,
if we arrive at the serving counter at time ¢ and the last customer to arrive
came at time ¢ — A, the distribution function of the length of time we
must wait for the arrival of the next customer does not depend on 4, and
in fact coincides with the distribution function of T;. Thus we are essentially
starting from scratch at time f; the process does not remember that A
seconds have elapsed between the arrival of the last customer and the present
time.

If W, is the waiting time from ¢ to the arrival of the next customer, we wish
to show that P{W, < 2z} = P{T, < 2}, 2 > 0. We have

P{W, < z} = P{for some n = 1, 2, ..., the nth customer arrives in

(¢, t + 2] and the (n 4 1)st customer arrives after time ¢ + 2}
- P[ U<, <i+z2< An+1}} (6.5.2)
n=1

(see Figure 6.5.2). To justify (6.5.2), notice thatif t < 4, <t +2< A4,
for some n, then W, < z. Conversely, if W, < z, then some customer arrives
in (¢, t + 2] and hence there will be a last customer to arrive in the interval.
(If not, then >* | T,< oo; but this event has probability 0; see Problem 1.)
NowP{t< A, <t+2< A, 41} =Pt<A,L{t+2A4,+ T, >t+2}

1 i I
t t+z
FIGURE 6.5.2

e
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Since 4,(= Ty + - + T,) and T, are independent, we obtain, by (6.5.1),

Pt <A, <t+2< Ay} = H aisﬂ%HfoMM@

t<p<t+z,
z+y>t+z

ln t+2 ©
- 2 xn—le—la; Ae~Ml dy dz

(n—1D!J: o
An

t+2
— f xn—le—).xe—}.(t+z—m) dx
(n—1)!Js

— %Zne—i_h%z)[(t + z)n _ tn]

Since >*_ r"/n! = e, (6.5.2) yields
P{m < z} — —Mt+z)[el(t+z) -1 = (elt _ 1)]

=1—e*
Thus W, has the same distribution function as 7.
Alternatively, we may write

PV, <3 =P Uiy <1< Apa <1 +3)]
n=0

Forif A, <t< A,., <t+ 2z for some n, then W, <z Conversely, if
W, < z, then some customer arrives in (¢, ¢ + 2], and there must be a first
customer to arrive in this interval, say customer n + 1. Thus 4, <t <
App1 <t + zfor some n > 0. An argument very similar to the above shows
that

A"
P4, <t< A, Lt+2}= (n') (6= it — ¢—At+a))

and therefore P{W, < 2} =1 — e ** as before. In this approach, we do
not have the problem of showing that P{ >T,< oo} = 0.

n=1

To justify completely the statement that the process starts from scratch
at time ¢, we may show that if V;, V5, ... are the successive waiting times
starting at ¢ (so V; = W,), then V;, V,, ... are independent, and V; and
T; have the same distribution function for all i. To see this, observe that

PV <y, ...,V < )

=P|:U{Anst<An+lSt+xlan+2£x2"--,Tn+kak}:l
n=0

e
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For it is clear that the set on the right is a subset of the set on the left. Con-
versely, if V; <xy,...,V, <, then a customer arrives in (¢, ¢ + #,],
and hence there is a first customer in this interval, say customerzn + 1.
Then 4,<t<A4,,<t+2, and also V;=T,,,, i = 2,...,k, as
desired. Therefore

PVi<a,... .V <z)= [EP{Angt<A,,+1gt+ xl}:l
n=0

k
x II P{T,,; < =}

=2

. )]
=P{W, < o} 1] P{T, < =}
=2

k
=T P{T. < =)
=1

Fix j and let ;— o0, i # j, to conclude that P{V; < z;} = P{T; < =;}.
Consequently

k
P{Vlgxl""’Vksxk}=HP{Vini}
=1

and the result follows. In particular, the number of customers arriving in
the interval (¢, ¢ + 7] has the Poisson distribution with parameter Ar.

The “memoryless” feature of the Poisson process is connected with a basic
property of the exponential density, as the following intuitive argument
shows. Suppose that we start counting at time ¢, and the last customer to
arrive, say customer n — 1, came at time ¢ — h. Then (see Figure 6.5.3) the
probability that W, < z is the probability that T, < z + A, given that we
have already waited s seconds; that is, given that T, > h. Thus

P{W, <2} =P{T,<z+h|T,>h}

_Ph<T,Lz+h}
 P{T,>h)

z+h _
f le % dx

h
¢}
f Ae=** dx
h
—Ah ___ ,—Alz+h)
= — % _1—e*=P(T, <2}

e—-lh

so that W, and T, have the same distribution function (for any »).

e
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z+h
Tn
] | | ]
An_1=t~h t An tdz
FIGURE 6.5.3

The key property of the exponential density used in this argument is

P(T,<z+h|T,>h} =P{T, <z}
that is, )
P{T,>z+h|T,>h} =P{T, >z}

or (since {T,,>h, T,>2z+ h} ={T,>z+ h})
P{T, >z + h} = P{T, > 2}P{T,, > h}
In fact, a positive random variable T having the property that
P{T >z + h} = P{T > z}P{T > h} forallz, h >0
must have exponential density. For if G(z) = P{T > z}, then

Gz + h) = G()G(h)

Therefore
w_zi(z) = G(2) (ggl_)h“_l) = G(2) (M’;‘.G_(O)) since G(0) = 1

Let 2 — 0 to conclude that
G'(2) = G'(0)G(2)

This is a differential equation of the form

Woiy=0 (=-6()
dx

whose solution is ¥ = ce—*¢; that is,

G(2) = ce™**
But G(0) = ¢ = 1; hence the distribution function of T is

Fpz)=1—GRz)=1—¢e*, 2>0

e
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and thus the density of T is

fo@ =2, >0

as desired.

(The above argument assumes that T has a continuous density, but actually
the result is true without this requirement.)

The memoryless feature of the Poisson process may be used to show that
the process satisfies the Markov property:

If0<n<t,< "<ty and a,,...,a,, are nonnegative integers
witha, < -+ <L a,,,, then

PR,  =a,, | R,=a,...,R, =a,} = P{Rt,,+1 = Qpia | R;, = a,}

n+1

Thus the behavior of the process at the “future” time #,,,, given the be-
havior at “past” times ¢y, . . . , #,_; and the “present” time #,, depends only
on the present state, or the number of customers at time #,. For example,

P{R, = 15|R, =O,R,, = 3,R, =8} = P{R, = 15| R, = 8}
= the probability that exactly 7 customers will arrive between ¢, and t,

o Mt [A(t, — )]
7!

This result is reasonable in view of the memoryless feature, but a formal proof
becomes quite cumbersome and will be omitted.

We consider the Markov property in detail in the next chapter.

-We close this section by describing a physical approach to the Poisson
process. Suppose that we divide the interval (7, ¢ + 7] into subintervals of
length Az, and assume that the subintervals are so small that the probability
of the arrival of more than one customer in a given subinterval I is negligible.
If the average number of customers arriving per second is 4, and R; is the
number of customers arriving in the subinterval I, then E(R;) = 1 At.
But E(R;) = (0)P{R; = 0} + (1)P{R; = 1} = P{R; = 1}, so that with
probability 2 Az a customer will arrive in I, and with probability 1 — 24 At
no customer will arrive.

We assume that if I and .J are disjoint subintervals, R; and R are inde-
pendent. Then we have a sequence of n = 7/At Bernoulli trials, with prob-
ability p = 1 At of success on a given trial, and with Af very small. Thus
we expect that the number N(z,t + 7] of customers arriving in (¢, ¢ + 7]
should have the Poisson distribution with parameter Ar. Furthermore, if
W, is the waiting time from ¢ to the arrival of the next customer, then
P{W,> x} = P{N(t,t + ] =0} = ¢ *®, so that W, has exponential
density.

e
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PROBLEMS

1. Show that P{>® ; T, < o} =0.

2. Show that the probability that an even number of customers will arrive in the
interval (¢, ¢ + 7] is (1/2)(1 + e 247) and the probability that an odd number of
customers will arrive in this interval is (1/2)(1 — e~247).

3. (The random telegraph signal) Let T;, Ty, . . . be independent, each with density
Ae~*zy(x). Define a random process R, ¢ > 0, as follows.
R, = +1 or —1 with equal probability (assume R, independent of the T)

Rt=R0,0St<T1
R,= —Ry, Ty <t <Ty+T,
Rt=R0,Tl+T2St<Tl+T2+T3

Ry=(=1yRy, Ty + - + Ty St < Ty + -+ Tnpy

(see Figure P.6.5.3).

< T —> e T3 ->{
+1

~19 b e e e

5

FiGure P.6.5.3

(a) Find the joint probability function of R, and R, (, 7 > 0).
(b) Find the covariance function of the process, defined by K(t, v) = Cov (R,
Ry ), t,m20.

*6.6 THE STRONG LAW OF LARGE NUMBERS

In this section we show that the arithmetic average (R, + * - - + R,)/nof a
sequence of independent observations of a random variable R converges

e
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with probability 1 to E(R) (assumed finite). In other words, we have

n— o n

= E(R)

for all w, except possibly on a set of probability 0. We shall see that this is a
Stronger convergence statement than the weak law of large numbers.

Let (Q, #, P) be a probability space, fixed throughout the discussion.
If 4,, A,, ... is a sequence of events, we define the upper limit or limit
superior of the sequence as

limsup 4, = N U 4, (6.6.1)
n n=1 k=n
and the lower limit or limit inferior of the sequence as
liminf4,=U N 4, (6.6.2)
n n=1 k=n

Theorem 1. limsup, A, = {w: w € A, for infinitely many n}, liminf, 4, =
{w: w € A, eventually, i.e., for all but finitely many n}.

Proof. By (6.6.1), w € lim sup 4, iff, for every n, w € U2, 4;; that is,
for every n there is a k > n such that w € 4, or w € A4, for infinitely many ».
By (6.6.2), € lim inf,, 4, iff, for some n, w € N;-, 4,; that is, for some n,
o € A, for all k > n, or w € 4, eventually.

Theorem 2. Let R, Ry, R,,... be random variables on (Q, %, P).
Denote by {R,, — R} the set {w: lim,,_,,, R,(w) = R(w)}. Then {R,— R} =
Ny lim inf, A,,,, where A,, = {0:|R,(0) — R(w)| < 1/m}.

Proof. R,(w)— R(w)iffforeverym =1,2,...,|R,(w) — R(w)| < 1/m
eventually, that is (Theorem 1), for every m = 1,2, ... w €liminf, 4,,,.

We say that the sequence R;, R,, . . . converges almostvsurely to R (nota-

tion: R, 25, R) iff P{R, — R} = 1. The terminology “almost everywhere” is
also used.

Theorem 3. R, 2 R iff for every ¢ > 0, P{|R, — R| > ¢ for at least
onek > n}—0asn— .

Proof. By Theorem 2, P{R,— R} < P{liminf, 4,,} for every m;
hence R, ~2> R implies that lim inf, A4,,, has probability 1 for every m.
Conversely, if P(lim inf, 4,,,) = 1 for all m, then, by Theorem 2, {R, — R}

e
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is a countable intersection of sets with probability 1 and hence has probability

1 (see Problem 1).
Now in (6.6.2), N, 4z, n = 1,2,...is an expanding sequence; hence
P(lim inf, 4,) = lim,, P(N;., 4z)- Thus

R,—>R iff P(lim,infA,,)=1 forallm=1,2,...
iff limP(ﬂAkm)=1 forallm=1,2,...
n—=* 0 k=n
iff P{|R,C—R|.<i forallan}elasn—»oo
m
forallm=1,2,...

iff P{le—Rlz—l- foratleastonean}—»Oas n— oo
m

forallm=1,2,...

iff P{|R,— R| >¢}  for atleastone k > n} —>0asn— o0

foralle >0
(see Problem 2).

COROLLARY. R, 2 R implies R, Ny}

PROOF. R,,——P; R iff for every ¢ > 0, P{|R, — R| > &} -0 as n— o0
(see Section 5.4). Now {|R, — R| > eforatleastonek > n} > {|R, — R| >
¢}, so that P{|R, — R| > ¢ for at least one k > n} > P{|R,, — R| > ¢}. The
result now follows from Theorem 3.

For an example in which R, LR but R, i R, see Problem 3.

Theorem 4 (Borel-Cantelli Lemma). If A, A,, ... are events in a given
probability space, and >*_| P(A,) < o, then P(lim sup, A,) = 0; that is,
the probability that A, occurs for infinitely many n is 0. '

ProoF. By (6.6.1),

P(lim sup A,,) < P( U Ak) for every n
n k=n

<SP4) by (1.3.10)
k=mn
n—1

= P(4,) — > P(4,)—0 as n— oo
-1 =1
since Y, P(4,) < . g *

e
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Theorem 5. If for every ¢>0, >2, P{|R,— R| > & < o, then

R" a.s. R‘

Proor. By Theorem 4, lim sup, {|R, — R| > ¢} has probability 0 for
every ¢ > 0; that is, the probability that [R, — R| > & for infinitely many
n is 0. Take complements to show that the probability that [R, — R| > ¢
for only finitely many » is 1; that is, with probability 1, [R, — R| < ¢
eventually. Since ¢ is arbitrary, we may set ¢ = 1/m, m = 1,2, .... Thus
P(liminf, 4,,,) = 1form = 1,2, ..., and the result follows by Theorem 2.

Theorem 6. If 3, E[|R, — RI*] < oo for some k > 0, then R, ~>> R.

Proor. P{|R, — R| > ¢} < E[|R, — R|¥]/¢* by Chebyshev’s inequality,
and the result follows by Theorem 5.

Theorem 7 (Strong Law of Large Numbers). Let R, R,, . . . be independent
random variables on a given probability space. Assume uniformly bounded
fourth central moments; that is, for some positive real number M,

E[R; — ER)I'I < M
foralli. Let S, = R, + -+ R,. Then

Sn — E(Sn) is;)_ 0
n

In particular, if E(R;) = m for all i, then E(S,) = nm; hence

S, as.
- > m

n
ProorF. Since S, — E(S,) = >, R;, where

R/ =R,—ER), ER)=0, E(R|")=E[R, —ER)'I<M< o

we may assume without loss of generality that all E(R;) are 0. We show that
v L E[(S,/n)* < oo, and the result will follow by Theorem 6. Now

Sut=(Ri+ -+ R

n " 41RR,>2 41
=3R4+ D> —LF 4 R,°R.R, + 4! R,R,R,R,,
%1 ih 212! %2!1!11 P j<k§l<m R
i<k k<l
41
+> —RSR
%3!1! T
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But
E(RAR,R,)) = E(RA)E(R,)E(R,) by independence
=0
Similarly,
E(RijRsz) = E(RiaRk) =0
Thus

B, =3 ERS + 3 6ERDERS?)

i<k

By the Schwarz inequality,
E(R?) = E(R? - 1) < [ERHE)? < M2

Hence ‘
E(S,) <nM +6 1(1’—;—1) M = (3n® — 2n)M < 3n*M
Consequently
SER<ERH-mE i<

The theorem is proved.

REMARKS. If all R; have the same distribution function, it turns out that the
hypothesis on the fourth central moments can be replaced by the
assumption that the E(R;) are finite [of course, in this case E(R,) is
the same for all i]. In general, the hypothesis on the fourth central
moments can be replaced by the assumption that for some M and
4> 0, E[IR; — E(R)|**] < M for all i.

Now consider an infinite sequence of Bernoulli trials, with R; = 1 if there

is a success on trial i, R, = 0 if there is a failure on trial i. Then
Sn_R1+"'+Rn
‘ n n

is the relative frequency of successes in # trials and E(R,) is the probability
p of success on a given trial. The strong law of large numbers says that if we
regard the observation of all the R, as one performance of the experiment,
the relative frequency of successes will almost certainly converge to p. The
weak law of large numbers says only that if we consider a sufficiently large
but fixed n (essentially regarding observation of R,,..., R, as one per-
formance of the experiment), the probability that the relative frequency will
be within a specified distance € of p is > 1 — d, where 6 > 0 is preassigned.
The requirements on n will depend on ¢ and 4, as well as p. Recall that, by

e
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Chebyshev’s inequality,

Thus
S

d

n

PROBLEMS

P PO LI

ne

5, — E(S,) EI(S, — ES,)n"] _ Vars, 2 %R
pl2n =BG S ) < - &
n &2 nZ? n%?
_prl—p
ne?

for large enough n

1. Show that a countable intersection of sets with probability 1 still has probability
1. Does this hold for an uncountable intersection ?

2

1m,m=1,2,...

If P{|R, — R| > & for at least one k > n} — 0 as n — oo for all ¢ of the form
, show that this holds for all ¢ > 0.

3. Let R, be uniformly distributed on the interval (0, 1]. Define the following

sequence of random variables.

Ry =£:(R) =1
Ry = g5 (Ry) =1 if0 <Ry<% Ry =0 otherwise
Ry =1 iff <Ry <1, 0 otherwise
Ry =1 if0<Ry<%,  0otherwise
Ry =1 ifi<Ry<% 0 otherwise
Ry =1 if2 <Ry<1, 0 otherwise
In general, let
Rum=1 ™" cp <™ act,2,....m=12....n
n

(see Figure P.6.6.3 for n = 4).

0 otherwise

The fact that we are using two subscripts is unimportant. We may arrange

the R,,, as a single sequence.

Ry; Ry, Rog, Ryyy Ryp, Rygy Ryyy Rysy Ryg, Ry, etc.

Show that the sequence converges in probability to 0, but does not converge
almost surely to 0. In fact, P{R,,, — 0} = 0.

e



46628-0 Ash 2 4/14/08 8:31 AM Page$®9

6.6 THE STRONG LAW OF LARGE NUMBERS 209

Ry

o 3 1+ 31 1 h

FIGURE P.6.6.3

4. Let Ay, A, . . . be an arbitrary sequence of events in a given probability space.
(a) Show that lim inf, 4, < lim sup,, 4,.
(b) If the 4, form an expanding sequence whose union is A, or a contracting
sequence whose intersection is 4, show that lim inf,, 4,, = lim sup,, 4, = 4.
(c) In general, if lim sup, 4, = lim inf, 4, = A4, we say that A is the limit
of the sequence {4,} (notation: A = lim, 4,). Give an example of a
sequence that is not eventually expanding or contracting (i.e., that does
not become an expanding or contracting sequence if an appropriate finite
number of terms is omitted), but that has a limit.
(@ If 4 =lim,A,, show that P(4) =lim, _, P(4,). HINT: N2 4,
expands to lim inf 4,, U2, 4 contracts to limsup 4,, and \©_ 4, <
A, < U, Ar
(¢) Show that (lim inf, A4,)° = lim sup, A¢, and (lim sup, 4,)° = lim inf,, A,°.
5. Find lim sup,, 4,, and lim inf, 4,, if Q = E* and

1
A, = [0, 1 - ’—J if n is even

1
= l:—l,—:| if n is odd
n

6. Let QO = E?and take A,, = the interior of the circle with center at ((—1)*/n, 0)
and radius 1. Find lim sup,, 4,, and lim inf, 4,,.

7. Let xy, x,, . ..bea sequence of real numbers, and let 4, = (— o, z,,). What is
the connection between lim sup,, #,, and lim sup,, 4, (similarly for lim inf)?

8. (Second Borel-Cantelli lemma) If A, 4,,... are independent events
and % P(4,) = ©, show that P(lim sup, 4,) =1. HINT: Show that
P(imsup, A,) =lim,_, , limy,_, o P(U, 4;), and consider (Um, 4,)°;
use the fact that e > 1 — =.

9. Let Ry, Ry, . . . be a sequence of independent random variables, all defined on

e
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the same probability space. Let ¢ be any real number. Show that R, L5 cif
and only if for every ¢ > 0, 32 P{|R, — ¢| > &} < .

Let R, R,, ... be a sequence of independent random variables, and let ¢ be

any real number. Show that either R, 2 corR, “diverges almost surely”
from c; that is, P{z: lim,,_, o, R,(%) = ¢} = 0. Thus, for example, it is impossible
that P{R, —c} = 1/3.

Let Ry, R, . . . be independent random variables, with R,, = 1 with probability
Pn» R, = 0 with probability 1 — p,,.

. . P
(a) What conditions on the p,, are equivalent to the statement that R, —> 0?

(b) What conditions on the p, are equivalent to the statement that R, 22502

Let R;, R, . . . be independent random variables, with E(R,) =0, Var R, =
0,2 < Mjn, where M is some fixed positive constant. Show that (R; + - - - +

Ry)[n 2, 0.

Give an example of a particular sequence of random variables Ry, Ry, . .
and a random variable R such that 0 < P{R, - R} < 1.
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Markov Chains

7.1 INTRODUCTION

Suppose that a machine with two components is inspected every hour. A
given component operating at # = n hours has probability p of failing before
the next inspection at ¢t = n + 1; a component that is not operating at
= n has probability r of being repaired at # = n + 1, regardless of how
long it has been out of service. (Each repair crew works a 1-hour day and
refuses to inform the next crew of any insights it may have gained.) The
components are assumed to fail and be repaired independently of each other.
The situation may be summarized as follows. If R, is the number of
components in operation at ¢ = n, then
P{R, ;=0|R, =0} = (1 —r)?
P{R, ;=1 | R,=0}=2r(1 —r)
P{Rn+1=2|Rn=0}=r2
P{R,;; =0|R,=1}=p(1 —r)
PR,y =2|R,=1}=(1—p)r
P{R, ., =0|R,=2}=p?
P{R, ., =1|R,=2}=2p(l —p)
PR,y =2|R,=2}=(1—p)? (7.1.1)
211

e
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pr+(1=pi-1

Ficure 7.1.1 A Markov Chain.

For example, if component A is operating and component B is out of
service at ¢ = n, then in order to have one component in service at ¢ =
n + 1, either A4 fails and B is repaired between t =nand t=n+ 1, or 4
does not fail and B is not repaired between ¢ = n and ¢t = n + 1. In order to
have two components in service at # = n + 1, 4 must not fail and B must be
repaired. The other entires of (7.1.1) are derived similarly.

Thus, at time ¢ = n, there are three possible states, 0, 1, and 2; to be in
state i means that i components are in operation; that is, R, = i. There are
various transition probabilities p,; indicating the probability of moving to
state j at ¢ = n 4 1, given that we are in state / at ¢ = n; thus

P = P{Rn-l-l =]| R, =1}
(see Figure 7.1.1).
The p,; may be arranged in the form of a matrix:

0 1 2

0 —r)? 2r(l —r) r?
HI=[pl=1|pd—=r) pr+ A —=pA—=r) 1-pr
2L p? 2p(1 — p) (1 —p)p

Notice that II is stochastic; that is, the elements are nonnegative and the
row sums >, p,; are 1 for all i.

If R, is the state of the process at time n, then, according to the way the
problem is stated, if we know that Ry = iy, Ry = 4y, ..., R, = i,, = (say) 2,
we are in state 2 at ¢ = n. Regardless of how we got there, once we know that
R, = 2, the probability that R,.; =j is ()1 —p)p*?, j=0,1,2. In

e
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other words,
P{Rn+1 = lpp1 I Ry=1ip, ..., R, =ip} = P{Rn+1 = lnp [ R, =i} (1.12)

This is the Markov property.

What we intend to show is that, given a description of a process in terms of
states and transition probabilities (formally, given a stochastic matrix),
we can construct in a natural way an infinite sequence of random variables
satisfying (7.1.2). Assume that we are given a stochastic matrix I = [p;],
where i and j range over the state space S, which we take to be a finite or
infinite subset of the integers. Let p;, i € S, be a set of nonnegative numbers
adding to 1 (the initial distribution). We specify the joint probability function
of Ry, Ry, ..., R, as follows. )

P{Ry =iy, Ry =13,..., R, = iy}
= PiPigiPiviy " * " Pipyiy® = 1,2, ..., P{Ry =i} = p;; (7.1.3)

If we sum the right side of (7.1.3) over iy, . . . , i,, We Obtain p; p;; **
Pi,_yi» Since I is stochastic. But this coincides with the original specification
of P{Ry = iy, Ry = 13, ..., R, = I}.

Thus the joint probability functions (7.1.3) are consistent, and therefore,
by the discussion in Section 6.1, we can construct a sequence of random
variables Ry, Ry, . .. such that for each » the joint probability function of
(Ry, - - - » R,) is given by (7.1.3).

Let us verify that the Markov property (7.1.2) is in fact satisfied. We
have
P{Rn+l = in+1|R0= N in}

_P{Ro= fgy o+ s Rpyy = in+1}
P{R, =iy, ..., R, =1i,}
(assuming the denominator is not zero)

= p’i,,i,.-{-]_ by (7.1.3)
But

PR, = 'naR = .n
P{Rn+1 = in+1 | R'n =] in} = { L ! n+1 2 +1}

P{Rn = in}
z P{RO =g s Ryqy =ipy, R, =1, Rn+1 = in+1}

_ dgeenerine ‘
> P{Ry=iy ..., R, =i}
T0seees in—1

2 PulPuin " PinosinPininna

%0, ... in—1
Z PiyPigiy * * ° Pip_vin
00 rerinet

= pin'in+1

establishing the Markov property.

e
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The sequence {R,} is called the Markov chain corresponding to the matrix
IT and the initial distribution {p,}. Il is called the transition matrix, and the
Pq; the transition probabilities, of the chain.

ReMARK. The basic construction given here can be carried out if we have
“nonstationary transition probabilities,” that is, if, instead of the
““stationary transition probabilities” p;;, we have, for each n =0,
1, ..., a stochastic matrix [,p;]. ,p;; is interpreted as the probability
of moving to state j at time n 4+ 1 when the state at time » is i. We
define P{Ry =1iy,..., R, =1i,} = Piy o0Pigiy 1Pigiy " " " n1Pi,_yi, RIS
yields a Markov process, a sequence of random variables satisfying
the Markov property, with P{R,, = i, | Ry =iy, . .. , R,y = i, 4} =

n—1Pi,_ i,

We begin the analysis of Markov chains by calculating the probability
function of R, in terms of the initial probabilities p; and the matrix II. Let
pi" = P{R,=j},n=0,1,...,j€S (thus p® = p)). If we are in state
i at time n — 1, we move to state j at time n with probability P{R, =
J | Rua = i} = p,;; thus, by the theorem of total probability,

pi" =3 PR,y =i}P{R, = j| Ry =i} =3 0" "p,; (7.1.4)

If v'» = (p{™, i € S) is the “state distribution” or “state probability vector”
at time n, then (7.1.4) may be written in matrix form as

p) = pn-D]I

Iterating this, we obtain
™ = pO][" (7.1.5)

But suppose that we specify R, =i; that is, p{® =1, p{® =0, i#j.
Then »® has a 1 in the ith coordinate and 0’s elsewhere, so that by
(7.1.5) o™ is simply row i of II”. Thus the element p{? in row i and column
j of II" is the probability that R, = j when the initial state is i. In other
words,

pi’ = P{R, =j| Ry = i} (7.1.6)

(A slight formal quibble lies behind the phrase “in other words”; see Problem
1.) Because of (7.1.6), II" is called the n-step transition matrix: it follows
immediately that II” is stochastic.

We shall be interested in the behavior of II™ for large n. As an example,

[ ]
4 i

e
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5 3 15 123
8 8 5 2
2 — 4
Iz = R § (e
9 7 153 103
16 16 256 256

Thus p{8) ~ p{& and p{) ~ p{?), so that the probability of being in state j at
time ¢ = 4 is almost independent of the initial state. It appears as if, for large
n, a “steady state” condition will be approached; the probability of being in a
particular state j at ¢ = n will be almost independent of the initial state at
t = 0. Mathematically, we express this condition by saying that

We compute

'S

o)
=

lim p{» = v,,i,j€S (7.1.7)
n—* o0 R .
where v; does not depend on i.

In Sections 7.4 and 7.5 we investigate the conditions under which (7.1.7)
holds; it is not true for an arbitrary Markov chain.

Note that (7.1.7) is equivalent to the statement that II” — a matrix with

identical rows, the rows being (v;, j € S).

» Example 1. Consider the simple random walk with no barriers. Then
S = theintegers and p; ;1 = p, Pssa=9g=1—p,i=0,£1, £2,....
If there is an absorbing varrier at 0 (gambler’s ruin problem when the
adversary has infinite capital), S = the nonnegative integers and p, ;,; = p,
Piii=¢q,i=1,2,...,ps =1 (hence p,; = 0, j 7 0).
If there are absorbing barriers at 0 and b, then S =1{0,1,...,5},
Piiti =PsPisa=¢ i=1,2,...,b—1,pyp=pp =1 <

» Example 2. Consider an infinite sequence of Bernoulli trials. Let state 1
(at t = n) correspond to successes (S) at t =n — 1 and at ¢ = n; state 2
to success at ¢ = n — 1 and failure (F) at ¢t = n; state 3 to failureatt =n — 1
and success at ¢ = n; state 4 to failures at t =n — 1 and at t = n (see
Figure 7.1.2). We observe that 12 has identical rows, the rows being

q
‘@ @ q 0

P 0
00

» 7 = 7
pq 00
0

oSN O> AL

P
FIGURE 7.1.2

e
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(»% pq. qp, 9°). Hence IT* has identical rows for > 2 (see Problem 2), so
that I1” approaches a limit. <

» Example 3. (A queueing example) Assume that customers are to be
served at discrete times £ =0,1,..., and at most one customer can be
served at a given time. Say there are R, customers before the completion of
service at time n, and, in the interval [n, n + 1), N, new customers arrive,
where P{N,, = k} = p;, k=0,1,.... The number of customers before
completion of service at time n + 1 is

Ryn= R, —Dt+ N,
That is, ~
Ryi=R,—1+N, ifR,>1
=N, ifR,=0

If the number of customers at time » 4+ 1 is > M, a new serving counter
automatically opens and immediately serves all customers who are waiting
and also those who arrive in the interval [n 4+ 1, n + 2); thus R,,,, = 0.

The queueing process may be represented as a Markov chain with S = the
nonnegative integers and transition matrix

o 1 2 3
0| po pr P2
1| po pr p2 ---
210 po p1 pe
310 0 py p1 p2
I = .
M 1 0 PR
M+1|1 0
|
PROBLEMS

1. Consider a Markov chain {R,} with transition matrix II = [p,;] and initial
distribution {p,}; assume p, > 0. Let {T,,} be a Markov chain with the same
transition matrix, and initial distribution {g;}, where ¢, =1, g, =0, j #r.
Show that P{R, = j | Ry = r} = P{T, = j} = p{»; this justifies (7.1.6).

e
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2. If I1 is a transition matrix of a Markov chain, and II* has identical rows, show
that II" has identical rows for all » > k. Similarly, if II* has a column all of
whose elements are >0 > 0, show that II" has this property for all n > k.

3. Let {R,} be a Markov chain with state space S, and let g be a function from §
to S. If g is one-to-one, { g(R,)} is also a Markov chain (this simply amounts to
relabeling the states). Give an example to show that if g is not one-to-one,
{g(R,)} need not have the Markov property.

4. If {R,} is a Markov chain, show that
P{Rn+1 = il, e ,Rn-f_lc = ikan = i} =Pii1Pi1i2 e p

Y11

7.2 STOPPING TIMES AND THE STRONG
MARKOYV PROPERTY

Let {R,} be a Markov chain, and let T be the first time at which a particular
state i is reached; set 7' = oo if i is never reached. For example, if i = 3 and
Ry(w) =4, Ry(w) =2, Ry(w) = 2, Ry(w) =35, Ry(w) =3, Ry(w) =1,
Ry(w) =3,...,then T(w)=4. For our present purposes, the key
feature of T is that if we examine Ry, R,,..., R,, we can come to a
definite decision as to whether or not T = k. Formally, for each k =0,
1,2,..., Iyp_,, can be expressed as gy(Ry, Ry, - - . , Ry), where g; is a func-
tion from S**! to {0, 1}. A random variable T, whose possible values are the
nonnegative integers together with oo, that satisfies this condition for each
k=0,1,...1issaid to be a stopping time for the chain {R,}.

Now let T be the first time at which the state i is reached, as above. If we
look at the sequence {R,} after we arrive at i, in other words, the sequence
Ry, Ry, .. ., it is reasonable to expect that we have a Markov chain with
the same transition probabilities as the original chain. After all, if T =k,
we are looking at the sequence Ry, Ry, . . . . However, since T is a random
variable rather than a constant, there is something to be proved. We first
introduce a new concept.

If T is a stopping time, an event A4 is said to be prior to T iff, whenever
T =k, we can tell by examination of R,, ..., R, whether or not 4 has
occurred. Formally, for each k = 0,1, ..., I ~(p_,; can be expressed as
h(Ry, Ry, . .., R), where h, is a function from S*+! to {0, 1}

» Example 1. If T is a stopping time for the Markov chain {R,}, define
the random variable R, as follows,

If T(w) = k, take Rp(w) = Ry(w), k =0,1,....

If T(w) = oo, take Rp(w) = ¢, where c is an arbitrary element not be-
longing to the state space S. If we like we can replace S by S U {c} and define
Pee=1,p;=0,j€S.

e
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Ifd={Rp_;=1i},ieS,j=0,1,...,then 4is prior to T. (Set Ry_; =

Ryifj > T.)
To see this, note that {R;_; = i} N{T =k} = {R,_, = i} N{T = k};
examination of Ry, .. .., Ry determines the value of R;_;, and also deter-

mines whether or not T = k. «
» Example 2. If T is a stopping time for the Markov chain {Rn} then
{T=r}ispriorto Tforallr=0,1, . For
{T=rnn{T=ki=g ifr#k

In either case I(y_,yn(p_y is @ function of Ry, ..., Ry, since T is a stop-
ping time. <« '

Theorem 1. Let T be a stopping time for the Markov chain {R,}. If A is
prior to T, then
P(AN{Ry =i,Rpiy =11, ..., Ry =1y)})

= P(A 0N {Rp = iDPis,Pisiy" " " Piy_yiy (s 15+« 5 i ES)
Proor. The probability of the set on the left is

[}
> P4 0 (T =n,R, =i Ry =in...,Ropp =10t}
= ZOP(A N{T =n,R, =i})

X PRy =1iy,...,Rpp=1ix| A {T=nR,=1i})

(Actually we sum only over those n for which P(4 N {T = n, R, = i}) > 0.)
Now

PR,yy=1i,...,Rp=0i|AN{T=nR,=1i})
=P{Rpyy =10,..., Rpp = lkIRn"_‘l}
since 1 4~¢p_,yis a function of Ry, Ry, . . . , R, (see Problem 1)
= PiiyPiyiy” * Piyin
(Problem 4, Section 7.1). Thus the summation becomes

[}
2 P(AN{T =n,R, = iP)Pis,DPiri" " * Pip_1x

n=0

=P(4 N {RT = i})Piilpili, * 0 Pigqin
and the result follows.

e
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Theorem 2 (Strong Markov Property). Let T be a stopping time for the
Markov chain {R,}. Then

@) P{Rpjy1=1l,...,Rpyy = ikIRT =i} = Piilpiliz'”pik_lik if
PRy =i} >0 ‘(i,il,...,ikES)
(b) If A is prior to T, then
P(‘RT+1=i1,"'3RT+k=ikIAn{RT=i})
- =P{RT+1=i1a---aRT+k=ik|RT=i}
ifPAN{Ry =i}) >0 (i,i,...,5€S)

PROOF. (a) follows from Theorem 1 by taking 4 = Q. (b) follows upon
dividing the equality of Theorem 1 by P(4 N {R, = i}) and using (a).

Thus the sequence Ry, Ry, . . . has essentially the same properties as the
original sequence Ry, Ry, . . ..

ReMARK. The strong Markov property reduces to the ordinary Markov
property (7.1.2) if we set k=1, T=mn, and A ={Ry=jp, ...,
R, ; = j, ). For Tis a stopping time since

Ip iy =8(Ro»---,R)=0 ifk#n
=1 ifk=n
and A is prior to T since
IAH{T=7¢} = hk(ROa ceey Rk)
=1 ifk=nandRo=jo,...,Rn__1=jn__1

=0 otherwise

PROBLEMS

1. Let {R,} be a Markov chain. If D is an event whose occurrence or nonoccurrence
is determined by examination of R, . . . , R,, thatis, I, is a function of Ry, . . . ,
R,, or, equivalently, D is of the form {(R,, ..., R,) € B} for some B = §"+,
show that

P(Rn+1=i1,..‘,Rn+k=ik|Dn{Rn=i})
= P{Ryyy =iy, Ry =iy | Ry =i} i P(D N {R, =i}) >0

2. If {R,} is a Markov chain, show that the “reversed sequence” - ‘- R,, R, 4,
R, o, ... also has the Markov property.

e
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7.3 CLASSIFICATION OF STATES

In this section we examine various modes of behavior of Markov chains.
A key to the analysis is the following result. We consider a fixed Markov
chain {R,} throughout.

Theorem 1 (First Entrance Theorem). Let f{™ be the probability that the
first return to i will occur at time n, when the initial state is i, that is,
W=PR,=i,R #ifor1<k<n—1|Ry=i}, n=12...
Ifi 5 j, let f) be the probability that the first visit to state j will occur at time
n, when the initial state is i; that is,
MW=PR,=j,R#j for 1<k<n—1|Ry=i}, n=:12,...
Then

n

(n) _ (k) ,(n—k) —_

pz.‘?n _Elfup;z 3 n_1’2""
k=

Proor. Intuitively, if we are to be in state j after » steps, we must reach j
for the first time at step k, 1 < k < n. After this happens, we are in state j
and must be in state j again after the n — k remaining steps. For a formal
proof, we use the strong Markov property. Assume that the initial state is 7,
and let T be the time of the first visit to j (T = min {k > 1: R, =j}if R, =
forsomek=1,2,...;T= wif Ry #jforallk =1,2,...). Then

=k§1P{T =k, Rpynr = J}
But -
PAT=k,Ryiny=Jj} =P{T =k} P{Rp,, =]| T =k}

and since {T' =k} = {T =k, Ry =},
P{Rpiny=J|T =k} =PRppnr=Jj|Rp=j,T =k}

= P{Rpint=J| Ry =J}
by Theorem 2b of Section 7.2

= p{"™® by Theorem 2a of Section 7.2
Since P{T = k} = f¥), the result follows.

Now let

o0
Ju= Zfz(z")
n

-1

[ 1s the probability of eventual return to state i when the initial state is i.

e



46628-0 Ash 2 4/14/08 8:31 AM Page/#i\gl

7.3 CLASSIFICATION OF STATES  22i

Theorem 2. If the initial state is i, the probability of returning to i at least
r times is (f ;).

PrOOF. The result is immediate if » = 1. If it holds when r = m — 1, let
T be the time of first return to i. Then, starting from i, P{return to i at least
m times} = > P{T = k, at least m — 1 returns after T}. But
P{T = k, at least m — 1 returns after T}

= P{T = k} P{Ry1, Rp.s, . . . Tturns to i at least m — 1 times | T = k}

= P{T =k}

X P{Ry,1, Ry, ... returns to i at least m — 1 times | Ry = i, T = k}

By the strong Markov property this may be written as
A)

P{T = k}P{Rq,1, Rps, . . . Teturns to i at least m — 1 times | Ry = i}
= P{T = k}P{Ry, R,, . . . returns to i at least m — 1 times | R, = i}
= f®(f, )"t by the induction hypothesis

Thus the probability of returning to 7 at least m times is
k; fES)m ™ = Ll fo™
which is the desired result.

CoRrROLLARY. Let the initial state be i. If f;; = 1, the probability of
returning to i infinitely often is 1. If f;; < 1, the probability of returning to i
infinitely often is 0.

ProOF. The events {return to i at least r times}, r =1, 2, ... form a
contracting sequence whose intersection is {return to 7 infinitely often}. Thus
the probability of returning to i infinitely often is lim,_. (f;)", and the
result follows. :

DerFINITION.  If f;; = 1, we say that the state i is recurrent or persistent; if
fi:s = 1, we say that i is transient.

It is useful to have a criterion for recurrence in terms of the probabilities
pl®, since these numbers are often easier to handle than the f{.

Theorem 3. The state i is recurrent iff 32 p\® = co.

PrOOF. By the first entrance theorem,

n

(n) __
Di: —Z
k=1

(k) . (n—k)
Jii Pig

e
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so that
(n) __ () (=) _ 1) (k)
S =3 Sapet =303 gl

—_ f;z z p(n)
Thus

S o —fﬁ(l + zp::“)

n=1 n=1
Hence, if

zp(n)

then f;; < 1, so that i is transient. Now

N N N N
3P =3 SAPNY =3 P3RS SIS 8
k=1 n=k k=1 r=0

n=1 g=1
Thus
LA
Z (k)>2f(k’>zpii —~1 as N—o if Z M=
kX3 — p
k=1 =1 2 p(r) n=1

Therefore 3% _, pi® = co implies that f;; = 1, so that i is recurrent.

We denote by f;; the probability of ever visiting j at some future time,
starting from i; that is,

z fz(k)

k=1

Theorem 4. If j is a transient state and i an arbitrary state, then

zp(n)

n=1
hence

pP—0 as n—> o

ProoFr. By the first entrance theorem,

zp(n) z z (k)p(Jf;—k) Zf;(k)z p(n)

_f”zp(n)

e
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But f;;, being a probability, is <1, and >%_ p{»’ < oo by Theorem 3; the
result follows.

ReMARK. Ifjis a transient state and the initial state of the chain is 7, then,
by Theorem 4 above and the Borel-Cantelli lemma (Theorem 4,
Section 6.6), with probability 1 the state j will be visited only finitely
many times. Alternatively, we may use the argument of Theorem 2
(with initial state i and T" = the time of first visit to j) to show that the
probability that j will be visited at least m times is f;(f;;)™ .
Now f;; < 1 since j is transient, and thus, if we let m — oo, we find
(as in the corollary to Theorem 2) that the probability that j will be
visited infinitely often is 0. '

In fact this result holds for an arbitrary initial distribution. For

P{R,, = j for infinitely many n}
= 2 P{R, = i}P{R, = j for infinitely many n| R, = i} = 0

It follows that if B is a finite set of transient states, then the prob-
ability of remaining in B forever is 0. For if R, € B for all n, then,
since B is finite, we have, for some j € B, R, = j for infinitely many »;
thus

P{R, € B for all n} < Zje g P{R,, = j for infinitely many n} = 0

One of the our main problems will be to classify the states of a given chain
as to recurrence or nonrecurrence. The first step is to introduce an equivalence
relation on the state space and show that within each equivalence class all
states are of the same type.

DEeriNiTION.  If 7 and j are distinct states, we say that i leads to j iff f;; > 0;
that is, it is possible to reach j, starting from i. Equivalently, i leads to
jiff p{’ > 0 for some n > 1. By convention, i leads to itself. We say
that i and j communicate iff i leads to j and j leads to i.

We define an equivalence relation on the state space S by taking i equivalent
to j iff i and j communicate. (It is not difficult to verify that we have a
legitimate equivalence relation.) The next theorem shows that recurrence or
nonrecurrence is a class property: that is, if one state in a given equivalence
class is recurrent, all states are recurrent.

Theorem 5. If i is recurrent and i leads to j, then j is recurrent. Further-

more, f;; = f;; = 1. In fact, if f;, is the probability that j will be visited in-
finitely often when the initial state is i, then f;; = f;, = 1.

e
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PrOOF. Start in state 7, and let T be the time of the first visit to j. Then
1=3P{T =k} + P{T = o0}
k=1

= EP{T = k, infinitely many visits to i after T} + P{T = oo}
= since i is recurrent
= iP{T = k}P{Ry1, Rys, . .. visits i infinitely often | T = k, Ry = j}
- +1—f;
=k§1f§’;’P{R1, R, . .. visits i infinitely often | R, = j} + 1 — f;;

Thus
1=fufis + 1= fis or Jii = Fufii
Since f;; > 0 by hypothesis, f;, = 1.
Now if pii’ > 0, p'? > 0, then
PUHES) > p© )
) — Je 2t 3
since one way of going from j to jin n 4 r + s steps is to go from j to i
in s steps, from i to i in z steps, and finally from i to j in r steps. It follows from
Theorem 3 that > °_ p'?’ = oo; hence j is recurrent.
Finally, we have j recurrent and f;; > 0. By the above argument, with i
and j interchanged, f;; = 1. Since f;; > f};, f;; = f};» it follows that f;; =
f3: = 1 and the theorem is proved.

Theorem 6. If a finite chain (i.e., S a finite set), it is not possible for all
states to be transient.

In particular, if every state in a finite chain can be reached from every other
state, so that there is only one equivalence class (namely S), then all states are
recurrent.

PrOOF. If S ={1,2,...,r}, then D7 p{» = 1for all n. Let n — co. By
Theorem 4 and the fact that the limit of a finite sum is the sum of the limits,
we have 0 = 37 _ lim,_,, p{» = lim,_, 25, p{? = 1, a contradiction.

In the case of a finite chain, it is easy to decide whether or not a given class
is recurrent; we shall see how to do this in a moment.

DEFINITION. A nonempty subset C of the state space S is said to be closed
iff it is not possible to leave C; that is, > ,.op; =1 for all ie C.
Notice that if C is closed, then the submatrix [p;], i,.j, € C, is sto-
chastic; hence so is [p*], i, j € C.

e
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Theorem 7. C is closed iff for all i € C (i leads to j implies j € C).

PROOF. Let C be closed. If i € C and i leads to j, then p{» > 0 for some ~.
If j ¢ C, then Do pi™ < 1, a contradiction. Conversely, if the condition is
satisfied and C is not closed, then X p; <1 for some i€ C; hence
pi; > 0 for some i€ C, j¢ C, a contradiction.

Theorem 8.

(a) Let C be a recurrent class. Then C is closed.

(b) If C is any equivalence class, no proper subset of C is closed.

(c) In a finite chain, every closed equivalence class C is recurrent.

Thus, in a finite chain, the recurrent classes are simply those classes that
are closed.

PRrOOF.

(a) Let C be a recurrent class. If C is not closed, then by Theorem 7 we
have some i € C leading to a j ¢ C. But by Theorem 5, i and j communicate,
and so i is equivalent to j. This contradicts i € C, j ¢ C.

(b) Let D be a (nonempty) proper subset of the arbitrary equivalence
class C. Picki € D and j € C,j ¢ D. Then i leads to j, since both states belong
to the same equivalence class. Thus D cannot be closed.

(c) Consider C itself as a chain; this is possible since X p;; = 1, i€ C.
(We are simply restricting the original transition matrix to C.) By Theorem 6
and the fact that recurrence is a class property, C is recurrent.

» Example 1. Consider the chain of Figure 7.3.1. (An arrow from i to j
indicates that p,; > 0.) There are three equivalence classes, C; = {1, 2},

= {3,4, 5}, and C; = {6}. By Theorem 8, C, is recurrent and C; and Cs
are transient.

There is no foolproof method for classifying the states of an infinite chain,
but in some cases an analysis can be done quickly. Consider the chain of
Example 3, Section 7.1, and assume that all p; > 0. Then every state is
reachable from every other state, so that the entire state space forms a

/N

FIGURE 7.3.1 A Finite Markov Chain.

e
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single equivalence class. We claim that the class is recurrent. For assume the
contrary ; then all states are transient. Let O be the initial state; by the remark
after Theorem 4, the set B = {0, 1, ..., M — 1} will be visited only finitely
many times; that is, eventually R, > M (with probability 1). But by definition
of the transition matrix, if R, > M then R, ; = 0, a contradiction. «

We now describe another basic class property, that of periodicity.

If p{ > 0 for some n > 1, that is, if starting from i it is possible to return
to i, we define the period of i (notation: d;) as the greatest common divisor
of the set of positive integers n such that p{¥ > 0. Equivalently, the period
of i is the greatest common divisor of the set of positive integers # such that
[ > 0 (see Problem 10).

Theorem 9. If the distinct staies i and j are in the same equivalence class,
they have the same period.

PrOOF. Since i and j communicate, each has a period. If p{? > 0,
P9 >0, then piptr+s) > po) pln pl) (see the argument of Theorem 5).
Set n = 0 to obtain p{;*® > 0, so that r 4 s is a multiple of d;. Thus if n
is not a multiple of d; (so neither is n + r + s) we have p{#++9 = 0; hence
p{P = 0. But this says that if p{) > 0 then nis a multiple of d;; hence d; < d,.

By a symmetrical argument, d; < d.

The transitions from state to state within a closed equivalence class C of
period d > 1, although random, have a certain cyclic pattern, which we now
describe.

Let i, j€ C; if p{’ > 0 and p{) > 0, let ¢ be such that p¥ > 0. Then
patY > po pi¥ > 0; hence d divides r + ¢. Similarly, d divides s + ¢, and
so d divides s — r.

Thus, if r = ad 4+ b, a and b integers, 0 < b <d— 1, then s=cd + b
for some integer c. Consequently, if i leads to j in n steps, then n is of the form
ed + b, that is,

n = bmodd

where the integer b depends on the states i and j but is independent of .
Now fix i € C and define

Co={je€C:p{¥ > 0implies n = 0 mod d}
C, = {jeC: p{P > 0 implies n = 1 mod d}

23

Cypi={jeC:p{® > 0implies n = d — 1 mod d}

e
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2 @ 7

FIGURE 7.3.2 A Periodic Chain.

Then
a—1
c=Ug;

i=0

Theorem 10. If k€ C, and p,; > 0, then je C,,, (with indices reduced
mod d; ie., Cy= Cy, Cqy = Cy, etc.). Thus, starting from i, the chain
moves from Cyto Cy to . . . to Cyq_y back to Cy, and so on. The C; are called the
cyclically moving subclasses of C.

ProOF. Choose an n such that p{» > 0. Then n is of the form ad + .
Now p{#+ > plw p, . > 0; hence i leads to j, and therefore j € C, since C
is closed. But n = r mod d; hence n + 1 = ¢ 4+ 1 mod d, so that j € C;,;.

» Example 2. Consider the chain of Figure 7.3.2. Since every state leads
to every other state, the entire state space forms a closed equivalence class C
(necessarily recurrent by Theorem 6). We now describe an effective procedure
that can be used to find the period of any finite closed equivalence class.
Start with any state, say 1, and let C, be the subclass containing 1. Then all
states reachable in one step from 1 belong to C,; in this case 3 € C;. All
states reachable in one step from 3 belong to C,; in this case 5, 6 € C,.
Continue in this fashion to obtain the following table, constructed according
to the rule that all states reachable in one step from at least one state in
C,; belong to Cy;.

Co Cl C2 CB C4 C5 CG
1 3 5,6 2 4 7 1,2

Stop the construction when a class C;, is reached that contains a state belong-
ing to some C;, j < k. Here we have 2 € C3 N Cy; hence C3 = C,. Also,

e
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1€ Cy N Cy; hence Cy = C; = C4. Repeat the process with Cy = the class
containing 1 and 2; all states reachable in one step from either 1 or 2 belong
to C,;. We obtain

Co G G Gy
1,2 3,4 567 1,2

We find that Cy = C; (which we already knew). Since Cy U C; U C, is the
entire equivalence class C, we are finished. We conclude that the period is 3,
and that C, = {1,2}, C; = {3,4}, C, = {5,6, 7}.

If C has only a finite number of states, the above process must terminate
in a finite number of steps.

We have the following schematic representation of the powers of the
transition matrix.

G0 =z 07 G0 0 =
H = C]_ 0 0 x H2 = C1 x 0 0
Clz 0 0| Cl0 =z O
G G G
C[z 0 07
M=cjo0 =« 0 (= stands for positive element)
C,l0 0 =z

Notice that II* has the same form as II but is not the same numerically;
similarly, II®> has the same form as II2, II® has the same form as II3, and
soon. <

» Example 3. Consider the simple random walk.

(a) Ifthere are no barriers, the entire state space forms a closed equivalence
class with period 2. We have seen that fj, = 1 — |p — ¢| [see (6.2.7)];
by symmetry, f;; = foo for alli. Thus if p = g the class is recurrent, and
if p # ¢ the class is transient.

(b) If there is an absorbing barrier at 0, then there are two classes, C = {0}
and D = {1,2,...}. Cis clearly recurrent, and since D is not closed,
it is transient by Theorem 8. C has period 1, and D has period 2.

(c) If there are absorbing barriers at 0 and b, then there are three equiva-
lence classes, C ={0}, D={1,2,...,b— 1}, E={b}. C and E
have period 1 and are recurrent; D has period 2 and is transient. «

REMARK. We have seen that if B is a finite set of transient states, the
probability of remaining forever in B is 0. This is not true for an

e
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infinite set of transient states. For example, in the simple random walk
with an absorbing barrier at 0, if the initial stateis* > 1 and p > ¢,
there is a probability 1 — (¢/p)®* > 0 of remaining forever in the
transient class D = {1, 2, ...} [see (6.2.6)].

TERMINOLOGY. A state (or class) is said to be aperiodic iff its period d is 1,

periodic iff d > 1.

PROBLEMS

1.

4.

(a) Let A4 be a (possibly infinite) set of positive integers with greatest common
divisor d. Show that there is a finite subset of 4 with greatest common
divisor d.

(b) If A4 is a nonempty set of positive integers with greatest common divisor d,
and A is closed under addition, show that all sufficiently large multiples
of d belong to A.

(c) If d; is the period of the state 7, show that d; is the greatest common divisor
of {n > 1:f{» > 0}.

. A state i is said to be essential iff its equivalence class is closed. Show that i is

essential iff, whenever 7 leads to j, it follows that j leads to 7.

. Prove directly (without using Theorem 5) that an equivalence class that is not

closed must be transient.

Classify the states of the following Markov chains. [In (a) and (b) assume 0 <

p<l1]

(a) Simple random walk with reflecting barrier at 0 (S = {1,2,...}, py; =9,
Piiv1 =P for all i, Pi,i-1 =4, i = 2, 3, o .)

(b) Simple random walk with reflecting barriers at 0 and / + 1 (S = {1,2,...,

B pu=¢ pu=p Piin=p i=12,...,0 =1, piy,=¢q,i=2,3,

.

©
2 8 0 0
I=j0 0 .1 .9
0 0 2 8
7 3 0 0
@
3o
m=lo § 3
IR
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5. Let Ry, R, R,,... be independent random variables, all having the same
distribution function, with values in the countable set S; assume P{R; = j} > 0
foralljes.

(2) Show that {R,} may be regarded as a Markov chain; what is I1?
(b) Classify the states of the chain.

6. Let i be a state of a Markov chain, and let
[s) oo
H@ =3 firr, U@ =2ppz, |4 <1
n=0 n=0

[take f{® =0]. Use the first entrance theorem to show that U(z) — 1=
H®@U(@).

7.4 LIMITING PROBABILITIES

In this section we investigate the limiting behavior of the n-step transition
probability p!#). The basic result is the following.

)

Theorem 1. Let f,,f,, ... be a sequence of nonnegative numbers with
® Jo =1, such that the greatest common divisor of {j: f; > 0} is 1. Set
ug =1, u, = >dr, filly s n=1,2,.... Define p =237 nf, Then

u,—>1/uasn— co.

We shall apply the theorem to a Markov chain with f, = f;i”), ia given
recurrent state with period 1; then u, = p{® by the first entrance theorem.
Also, p=p; = X2 nf{?, so that if T is the time required to return to i
when the initial state is 7, then u; = E(T). If i is an arbitrary recurrent state
of a Markov chain, y; is called the mean recurrence time of i.

Theorem 1 states that p{™ — 1/u,;thus, startingin i, thereis a limiting prob-
ability for state i, namely, the reciprocal of the mean recurrence time.
Intuitively, if u; = (say) 4, then for large n we should be in state i roughly
one quarter of the time, and it is reasonable to expect that p{™’ — 1/4.

PrOOF. We first list three results from real analysis that will be needed.
All numbers ay;, ¢;, a;, b; are assumed real.
1. Fatow's Lemma: If |a| < ¢;, k,j=1,2,...,and X;¢; < oo, then

lim sup Y a;; < 2 lim sup ay

ko0 7 J k=

and
lim inf Y a,; > > lim inf ay;

k= o0 ) j k-

e
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The “lim inf” statement holds without the hypothesis that
lag| < ¢ Xe; < oo, ifalla,; >0
J

2. Dominated Convergence Theorem: If lay;| <c¢;, k, j=1,2,...,
>i¢; < oo, and limy_,, a; = a;,j = 1,2,...,then

lim > ay; = Y lim a,,,~(= > aj)
ko j j k> J

(The dominated convergence theorem follows from Fatou’s lemma. Alter-
natively, a fairly short direct proof may be given.)

3. liminf,_ , (@ + b,) < lim infy_, ,, @+ lim sup,._, , b;.
(This follows quickly from the definitions of lim inf and lim sup.)

We now prove Theorem 1. First notice that 0 < u, <1 for all n (by
induction). Define

= 2 fi n=0,1,...

j=n+1

Then
Uy =f1u'n——1 + e +fnu0 = (7'0 - rl)un—l + e + (r'n—l - rn)”m n Z 1
(7.4.1)

Since ro = 22, f; = 1, we have u,, = rqu,, and thus we may rearrange terms
in (7.4.1) to obtain

roun+r1un—1+”'+rnu0=r0un—-1+“'+rn——1u0: n21

This indicates that >  r.u, ; is independent of n; hence

n

D ripg = Fotlg = 1, n=0,1,... (7.4.2)

k=0

[An alternative proof that >  ru, , = 1: construct a Markov chain with
W = f,, pi" = u, (see Problem 1). Then

D Tilhn g = 2 Ul
k=0 k=0
=3 pi'P{T > n —k|Ry =i}
=0
(where T is the time required to return to i when the initial state is i)
i .
=gOP{Rk= i, Rypy # d,..., R, # i | Ry = i}

= P{R, = iforsomek =0,1,...,n|Ry, =i}
=1]

e
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Now let b = lim sup,, u,. Pick a subsequence {u, } converging to b. Then
b = lim u,, = lim inf u,,

= lim inf |:fiu,,k_,~ + Zkfjunk—ijl
r J=1

iFi

< lim inf (fu,, ;) + (i f,)b
k j=1

i#d

[We use here the fact that lim .infy (g, + b)) < lim inf, @;, + lim supy b;.
Furthermore, if we take u, = 0 for n < 0, then

fim sup ( zfjuﬂk_,-) <3 flim sup (un,_) < b3,
k i=1 j=1 k j=1

i#i J#d i#i

Notice that since |fiu, ;| < f; and >2.f; < oo, Fatou’s lemma applies.]
Therefore

b < f,liminfu,_, + (1 — £)b
k

or
flim infu,_, > f;b
k

Thus f; > 0 implies u, _; — b as k — oo.

It follows that u,, _, — b for sufficiently large i. For if f; > 0, we apply the
above argument to the sequence Up—i» kK =1,2,..., to show that f; >0
implies u, _,_;—b. Thus if # = 3™, a,i,, where the a, are positive integers
and f; > 0, then u,,,— b. The set S of all such ¢’s is closed under addition
and has greatest common divisor 1, since S is generated by the positive integers
i for which f; > 0. Thus (Problem 1b, Section 7.3) S contains all sufficiently
large positive integers. Say u,,_; — b for i > I. By (7.4.2),

a0

DSty g;=1 (with u,, = 0 for n < 0) (7.4.3)

j=

If 37 ,r; < oo, the dominated convergence theorem shows that we may let
k — oo and take limits term by term in (7.4.3) to obtain b X2 r; = 1. If
>0 r; = oo, Fatow’s lemma gives 1 > b Dol hence b = 0. In either

case, then,
© —~1
- (3]

j=0

e
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But
r=fithftfit
r= fotfot
o= fot o
Hence
Dra=20f,=pu
n=0 n=1

Consequently b = lim sup,, u,, = 1/u. By an entirely symmetric argument,
lim inf,, u,, = 1/u, and the result follows.

We now apply Theorem 1 to gain complete information about the limiting
behavior of the n-step transition probability p{#. A recurrent state j is said to
be positive iff its mean recurrence time u; is < o, null iff p; = co.

Theorem 2.
(a) If the state j is transient then 3.°_ p\® < oo for all i, hence

i
pr—0 asn-— o
Proor. This is Theorem 4 of Section 7.3.

(b) If j is recurrent and aperiodic, and i belongs to the same equivalence
class as j, then p\» — I|u;. Furthermore, u; is finite iff w; is finite. If i
belongs to a different class, then p!® — fy;/u;.

PROOF.
) _ ~ ), (neh)
n n—Kx
Pi; =k21fu Pjj

by the first entrance theorem [take p¥7) = 0, r < 0]. By the dominated con-
vergence theorem, we may take limits term by term as n — co; since p{7~* —
1/u; by Theorem 1, we have

iy (3 L -2
k=1 Ki My
If i and j belong to the same recurrent class, f;; = 1.
Now assume that g, is finite. If p{7, p'$ > 0, then p{+7+5) > pir) pim pis):
this is bounded away from 0 for large n, since p$?’ — 1/u; > 0. Butif u, = o,
then plf m — 0 as n — oo, a contradiction. This proves (b).

e
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(c) Let j be recurrent with period d > 1. Let i be in the same class as j,
with i € the cyclically moving subclass C,, j € C,.,. Thenp{r*+® — du,.
Also, u; is finite iff p; is finite, so that the property of being recurrent
positive (or recurrent null) is a class property.

Proor. First assume a = 0. Then j is recurrent and aperiodic relative to
the chain with transition matrix II¢. (If 4 has greatest common divisor d, then
the greatest common divisor of {z/d: x € A} is 1.) By (b),

1 d d

Sk Skdffe M
=1 r=1

(nd)
pi;" —

Now, having established the result for @ = r, assume a =r 4+ 1 and
write

a_4

Pyt =3 " > 2 pa
T k i My
as asserted.
The argument that u; is finite iff u, is finite is the same as in (b), with nd

replacing n.
(d) Ifj is recurrent with period d > 1, and i is an arbitrary state, then

plrao) _, [iﬁ?d*“’}i, a=01,...,d—1

%=0 i
The expression in brackets is the probability of reaching j from i in

a number of steps that is = a mod d. Thus, if j is recurrent null, p{? — 0
as n— oo for all i.

ProOOF.

( ) nite (%) ,,( )

nd+a) __ k nd+a—k —

Dij _Ef“.pﬁ s a=0,1,...,d 1
=1

Since j has period d, p{r4+e=*) = 0 unless k — a is of the form rd (necessarily
r < n); hence

pg?d+a) — zn: f;(;'d%—a)pg(jw—r)d)
r=0
Let n — oo and use (c) to finish the proof.

(e) A finite chain has no recurrent null states.

e
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ProoF. Let C be a finite recurrent null class, say, C = {1,2, ..., r}. Then

pf,"’_1 ieC

"M*

Let n — oo; by (d) we obtain 0 = 1, a contradiction.

PROBLEMS

1.

With f, and u, as in Theorem 1, show how to construct a Markov chain with
a state  such that f{») = f, and p{#) = u, for all n.

. (The renewal theorem) Let T;, T,, ... be independent random variables, all

with the same distribution function, taking values on the positive integers.
(Think of the T, as waiting times for customers to arrive, or as lifetimes of a
succession of products such as light bulbs. If T; + - -+ + T,, = z, bulb # has
burned out at time x, and the light must be renewed by placing bulb » + 1 in
position.) Assume that the greatest common divisor of {x: P{T;, = #} > O} is d
andletGn) =32 P{Ty + -+ + Ty =n},n =1,2,... . If g = E(T)), show
that lim,,_, o, G(nd) = dfu; interpret the result intuitively. '

. Show that in any Markov chain, (1/n) Y'r_, pg’;’ approaches a limit as n — oo,

namely, fij/,uj. (Deﬁne u; = oo if j is transient.) HINT:

}lf w=31% p®,  d = period of j

. Let V;; be the number of visits to the state j, starting at i. (If i = j, ¢ = 0 counts

as a visit.)

() Show that E(V;) =3 | pip. Thus i is recurrent iff E(V;;) = oo, and if j is
transient, E(V;;) < oo for all i.

(b) Let C be a transient class, N;; = E(V;;), i, j € C. Show that

Nij =065+ 2 palNes By =1,i=j
keC
=0,i #j)

In matrix form, N = I + QN, Q = II restricted to C.
(c) Show that (I — Q)N = N(I — Q) = I so that N = (I — Q) in the case
of a finite chain (the inverse of an infinite matrix need not be unique).

REMARK. (a) implies that in the gambler’s ruin problem with finite capital, the

average duration of the game is finite. For if the initial capital is i and D is
the duration of the game, then D = zb—l V,;» so that E(D) < co.

e
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7.5 STATIONARY AND STEADY-STATE DISTRIBUTIONS

A stationary distribution for a Markov chain with state space S is a set of
numbers v;, i € S, such that v; > 0, >, v; = 1, and

Evipﬁ = Uy, JES
€S

Thus, if V' = (v;, i € S), then VII = V. By induction, VII"* = VII (II*?) =

V"1l = ... = VIl = V,sothat VII" = Vforalln =0, 1, . Therefore,
if the initial state distribution is V, the state distribution at all future times is
still V. Furthermore, since

P{R" = i, ‘R'IL+1 = i]_, e ooy ‘Rn‘l'k = ik}
= P{R, =i} Pis,Pii, " * " Pip_sis (Problem 4, Section 7.1)
= UiPiiy Piviy * " Piyy_y3s,

the sequence {R,} is stationary; that is, the joint probability function of
R,,R, ., ..., R, does not depend on n.

Stationary distributions are closely related to limiting probabilities. The
main result is the following.

Theorem 1. Consider a Markov chain with transition matrix [p;;]. Assume

lim p(n) =g,

n— oo

JSor all states i, j (where q; does not depend on i). Then

(@) 2jesqs < 1 and 35 qipys = g5, j € S.

(b) Either all g; = 0, or else D je5q; = 1.

(c) If all g; = 0, there is no stationary distribution. If Y ;.cq; = I, then
{9;} is the unique stationary distribution.

PRrOOF.
> q; z hm PP < lim 1nf2 piy

J

by Fatou’s lemma; hence
Z q;<1
I

Now

(n+1)

> api; = 3 (lim pif)p,; < lim inf 3 piF'p,; = lim inf p{f™ = g,

e
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But if 3, ¢,p;, < g;, for some j,, then
251:‘>zzqz'l’u' =ZQizpi5= Z%‘
J J K3 J 7

which is a contradiction. This proves (a).
Now if Q = (g;,i€S), then by (a), QI = Q; hence, by induction,
OIl" = Q, thatis, >, ¢,p{” = gq,. Thus

2]

g; = lim Z ‘12‘1’2?) = E g; lim Pz‘}”
n 2 1 n

by the dominated convergence theorem. Hence ¢; = (3, ¢,)g;, proving (b).

Finally, if {v,} is a stationary distribution, then > v,p\" = v, Letn — oo
to obtain >, v,q; = v;, so that ¢; = v,. Consequently, if a stationary distri-
bution exists, it is unique and coincides with {g;}. Therefore no stationary
distribution can exist if all¢; = 0; if >, ¢, = 1, then, by (a), {g,} is station-
ary and the result is established.

The numbers v,, i € S, are said to form a steady- state distribution iff lim,,_, |
piP =v;foralli,je s, and Y . v; = 1. Thus we require that limiting prob-
abilities exist (independent of the initial state) and form a probability
distribution.

In the case of a finite chain, a set of limiting probabilities that are inde-
pendent of the initial state must form a steady-state distribution, that is,
the case in which all ¢; = 0 cannot occur in Theorem 1. For X, p{® =
for all i € §; let n — o0 to obtain, since S is finite, > g g, = 1. If the chain
is infinite, this result is no longer valid. For example, if all states are transient,
then p{™ — 0 for all i, j.

If {g;} is a steady-state distribution, {g;} is the unique stationary distribu-
tion, by Theorem 1. However, a chain can have a unique stationary distribu-
tion without having a steady-state distribution, in fact without having limiting
probabilities. We give examples later in the section.

We shall establish conditions under which a steady-state distribution exists
after we discuss the existence and uniqueness of stationary distributions.

Let N be the number of positive recurrent classes.

CAse 1. N =0. Then all states are transient or recurrent null. Hence
pi» — 0 for all i, j by Theorem 2 of Section 7.4, so that, by Theorem 1
of this section, there is no stationary distribution.

Case2. N = 1. Let Cbe the unique positive recurrent class. If C'is aperiodic,

then, by Theorem 2 of Section 7.4, p!» — 1/u;, i, j € C.If j ¢ C, then
J is transient or recurrent null, so that p{® — 0 for all i. By Theorem 1,

e
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if we assign v; = 1/u;, je C, v; = 0, j ¢ C, then {v;} is the unique
stationary distribution, and p{ — v; for all i, j.

Now assume C periodic, with period d > 1. Let D be a cyclically
moving subclass of C. The states of D are recurrent and aperiodic
relative to the transition matrix II¢. By Theorem 2 of Section 7.4,
pir® —dlu;, i, j€ D; hence {d/u;, j€ D} is the unique stationary
distribution for D relative to T (in particular, >, 5, 1/u; = 1/d). It
follows that v; = 1/u;, je C, v; = 0, j ¢ C, gives the unique station-
ary distribution for the original chain (see Problem 1).

Casg 3. N > 2. There is a unique stationary distribution for each positive

recurrent class, hence uncountably many stationary distributions for
the original chain. For if VII = V;, VIl = V,, then, if a;, a, > 0,
a, + a, = 1, we have

@V + a V)l = aV) + a,V,

In summary, there is a unique stationary distribution if and only if
there is exactly one positive recurrent class.

Finally, we have the basic theorem concerning steady-state distributions.

Theorem 2.
(a) If there is a steady-state distribution, there is exactly one positive

recurrent class C, and this class is aperiodic; also, f;; = 1 forall je C
and all i € S.

(b) Conversely, if there is exactly one positive recurrent class C, which is

aperiodic, and, in addition, f; =1 for all je C and all i€ S, then
a steady-state distribution exists.

ProoF.
(a) Let {v;} be a steady-state distribution. By Theorem 1, {v;} is the unique

stationary distribution; hence there must be exactly one positive
recurrent class C. Suppose that C has period 4 > 1, and let ica
cyclically moving subclass Cy, j € Cy. Then p{"**) — d/u; by Theorem 2
of Section 7.4, and p{r*) = 0 for all n. Since d/u; > 0, p{® has no limit
as n — oo, contradicting the hypothesis. If j€ C and i€ S, then by
Theorem 2(b) of Section 7.4, p{» — f;;/u;, hence v; = fi;/u,. Since
v; does not depend on i, we have f; = f;; = 1.

(b) By Theorem 2(b) of Section 7.4,

(n) fii
Dij >
)

—0 foralliifj¢C

foralli,if jeC

e
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since in this case j is transient or recurrent null. Therefore, if f;; = 1
for all ie S and je C, the limit v; is independent of i. Since C is
positive, v; > 0 for j € C; hence, by Theorem 1, >, v, = 1 and the
result follows.

[Note that if a steady state distribution exists, there are no recurrent null
classes (or closed transient classes). For if D is such a class and i € D, then
since D is closed, f;; = 0 for all j € C, a contradiction. Thus in Theorem 2,
the statement “there is exactly one positive recurrent class, which is aperiodic”
may be replaced by “there is exactly one recurrent class, which is positive and
aperiodic”.]

CoroLLARY. Consider a finite chain.

(a) A steady-state distribution exists iff there is exactly one closed equiva-
lence class C, and C is aperiodic.

(b) There is a unique stationary distribution iff there is exactly one closed
equivalence class.

PRroOOF. The result follows from Theorem 2, with the aid of Theorem 8c
of Section 7.3, Theorem 2e of Section 7.4, and the fact that if B is a finite
set of transient states, the probability of remaining forever in B is 0 (see the
remark after Theorem 4 of Section 7.3).

[It is not difficult to verify that a finite chain has at least one closed
equivalence class. Thus a finite chain always has at least one stationary
distribution.]

REMARK. Consider a finite chain with exactly one closed equivalence class,
which is periodic. Then, by the above corollary, there is a unique
stationary distribution but no steady-state distribution, in fact no
limiting probabilities (see the argument of Theorem 2a). For example,
consider the chain with transition matrix

[ ]

The unique stationary distribution is (1/2, 1/2), but

" = [1 0:], n even
01

n"=[° 1} n odd
10

and therefore II” does not approach a limit.

Usually the easiest way to find a steady-state distribution {v;}, if it exists,

e
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is to use the fact that a steady-state distribution must be the unique stationary
distribution. Thus we solve the equations

D VD = v, JjeS
€8

under the conditions that all v; > 0 and > ,.gv; = 1.

PROBLEMS

1.

Show that if there is a single positive recurrent class C, then {1/u;, j € C}, with
probability 0 assigned to states outside C, gives the unique stationary distribution
for the chain. HINT: p{rd) = 3, . p{ni-1p,;, i € C. Use Fatou’s lemma to show
that 1/u; > >ycc(l/pi)pri- Then use the fact that Yo 1/p; = 1.

. (a) If, for some N, II¥ has a column bounded away from 0, that is, if for some

Jo and some 6 > 0 we have p{N) > & > 0 for all i, show that there is exactly
one recurrent class (namely, the class of ji); this class is positive and aperiodic.

(b) In the case of a finite chain, show that a steady-state distribution exists iff
IIN has a positive column for some N.

. Classify the states of the following Markov chains. Discuss the limiting behavior

of the transition probabilities and the existence of steady-state and stationary
distributions.

1. Simple random walk with no barriers.
2. Simple random walk with absorbing barrier at 0.
3. Simple random walk with absorbing barriers at 0 and b.
4. Simple random walk with reflecting barrier at 0.
5. Simple random walk with reflecting barriers at 0 and / + 1.
6. The chain of Example 2, Section 7.1.
7. The chain of Problem 4c, Section 7.3.
8. The chain of Problem 4d, Section 7.3.
9. A sequence of independent random variables (Problem 5, Section 7.3).
10. The chain with transition matrix ,
1 23 45 6 17
170 01 0 0 0 07
200 001 0 0O
30 000 2 10
II=40 0000 01
50 1 0 0 00O
60 1 0 0 0 0O
774 3 00 0 0 O
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8.1 STATISTICAL DECISIONS

Suppose that the number of telephone calls made per day at a given exchange
is known to have a Poisson distribution with parameter 6, but 0 itself is
unknown. 1n order to obtain some information about 0, we observe the
number of calls over a certain period of time, and then try to come to a
decision about 6. The nature of the decision will depend on the type of in-
formation desired. For example, it may be that extra equipment will be
needed if 6 > 6, but not if § < 6,. In this case we make one of two possible
decisions: we decide either that 6 > 0, or that § < 6,. Alternatively, we may
want to estimate the actual value of 6 in order to know how much equipment
to install. In this case the decision results in a number 8, which we hope is as
close to 0 as possible. In general, an incorrect decision will result in a loss,
which may be measurable in precise terms, as in the case of the cost of un-
necessary equipment, but which also may have intangible components. For
example, it may be difficult to assign a numerical value to losses due to
customer complaints, unfavorable publicity, or government investigations.

Decision problems such as the one just discussed may be formulated
mathematically by means of a statistical decision model. The ingredients of the
model are as follows.

1. N, the set of states of nature.

241
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2. A random variable (or random vector) R, the observable, whose
distribution function F, depends on the particular § € N. We may
imagine that “nature” chooses the parameter 6 € N (without revealing
the result to us); we then observe the value of a random variable R with
distribution function F,. In the above example, N is the set of positive
real numbers, and F, is the distribution function of a Poisson random
variable with parameter 0.

- 3. A, the set of possible actions. In the above example, since we are trying to
determine the value of 6, 4 = N = (0, ).

4. A loss function (or cost function) L(6,a), 6 € N, a€ A; L(0, a) repre-
sents our loss when the true state of nature is 6 and we take action a.

The process by which we arrive at a decision may be described by means of
a decision function, defined as follows.

Let E be the range of the observable R (e.g., E' if R is a random variable,
E™ if R is an n-dimensional random vector). A nonrandomized decision
function is a function ¢ from E to 4. Thus, if R takes the value z, we take
action ¢(z). ¢ is to be chosen so as to minimize the loss, in some sense.

Nonrandomized decision functions are not adequate to describe all aspects
of the decision-making process. For example, under certain conditions we
may flip a coin or use some other chance device to determine the appropriate
action. (If you are a statistician employed by a company, it is best to do this
out of sight of the customer.) The general concept of a decision function is
that of a mapping assigning to each x € E a probability measure P, on an
appropriate sigma field of subsets of 4. Thus P,(B) is the probability of taking
an action in the set B when R = x is observed. A nonrandomized decision
function may be regarded as a decision function with each P, concentrated
on a single point; that is, for each « we have P, {a} = 1 for some a (= ¢(z))
in A4.

We shall concentrate on the two most important special cases of the
statistical decision problem, hypothesis testing and estimation.

A typical physical situation in which decisions of this type occur is the
problem of signal detection. The input to a radar receiver at a particular
instant of time may be regarded as a random variable R with density f,
where 0 is related to the signal strength. In the simplest model, R = 6 + R’,
where R’ (the noise) is a random variable with a specified density, and 6 is a
fixed but unknown constant determined by the strength of the signal. We
may be interested in distinguishing between two conditions: the absence of a
target (6 = 6,) versus its presence (6 = 6,); this is an example of a hypothesis-
testing problem. Alternatively, we may know that a signal is present and wish
to estimate its strength. Thus, after observing R, we record a number that
we hope is close to the true value of 0; this is an example of a problem in
estimation.

e
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As another example, suppose that 6 is the (unknown) percentage of
defective components produced on an assembly line. We inspect » components
(i.e., we observe Ry,..., R,, where R; =1 if component i is defective,
R; = 0 if component i is accceptable) and then try to say something about
6. We may be trying to distinguish between the two conditions 6 < 6, and
6 > 0, (hypothesis testing), or we may be trying to come as close as possible
to the true value of 6 (estimation).

In working the specific examples in the chapter, the table of common
density and probability functions and their properties given at the end of the
book may be helpful.

8.2 HYPOTHESIS TESTING

Consider again the statistical decision model of the preceding section. Sup-
pose that Hy and H, are disjoint nonempty subsets of N whose union is N,
and our objective is to determine whether the true state of nature 6 belongs to
H, or to H;. (In the example on the telephone exchange, H, might corre-
spond to 6 < 6y, and H, to 6 > 6,) Thus our ultimate decision must be
either “0 € Hy” or “0 € H,,” so that the action space 4 contains only two
points, labeled 0 and 1 for convenience.

The above decision problem is called a hypothesis-testing problem; H,
is called the null hypothesis, and H, the alternative. H, is said to be simple iff
it contains only one element; otherwise Hj is said to be composite, and simi-
larly for H;. To take action 1 is to reject the null hypothesis Hy; to take action
0 is to accept H,,. ‘

We first consider the case of simple hypothesis versus simple alternative.
Here H, and H; each contain one element, say 0, and ;. For the sake of
definiteness, we assume that under H,, R is absolutely continuous with
density f;, and under H;, R is absolutely continuous with density f;. (The
results of this section will also apply to the discrete case upon replacing
integrals by sums.) Thus the problem essentially comes down to deciding,
after observing R, whether R has density f; or f;.

A decision function may be specified by giving a (Borel measurable)
function ¢ from E to [0, 1], with @(z) interpreted as the probability of
rejecting H, when z is observed. Thus, if g(x) = 1, we reject Hy; if (z) = 0,
we accept Hy; and if ¢(x) = a, 0 < a < 1, we toss a coin with probability
a of heads: if the coin comes up heads, we reject H,; if tails, we accept H,.
The set {z: ¢(x) = 1} is called the rejection region or the critical region;
the function ¢ is called a fest. The decision we arrive at may be in error in
two possible ways. A type I error occurs if we reject H, when it is in fact true,
and a type 2 error occurs if H, is accepted when it is false, that is, when H; is

e
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true. Now if Hj is true and we observe R = z, an error will be made if H,
is rejected ; this happens with probability ¢(x). Thus the probability of a type
1 error is

”= f_ * (@) fy(@) dz (8.2.1)

Similarly, the probability of a type 2 error is

B = f_ 2(1 — ¢()) fy() d= (8.2.2)

Note that o is the expectation of ¢(R) under H,, sometimes written E, ¢;
similarly, 8 = 1 — E, ¢.

It would be desirable to choose ¢ so that both « and § will be small, but,
as we shall see, a decrease in one of the two error probabilities usually
results in an increase in the other. For example, if we ignore the observed
data and always accept H,, then « = 0 but § = 1.

There is no unique answer to the question of what is a good test; we shall
consider several possibilities First, suppose that there is a nonnegative cost
c; associated with a type i error, i = 1, 2. (For simplicity, assume that the
cost of a correct decision is 0.) Suppose also that we know the probability p
that the null hypothesis will be true. (p is called the a priori probability of H,,.
In many situations it will be difficult to estimate; for example, in a radar
reception problem, H, might correspond to no signal being present.)

Let ¢ be a test with error probabilities «(¢) and B(¢) The over-all average
cost associated with ¢ is

B(g) = per(@) + (1 — p)esf(9) (8.2.3)

B(g) is called the Bayes risk associated with ¢; a test that minimizes B(¢)
is called a Bayes test corresponding to the given p, ¢, ¢,, fy, and f;.

The Bayes solution can be computed in a straightforward way. We have,
from (8.2.1-8.2.3),

B = e @ @) + (1 = pest = pa)fi)] de

= f P@)[perfo(x) — (1 — pleofi(®)] dz + (1 — p)e, (8.2.4)
Now if we wish to minimize g ¢(2)g(«) dx and g(x) < 0 on S, we can do no
better than to take p(x) = 1 for all x in S; if g(x) > 0 on S, we should take
@(x) = 0 for all z in S; if g(x) = 0 on S, @(x) may be chosen arbitrarily.
In this case g(®) = pc, fo(x) — (1 — p)cofi(x), and the Bayes solution may

e
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therefore be given as follows.

Let L(z) = fi(z)/fo().

If L(x) > pey/(1 — p)c,, take p(x) = 1; that is, reject H,,.
If L(z) < pey/(1 — p)c,, take @(x) = 0; that is, accept H,.
If L(z) = pc;/(1 — p)c,, take @(x) = anything.

L is called the likelihood ratio, and a test ¢ such that for some constant 4,
0< 1< oo, p() =1 when L(x) > A and ¢(z) =0 when L(») < 4, is
called a likelihood ratio test, abbreviated LRT.

To avoid ambiguity, if f(z) > 0 and f,(x) = 0, we take L(z) = oo. The
set on which f;(x) = fy(¥) = 0 may be ignored, since it will have probability
0 under both H, and H;. Also, if we observe an = for which f;(x) > 0 and
fo(x) = 0, it must be associated with H,, so that we should take ¢(x) = 1. It
will be convenient to build this requirement into the definition of a likelihood
ratio test: if L(x) = oo we assume that ¢(x) = 1.

In fact, likelihood ratio tests are completely adequate to describe the
problem of testing a simple hypothesis versus a simple alternative. This
assertion will be justified by the sequence of theorems to follow.

From now on, the notation P,(B) will indicate the probability that the
value of R will belong to the set B when the true state of nature is 6.

Theorem 1. For any «, 0 < o < 1, there is a likelihood ratio test whose
probability of type 1 error is «.

ProOF. If a =0, the test given by ¢(x) = 1 if L(x) = 0; ¢(x) =0 if
L(z) < o, is the desired LRT, so assume « > 0. Now G(y) =P90{x:
L(x) <y}, —oo< y < oo, is a distribution function [of the random vari-
able L(R); notice that L(R) > 0, and L(R) cannot be infinite under H,).
Thus either we can find 4, 0 < A < oo, such that G(A) =1 — «, or else G
jumps through 1 — «; that is, for some 4 we have G(A7) <1 — « < G(2)
(see Figure 8.2.1). Define '

p(@) =1 if L(z) > 4
=0 ifL@®) <41
=a ifL@&) =141
where a = [G(A) — (1 — V)]/[GAA) — G(A)] if GA) > G(A), a=an

arbitrary number in [0, 1] if G(4) = G(47). Then the probability of a type 1
error is

Py fw: L(@) > 1} + aPy {w: L) = A} = 1 — G() + alG(h) — G(N] = «

as desired.
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G(y)
A
l—a e
X y
FIGURE 8.2.1

A test is said to be at level a, if its probability « of type 1 error is <a.
o itself is-called the size of the test, and 1 — f, the probability of rejecting
the null hypothesis when it is false, is called the power of the test.

The following result, known as the Neyman-Pearson lemma, is the funda-
mental theorem of hypothesis testing.

Theorem 2. Let @, be o LRT with parameter . and error probabilities
o, and f,. Let @ be an arbitrary test with error probabilities o.and 8 ; if « < «,
then 8-> ;. In other words, the LRT has maximum power among all tests at
level o;.

We give two proofs

FIrRST PROOF. Consider the Bayes problem with costs ¢; = ¢, = 1, and
set 2 = pci/(1 — p)c; = p/(1 — p). Assuming first that 1 < oo, we have
P = 4/(1 + 7). Thus g, is the Bayes solution when the a priori probability is
p=H{1A+ 2. ~

If B < B, we compute the Bayes risk [see (8.2.3)] for p = A/(1 + 4),
using the test ¢.

B(g) = po + (1 — p)f

But « < «; by hypothesis, while § < f; and p < 1 by assumption. Thus
B(p) < B(g,), contradicting the fact that ¢, is the Bayes solution.

It remains to consider the case A = co. Then we must have ¢,(z) = 1 if
L(x) = oo, ¢,(x) = 0if L(x) < 0. Then «, = 0, since L(R) is never infinite
under H,; consequently « = 0, so that, by (8.2.1), @()f,(x) = 0 [strictly
speaking, @(z)fo(x) = 0 except possibly on a set of Lebesgue measure 0].
By (8.2.2),

ﬂ =j{z:L(a:)<g,} a- (P(ft))fl(x) dx +f

{x: L(x)=00

) (1 — ¢(2) fi(=) d=

e
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If L(z) < oo, then fo(x) > 0; hence @(x) = 0. Thus, in order to minimize S,
we must take ¢(z) = | when L(z) = oo. But this says that g > g,, com-
pleting the proof.

SECOND PRrOOF. First assume 4 < co. We claim that [g,(z) — ¢(z)] X
[f1(@) — Afo(2)] > O for all . For if fi(x) > Af (%), then ¢,(z) = 1 > ¢(x),
and if fi(z) < Afo(z), then ¢,(z) = 0 < @(x). Thus

f_ " [9:(@) — g@ILi#) — Mo(@)] 2 0
By (8.2.1) and (8.2.2),

1—8,— 0 —=p)—Au; + A >0
or
B— B> Moy — o) >0

The case 4 = oo is handled just as in the first proof.

If we wish to construct a test that is best at level « in the sense of maximum
power, we find, by Theorem 1, a LRT of size «. By Theorem 2, the test has
maximum power among all tests at level «. We shall illustrate the procedure
with examples and problems later in the section.

Finally, we show that no matter what criterion the statistician adopts in
defining a good test, he can restrict himself to the class of likelihood ratio
tests.

A test @ with error probabilities « and f is said to be inadmissible iff there
is a test ¢’ with error probabilities o’ and §’, with &’ < «, ' < f, and either
o' < aor < f. (In this case we say that ¢ is better than ¢.) Of course, ¢
is admissible iff it is not inadmissible.

Theorem 3. Every LRT is admissible.

PrOOF. Let ¢, be a LRT with parameter 4 and error probabilities «; and
B,. and ¢ an arbitrary test with error probabilities « and 8. We have seen that
if « < a;, then f > B,. But the Neyman-Pearson lemma is symmetric in H,
and H;. In other words, if we relabel H, as the null hypothesis and H, as the
alternative, Theorem 2 states that if g < f§,, then o > o, ; the result follows.

Thus no test can be better than a LRT. In fact, if ¢ is any test, then there is
a LRT ¢, that is as good as ¢ ; thatis, «; < a and ; < . For by Theorem 1
there is a LRT ¢, with o, = o, and by Theorem 2 8, < f. This argument
establishes the following result, essentially a converse to Theorem 3.
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Theorem 4. If @ is an admissible test, there is a LRT with exactly the same
error probabilities.

PrOOF. As above, we find a LRT ¢, with o;; = « and 8, < f; since g is
admissible, we must have §, = f.

» Example 1. Suppose that under H,, R is uniformly distributed between
0 and 1, and under H;, R has density 322, 0 < # < 1. For short we write

Hy: fo(r) =1, 0<2<1
Hi: fi(%) = 322, 0<z<L1

We are going to find the risk set S, that is, the set of points (x(¢), S(¢))
where @ ranges over all possible tests. [The individual points (x(¢), B(¢))
are called risk points.] We are also going to find the set S, of admissible
risk points, that is, the set of risk points corresponding to admissible tests.
By Theorems 3 and 4, S, is the set of risk points corresponding to LRTs.

First we notice two general properties of S.

1. S is convex; that is, if Q; and O, belong to S, so do all points on the
line segment joining Q, to Q,. In other words, (1 — a)0; + aQ, € S for all
ae[0,1].

For if Q) = (a(gy), f(p1), Q> = (a(@2), B(gr)) and 0L a <1, let
¢ = (1 — a)p, + ap,. Then g is a test, and by (8.2.1) and (8.2.2), a(¢) =
(1 — aa(gy) + an(gs), (@) = (1 — AB(g) + af(gn). I O = (a(e),
B(®)), then Q € S, since ¢ is a test, and @ = (1 — a)Q; + aQ,.

2. S is symmetric about (1/2, 1[2); that is, if |¢|, [6] < 1/2 and (1/2 — &,
1/2 — 0) € S, then (1)2 + ¢, 1/2 4+ 6) € S. Equivalently, («, ) € S implies
(1—a1—peS.

For if (a(p), B(@)) €S, let ¢ =1 — @; then ¢ is a test and «(¢’) =
1 — (), p(¢") =1 — (o).

To return to the present example, we have L(z) = 322, 0 <« < 1. Thus
the error probabilities for a LRT with parameter 4 < 3 are

11/2 l 1/2
w = Py {z: L(z) > A} = Peo{x: v > (g) : —1— (3)

B = Po{z:L(x) <1} =P 91{’“ s (2)1/2}
=L(,1/3)"23x2 e (2)3/2 =1 —ap

(f A>3, then « =0, f=1) Thus S, = {(«, (1 — 0)?):0 < < 1}.
Since no test can be better than a LRT, S, is the lower boundary of the

e
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ﬂB:l_a:‘;

—B=(1-a)®

0 1 «

FIGURE 8.2.2

set S; hence, by symmetry, {(1 —a,1— (11— 0<a<1}=
{(@,1 —a?):0 <« < 1} is the upper boundary of S. Thus S must be
{(@,0):0<a<1, (1 —a?<p L1 — a’} (see Figure 8.2.2).

Various tests may now be computed without difficulty. We give some
typical illustrations.

(a) Find a most powerful test at level .15. Set « = .15 =1 — (3/3)"2
Since L(x) > A iff > (1/3)V/2, the test is given by

p(x) =1 if x > .85
=0 ifz<.85
= anything  ifz = .85
We have f = (1 — «)® = (.85)* = .614.

(b) Find a Bayes test corresponding to ¢; = 3/2, ¢, = 3, p = 3/4. This
is a LRT with 4 = pc,[(1 — p)c, = 3/2; that is,

e 3
=1 ite> (%) _Y2_ gy
3 2
>
=0 ifa:<1/—
2
J3

= anything if v = B

Thus o = 1 — (A/3)Y2 = .293, f = (1 — «)?, and the Bayes risk may be
computed using (8.2.3).

e
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Oa=1—\/2/_2 1

FIGURE 8.2.3 Geometric Interpretation of Bayes Solution.

The Bayes solution may be interpreted geometrically as follows. We
are trying to find a test that minimizes the Bayes risk pc;a + (1 — p)c, =
(9/8)e + (3/4)p. If we vary c until the line (9/8)a 4+ (3/4)f = ¢ intersects
S 4, we find the desired test (see Figure 8.2.3).

Notice also that to find the Bayes solution we may differentiate (9/8)« +
(3/4)(1 — «)® and set the result equal to zero to obtain « = 1 — J 2/2, as
before.

(c) Find a minimax test, that is, a test that minimizes max («, f). It is
immediate from the definition of admissibility that an admissible test with
constant risk (i.e., o = ) is minimax. Thus we set « = § = (1 — «)3, which
yields « = .318 (approximately). Therefore (4/3)V2 = 1 — « = .682, and so
we reject H, if x > .682 and accept H, if x < .682. <

» Example 2. Let R be a discrete random variable taking on only the
values 0, 1, 2, 3. Let the probability function of R under H, be pi»i=0,1,
where the p, are as follows. :

x 0 1 2 3
Po() 1 2 3 .
pi(®) 2 .1 4 3

The appropriate likelihood ratio here is L() = p;(%)/py(x). Arranging the
values of L() in increasing order, we have the following table.

x
L(x)

0
2

Bl W
N

(S e
ik
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We may therefore describe the LRT with parameter A as follows.

LRT Rejection Region  Acceptance Region o B
0<A<% All z Empty 1 0
12<i<$ z=0,2,3 z=1 8 .1
34 <A<t x=0,2 z=1,3 4 4
43 <2<2 zr=0 r=1,2,3 1 .8
2< A< o Empty All 2 0 1

- Now assume 4 = 3/4. Then we reject H, if x =0 or 2, accept H, if
z =1, and if ¥ = 3 we randomize, that is, reject H, with probability a,
0< a< 1 Thus

= po(0) + po(2) + ape(3) = .4 + .4a
B=p()+ (A —a)p,(3)=.1+.3(1—a)

As a ranges over [0, 1], («, f) traces out the line segment joining (.4, .4)
to (.8, .1). In a similar fashion we calculate the error probabilities for A = 1/2,
4/3, and 2. The admissible risk points are shown in Figure 8.2.4.

We compute several tests.

(a) Find a most powerful test at level .25. Since .1 < .25 < .4, we have
A = 4/3. Thus we reject H, if = 0, accept H, if x = 1 or 3, and reject H,
with probability a if x = 2, where .1(1 — a) + .4a = .25, so that a = 1/2.
Notice that § = .8(1 — a) + .4a = .6.

(b) Find a Bayes test with ¢, = ¢, = 1, p = .6. We have 4 = pc;/(1 — p)c,
= 3/2. Thus we reject H, if = 0 and accept H, otherwise. The error prob-
abilities are « = .1, # = .8, and the Bayes risk is pc;a + (1 — p)c,f = .38.

(c) Find a minimax test. The only admissible test with « = f has « =

B = .4, so that 3/4 < A < 4/3. We reject H, when « = 0 or 2 and accept H,
ifx=1o0r3. <«

a

0 1,0

FIGURE 8.2.4 Admissible Risk Points When R is Discrete.
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» Example 3. Let R be normally distributed with mean 6 and variance
o?, where o® is known. We wish to test the null hypothesis that § = 6, against
the alternative that 6 = 6,, and the test is to be based on n independent
observations Ry, . .., R, of R. (Assume 6, < 0,.)

The appropriate likelihood ratio is

_fl(xb ) B (2770'2)—n/2 exp l:_kgl(xk _ 61)2/262:|

So(@y, ..., ) (2,”0,2)-—7»/2 exp l:_ i(xk _ 90)2/20,2:1

k=

L(xh ] xn)

The condition L(z) > A is equivalent to In L(x) > In 4; that is,
éz(el — 8, + n(6E — 0.2) > 20%In A (8.2.5)
This is of the form X | @, > c. Thus a LRT must be of the form
o, .., w) =1 ifkiac,‘c > ¢
=0 if %xk <c
=1
= anything if kéxk =c

Now R, + - + R, is normal with mean n0 and variance no?, so that the
error probabilities are

® = Poo{(xl, S HD X = c}
=1

= Po{Ri+ -+ R, >c}

—p {R1+~--1—Rn—n00>c—_n90}
b0 Jno Jno
—1—F* (%”90) where F* is the normal (0, 1) distribution function
nao

p= Pel{(xl, e, Tyl élxk < C}

=P {R,+ - +R,<c}



46628-0 Ash 2 4/14/08 8:31 AM Page$53

8.2 HYPOTHESIS TESTING 253

[ 4

0 1

FIGURE 8.2.5 Admissible Risk Points
When R is Normal.

Thus we have parametric equations for « and § with ¢ as parameter,
— o0 < ¢ < oo. The admissible risk points are sketched in Figure 8.2.5.

Suppose that we want a LRT of size «. If N, is the number such that
1 — F*(N,) = a, then (¢ — nBO)/\/n o = N,, so that ¢ = nf, + Vn oN,.

We now apply the results to a problem in testing a simple hypothesis
versus a composite alternative. Again let R be normal (6, ¢%), and take
Hy: 0 =6y, Hy: 0 > 0,

If we choose any particular 6; > 0, and test § = 0, against 6 = 0,, the
test described above is most powerful at level «. However, the test is com-
pletely specified by ¢, and ¢ does not depend on 6,. Thus, for any 6, > 0,,
the test has the highest power of any test at level a of 6 = 6, versus 6 = 0.
Such a test is called a uniformly most powerful (UMP) level « test of 6 = 0,
versus 6 > 0,.

We expect intuitively that the larger the separation between 6, and 0,,
the better the performance of the test in distinguishing between the two
possibilities. This may be verified by considering the power function Q,
defined by

0(0) = Eop
= the probability of rejecting H, when the true state of nature is 0

= Pyf{Ry + - + R, > c}

— 1 _ px (c —_n@)
nece

Thus Q(6) increases with 6.
- Now if Hy: 6 = 0y, Hy: 6 = 0,, where 0, < 6,, the same technique as

e
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above shows that a size « LRT is of the form
ey, ...,z)=1 if Y, <ec

k=1
=0 if D, >¢

k=1

= anything  if Dz, =¢
k=1
where
v = F* (c - nGO)
Jno
B=1 _F*(c— n01)
Jne
¢ =nb,+ /noN,_, ‘
Again, the test is UMP at level « for 6 = 6, versus 6 < 6,, with power

function
oy i€ — no

which increases as 6 decreases (see Figure 8.2.6).

The above discussion suggests that there can be no UMP level « test of
0 = 0, versus 6 # 6,. For any such test ¢ must have power function Q(6)
for 6 > 6,, and Q'(6) for 6 < 6,. But the power function of ¢ is given by

Ee(p:f f P@as e s &) fols - ) dy - - d,

where f; is the joint density of n independent normal random variables with
mean 6 and variance o2. It can be shown that this is differentiable for all 0
(the derivative can be taken under the integral sign). But a function that is
0(0) for 6 > 0, and Q'(0) for 6 < 6, cannot be differentiable at 6,.

Q(0)

! Q)

FIGURE 8.2.6 Power Functions.

e
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In fact, the test ¢ with power function Q(0) is UMP at level « for the
composite hypothesis Hy: 6 < 6, versus the composite alternative H,:
0 > 0,. Let us explain what this means.

@ is said to be at level « for H, versus H; iff E,p < « for all 6 < 6,; ¢
is UMP at level « if for any test ¢’ at level a for H, versus H; we have
E @' < Eqp for all 0 > 0,.

In the present case E,p = Q(0) < « for § < 6, by monotonicity of Q(6),
and E,p" < Eypp for 0 > 0,, since ¢ is UMP at level « for 6 = 6, versus
0 > 0,.

The underlying reason for the existence of uniformly most powerful tests
is the following. If 6 < 6, the likelihood ratio f,.(%)/f,(x) can be expressed
as a nondecreasing function of #(x) [where, in this case, #(%) = x, + -+ +
z,; see (8.2.5)]. Whenever this happens, the family of densities f is said to
have the monotone likelihood ratio (MLR) property.

Suppose that the f, have the MLR property. Consider the following test
of 6 = 0, versus 0 = 0,, 0, > 0.

o)y =1 if t(x) > ¢
=0 if t(x) < ¢
=a if t(x) = ¢

where P, {z: 1(z) > c} + aPy{z: t(x) = ¢} = o (notice that ¢ does not
depend on 6,). Let 4 be the value of the likelihood ratio when #(z) = c; then
L(z) > A implies #(x) > c; hence @(x) = 1. Also L(z) < A implies #(z) < c,
so that @(z) = 0. Thus ¢ is a LRT and hence is most powerful at level «.
We may make the following observations.

1. ¢ is UMP at level « for 6 = 0, versus 0 > 0,.

This is immediate from the Neyman-Pearson lemma and the fact that ¢
does not depend on the particular 6§ > 6,.

2. If 0; < 0,, @ is the most powerful test at level «; = E, ¢ for 6 = 6,
versus 0 = 0,.

Since ¢ is a LRT, the Neyman-Pearson lemma yields this result immedi-
ately.

3. If 6, < 0,, then E, ¢ < E, ¢; that is, ¢ has a monotone nondecreasing
power function. It follows, as in the earlier discussion, that ¢ is UMP at
level o for 6 < 0, versus 6 > 0,.

By property 2, ¢ is most powerful at level o, = E, ¢ for § = 0; versus
6 = 0,. But the test ¢'(x) = «, is also at level a,; hence E, ¢’ < E, ¢, that
is, 0 = Ey ¢ < Ey 9.

REMARK. Since the Neyman-Pearson lemma is symmetric in H, and H,, if
6, < 0, then for all tests ¢” with f(¢") < (@), wehave E, ¢ < E, ¢'.

e
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We might say that ¢ is uniformly least powerful for 6 < 6, among all
tests whose type 2 error is <f whenever 6 > 6,. <
PROBLEMS
1. Let Hy: fo(@) = e, & > 0; Hy:fy(x) =2¢72%, 2 > 0.
(a) Find the risk set and the admissible risk points.
(b) Find a most powerful test at level .05.
(c) Find a minimax test.
2. Show that the following families have the MLR property, and thus UMP

®

tests may be constructed as in the discussion of Example 3.

(@) py = the joint probability function of » independent random variables,
each Poisson with parameter 6.

(b) p, = the joint probability function of » independent random variables R;,
where R; is Bernoulli with parameter 0; that is, P{R; = 1} = 0, P{R; =
0} =1 —6, 0 <6 <1; notice that R, + - - - + R, has the binomial
distribution with parameters n and .

(c) Suppose that of N objects, 6 are defective. If n objects are drawn without
replacement, the probability that exactly = defective objects will be found
in the sample is

AOE=H

@
This is the hypergeometric probability function; see Problem 7, Section
1.5.

(d) fo = the joint density of n independent normally distributed random
variables with mean 0 and variance 6 > 0.

Po@) = x=0,1,...,0(0=0,1,...,N)

It is desired to test the null hypothesis that a die is unbiased versus the alter-

native that the die is loaded, with faces 1 and 2 having probability 1/4 and

faces 3, 4, 5, and 6 having probability /8.

(a) Sketch the set of admissible risk points.

(b) Find a most powerful test at level .1.

(c) Find a Bayes solution if the cost of a type 1 error is ¢;, the cost of a type
2 error is 2¢,, and the null hypothesis has probability 3/4.

. It is desired to test the null hypothesis that R is normal with mean 6, and

known variance o> versus the alternative that R is normal with mean 6, =
By + o and variance o®, on the basis of n independent observations of R.
Find the minimum value of # such that « < .05 and 8 < .03.

. Consider the problem of testing the null hypothesis that R is normal (0, 6,)

versus the alternative that R is normal (0, 6,), 6; > 6, (notice that in this case
a UMP test of 0 < 6, versus 0 > 6, exists; see Problem 2d). Describe a most

e
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powerful test at level « and indicate how to find the minimum number of
independent observations of R necessary to reduce the probability of a type 2
error below a given figure.

. Let R,, . .., R, be independent random variables, each uniformly distributed

between 0 and 6, 6 > 0. Show that the following test is UMP at level « for
Hy: 6 = 6, versus Hy: 6 # 6,.

o@y, ..., m) =1 if max z; < 6pet/®  orif max x; > 6,
1<i<n 1<i<n

=0  otherwise
Find the sketch the power function of the test.

. Consider the test of Problem 6 with Hy: 0 = 1; H,: 6 = 2. Find the risk set

and the set of admissible risk points.

. Let R, Ry, and R be independent, each Bernoulli with parameter 8, 0 <

6 < 1. Find the UMP test of size « = .1 of 6 < 1/4 versus 6 > 1/4, and find
the power function of the test.

. Show that every admissible test is a Bayes test for some choice of costs ¢

and ¢, and a priori probablllty p- Conversely, show that every Bayes test with
¢, >0,c, >0,0 <p <1is admissible. Give an example of an inadmissible
Bayes test with ¢; > 0, ¢, > 0.

If ¢ is most powerful at level o and f(¢) > 0, show that ¢ is actually of
size oy Give a counterexample to the assertion if B(e) =0.

Let @ be a most powerful test at level «. Show that for some constant 1 we
have () = 1 if > 4; p(x) = 0 if # < 4, except possibly for = in a set of
Lebesgue measure 0.

A class C of tests is said to be essentially complete iff for any test ¢, there is a
test @, € C such that ¢, is as good as ¢;. Show that the following classes are
essentially complete.

(a) The likelihood ratio tests.

(b) The admissible tests.

(c) The Bayes tests (i.e., considering all possible c;, c,, and p).

lee an example of tests ¢, and @, such that the statements ° <p1 is as good as
@y and “g, is as good as ¢,” are both false.

Let R;, Ry, . .. be independent random variables, each with density &,, and

let Hy: 6 = 6y, Hy: 6 = 6.

(a) If @, is a test based on r observations that minimizes the sum of the error
probabilities, show that ,(@) = 1 if g,(@) = T[%, lhe,(=)/he (=] > 1,
p(x) = 0if g,,(x) < 1. Thus

1
ay + P = Poo{x:gn(z) > l} +P01{x:m > l}
(b) Let t(x,) = [hel(xi)/hoo(w,.)]l/ 2, Show that

Pof: (@) > 1} < T Egt(R) = [y tR)T"
i=1

e
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(c) Show that E,,ot(Rl) < 1; hence o, — 0 asn — oo. A similar argument with
by and 6, interchanged shows that 8, —0 as n — o, so that if enough
observations are taken, both error probabilities can be made arbitrarily
small.

8.3 ESTIMATION

Consider the statistical decision model of Section 8.1. Suppose that y is a
real-valued function on the set NV of states of nature, and we wish to estimate
y(0). If we observe R = 2 we must produce a number () that we hope will
be close to y(0). Thus the action space 4 is the set of reals E*, and a decision
function may be specified by giving a (Borel measurable) function v from the
range of R to E'; such a y is called an estimate, and the above decision
problem is called a problem of point estimation of a real parameter.

Although the estimate ¢ appears intrinsically nonrandomized, it is possible
to introduce randomization without an essential change in the model. If
R, is the observable, we let R, be a random variable independent of R, and
6, with an arbitrary distribution function F. Formally, assume Py{R, € B;,
R, € B} = Py{R, € B;}P{R, € B,}, where P{R, € B,} is determined by the
distribution function F and is unaffected by 6. If R, = x and R, = y, we
estimate () by a number y(z, ). Thus we introduce randomization by
enlarging the observable.

There is no unique way of specifying a good estimate; we shall discuss
several classes of estimates that have desirable properties.

We first consider maximum likelihood estimates. Let f, be the density (or
probability) function corresponding to the state of nature 6, and assume for
simplicity that y(6) = 6. If R = x, the maximum likelihood estimate of 0 is
given by y(2) = § = the value of 0 that maximizes fo(®). Thus (at least in
the discrete case) the estimate is the state of nature that makes the particular
observation most likely. In many cases the maximum likelihood estimate is
easily computable.

» Example 1. Let R have the binomial distribution with parameters n and
0,0 <0 <1, so that py(x) = (M6°(1 — )=, 2 =0,1,...,n To find §

we may set
0
%ln}’o(”)=0
to obtain
TBZT 0 orf=C%
6 1-—26 n

Notice that R may be regarded as a sum of independent random variables

e
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Ry, ..., R,, where R, is 1 with probability 6 and 0 with probability 1 — 6.
In terms of the R; we have §(R) = (R, + - - - + R,)/n, which converges in
probability to E(R;) = 0 by the weak law of large numbers. Convergence in
probability of the maximum likelihood estimate to the true parameter can
be established under rather general conditions. <

» Example2. LetR,,..., R, beindependent, normally distributed random
variables with mean u and variance ¢%. Find the maximum likelihood esti-
mate of 6 = (u, 02). (Here 0 is a point in E? rather than a real number, but
the maximum likelihood estimate is defined as before.)

We have - .
_n 1 2
@) = roty "t exp [ 5 5 (o~ 1|
so that
In fo(%) = h2r—nlno— LZ(% — u)?
2 20% =1
Thus
0 12 n
a'u fo(x) 0'21’;1( i lu) 0'2( [U/)
where
.1
xr=- Z Z;
ni=1
and

L) = =2+ 53 o - w2 = (o 2 )
Setting the partial derivatives equal to zero, we obtain

6 = (2,5

where
12 —\2
= —Z(xl —_ :1:)“
ni=1

(A standard calculus argument shows that this is actually a maximum.) In
terms of the R;, we have

Ry, ..., R) = (R, V¥

where R is the sample mean (R, + - - - + R,)[n and V2 is the sample variance
(ifn) 37, (R; — R

If the problem is changed so that 6 = u (ie., ¢ is known), we obtain
6 = R as above. However, if 0 = o2, then we find § = (1/n) 2, (@ — e,
since the equation 0 In fy(%)/du = 0 is no longer present. <

e
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We now discuss Bayes estimates. For the sake of definiteness we consider
the absolutely continuous case. Assume N = E*, and let f, be the density of
R when the state of nature is 6. Assume that there is an a priori density g
for 0; that is, the probability that the state of nature will lie in the set B is
given by [z g(6) db. Finally, assume that we are given a (nonnegative) loss
function L(y(0), a), 0 € N, a € A; L(y(0), a) is the cost when our estimate of
y(0) turns out to be a. If p is an estimate, the over-all average cost associated
with p is

B(y) = f_ ) f " sOS@LGO), (=) df do

B(y) is called the Bayes risk of ¢, and an estimate that minimizes B(yp) is
called a Bayes estimate. If we write

— 0 — 00

B(y) = f : [ f ” 4(0) (@)L (6), () do] da 8.3.0)

it follows that in order to minimize B(yp) it is sufficient to minimize the ex-
pression in brackets for each «.

Often this is computationally feasible. In particular, let L(y(0), a) =
(y(8) — a)®. Thus we are trying to minimize

f 8O a70) — p()? o

This is of the form Ay*(x) — 2By(x) + C, which is a minimum when
w(x) = B/A; that is,

ng(e)fo(w))’(ﬁ) d

p(a) = ——
f £(6) fo(2) db

(8.3.2)

But the conditional density of 6 given R = z is g(0)f5(x)/f*,, g(0)f(2) db,
so that y(=) is simply the conditional expectation of y(f) given R = z.

To summarize: To find a Bayes estimate with quadratic loss function, set
y(x) = the conditional expectation of the parameter to be estimated, given
that the observable takes the value .

» Example 3. Let R have the binomial distribution with parameters » and
0,0 <6< 1, and let y(0) = 0. Take g as the beta density with parameters

r and s; that is,
67—1 1 — 6 s—1
g(0) = U=

, 0<6<L1,rs>0
B(r, s)

e
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where f(r, s) is the beta function (see Section 2 of Chapter 4). First we find a
Bayes estimate of 6 with quadratic loss function.

The discussion leading to (8.3.2) applies, with f,(x) replaced by p,(x) =
(M6*FQ — )™=, 2=0,1,...,n Thus '

1
f ( )0r—1+w+1(1 — 0)s—1+n—x a6
0

x

Lin
f ( )67‘—1+a:(1 — 0)s—1+n—z d@

0 \T

=/3(r+x+1,n—x'+s)
pr+x,n—x+5)
=l"(r+x+1)1"(n—x+s) I'(r + s + n)
'r+2)fn—o+s) I'r+s+n+1)
—_rt+z
r+s+4+n

y(z) =

Now, for a given 6, the average loss pw(B), using , may be computed as

follows.
R 2
0)=E L _ 0):‘
P9 "[(r+s+n

1

= mEe[(R —nf +r — rf — s0)?]

Since E,[(R — n6)?] = Var, R = nf(1l — 0) and E,R = nfl, we have

1 2
p(0) = m [n0(1 — 0) + (r — 10 — s6)%]
= m [((r + 5)® — 0B + (n — 2r(r + 5))0 + 7]

p, is called the risk function of v; notice that

Bp) = [ e(@)p, ) ds (8.33)

It is possible to choose r and s so that p,, will be constant for all 6. For this
to happen,

n=(r+ 52 =2r+59)

e
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which is satisfied if r = s = / n/2. We then have

z + /nf2 Jn o= 1/2
nt i 1+ yan 1ty

nf4 1 B(y)
(n + \/5)2 41 + /n ne
Thus in this case y is a Bayes estimate with constant risk ; we claim that Y
must be minimax, that is, 9 minimizes max, p,(0). For if 9" had a maximum
risk smaller than that of v, (8.3.3) shows that B(y') < B(y), contradicting
the fact that y is Bayes.
Notice that if 6(z) = z/n is the maximum likelihood estimate, then
v(@) = a,0(z) + b,, where a, — 1, b, — 0 as n — 0. «

Y(z) =

Pw(e) =

We have not yet discussed randomized estimates ; in fact, in a wide variety
of situations, including the case of quadratic loss functions, randomization
can be ignored. In order to justify this, we first consider a basic theorem
concerning convex functions.

A function ffrom the reals to the reals is said to be convex iff f[(1 — @)z +
ayl < (1 — a)f(z) + af (y) for all real z, y and all a € [0, 1]. A sufficient
condition for f to be convex is that it have a nonnegative second derivative
(“concave upward” is the phrase used in calculus books). The geometric
interpretation is that f'lies on or above any of its tangents.

Theorem 1 (Jensen’s Inequality). If R is a random variable, f is a convex
Junction, and E(R) is finite, then E [f(R)] > fIE(R)]. (For example, E[R?"] >
[ERP",n=12,....)

Proor. Consider a tangent to f at the point E(R) (see Figure 8.3.1); let
the equation of the tangent be y = az + b. Since f'is convex, f(z) > ax + b
for all z; hence f(R) > aR + b. Thus E[f(R)] > aE(R) + b = = f(E(R)).

f(x)

ax+b

S

FIGURE 8.3.1 Proof of Jensen’s Inequality.

E(R)

e
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We may now prove the theorem that allows us to ignore randomized
estimates.

Theorem 2 (Rao-Blackwell). Let R, be an observable, and let R, be
independent of R, and 0, as indicated in the discussion of randomized estimates
at the beginning of this section. Let v = (x, y) be any estimate of y(0) based
on observation of R, and R,. Assume that the loss function L(y(0), @) is a

convex function of a for each 0 (this includes the case of quadratic loss).
Define

p*(@) = Eglp(Ry, Ry) | Ry = 2]
= E[y(@, Ry)]
(Egp(Ry, Ry) is assumed finite.)
Let p,, be the risk function of v, defined by p,(0) = E [L(y(0), p(Ry, Ry))] =
the average loss, using v, when the state of nature is 0. Similarly, let p ,.(6) =

Eo[L(y(0), v*(RD)]. Then p,«(0) < p,(0) for all 6; hence the nonrandomized
estimate p* is at least as good as the randomized estimate .

PROOF. ’
L(y(0), Eo[p(Ry, Ro) | Ry = a]) < EG[L(y(0), p(Ry, Ry) | Ry = 2]

by the argument of Jensen’s inequality applied to conditional expectations.
Therefore

L(y(0), p*(Ry) < E,[L(y(0), w(Ry, R»)) I Ry]

Take expectations on both sides to obtain

pys(0) < Eg[L(y(0), p(Ry, Re))] = p,(6)

as desired.

PROBLEMS

1. Let Ry, ..., R, be independént random variables, all having the same density
hy; thus fo(z,, . . ., @) = [, Ae(x;). In each case find the maximum likelihood

estimate of 6.
(@) hy(x) = 60, 0<2<1,0>0

1
() @) =50, ©20,0>0

1
© hy@) =5, 0<2<0,0>0

e
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2. Let R have the Cauchy density with parameter 6; that is,

0
/@ = errme 00

Find the maximum likelihood estimate of .

3. Let R have the negative binomial distribution; that is, (see Problem 6, Section
6.4),

Po@) =P{R =z} = @DOrQ — 0, z=rr+1,...,0<60<1
Find the maximum likelihood estimate of 6.

4. Find the risk function in Example 3, using the maximum likelihood estimate
6 = z/n. .

S. In Example 3, find the Bayes estimate if 6 is uniformly distributed between 0
and 1.

6. In Example 3, change the loss function to L(6, @) = (6 — a)2/6(1 — 6), and let
6 be uniformly distributed between 0 and 1. Find the Bayes estimate and show
that it has constant risk and is therefore minimax.

7. Let R have the Poisson distribution with parameter 6 > 0. Find the Bayes
estimate y of 6 with quadratic loss function if the a priori density is g(6) = e~.

Compute the risk function and the Bayes risk using v, and compare with the
results using the maximum likelihood estimate.

8.4 SUFFICIENT STATISTICS

In many situations the statistician is concerned with reduction of data. For
example, if a sequence of observations results in numbers =, . . . , z,, it is
easier to store the single number z; + - - - + z, than to record the entire
set of observations. Under certain conditions no essential information is lost
in reducing the data; let us illustrate this by an example.

Let R,, ..., R, be independent, Bernoulli random variables with param-
eter 0; that is, P{R,=1} =0, P{R,=0}=1—0, 0<60<1. Let
T=1tR,...,R,) =R, + -+ R,, which has the binomial distribution
with parameters # and 6. We claim that P{R,==,...,R, =2, | T =y}
actually does not depend on 6. We compute, forz; =0or1,i=1,...,n,

PG{R].:\xl’""R’n:x’n’T:y}

PO{R].:xl""’Rn:x’an:y}:

Pe{T = y}
This is 0 unless y = z; + - - - + =,,, in which case we obtain
Py{R,==,...,R, = x,} _ bra-o— 1
PG{T = y} (n) 61 — 6)" (n)
Y )

e
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The significance of this result is that for the purpose of making a statistical
decision based on observation of Ry, ..., R,, we may ignore the individual
R; and base the decision entirely on R; + - - - + R,. To justify this, consider
two statisticians, 4 and B. Statistician 4 observes R, . . . , R, and then makes
his decision. Statistician B, on the other hand, is only given T = R; 4 - -+ +
R,. He then constructs random variables R, ..., R; as follows. If T =y,
let R},..., R, be chosen according to the conditional probability function
of Ry, ..., R, given T = y. Explicitly,

PRi==a,,...,R,=2,|T =y} =—

where z;,=0or 1l,i=1,...,n,  + -+ 2, = y. B then follows 4’s
decision procedure, using R;, . .., R.. Note that since the conditional prob-
ability function of R,,..., R, given T =y does not depend on the un-
known parameter 6, B’s procedure is sensible. Now if x; + -+ 4+ 2, =y,

PR =1x,,...,R,=2,} =P{R{=2,..., R, =2, T =y}

(o

y
= 6"(1 — O™
= PR, = z,...,R, = 2,}

Thus (R;, . . ., R))hasexactly the same probability function as (Ry, . . . , R,),
so that the procedures of 4 and B are equivalent. In other words, anything
A can do, B can do at least as well, even though B starts with less informa-
tion.

We now give the formal definitions. For simplicity, we restrict ourselves to
the discrete case. However, the definition of sufficiency in the absolutely
continuous case is the same, with probability functions replaced by densities.
Also, the basic factorization theorem, to be proved below, holds in the
absolutely continuous case (admittedly with a more difficult proof).

Let R be a discrete random variable (or random vector) whose probability
function under the state of nature 0 is p,. Let T be a statistic for R, that is,
a function of R that is also a random variable. T is said to be sufficient for
R (or for the family p,, 6 € N) iff the conditional probability function of R
given T does not depend on 0.

The definition is often unwieldy, and the following criterion for sufficiency
is useful.

e
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Theorem 1 (Factorization Theorem). Let T = t(R) be a statistic for R. T is
sufficient for R if and only if the probability function p, can be factored in the
Jorm py(@) = g(8, 1(x))h(2).

PrOOF. Assume a factorization of this form. Then

PR =o|T =y} =P =BT =)

Po{T = ?/}
This is O unless #(x) = y, in which case we obtain
PR =z} g0, (x)h()
P{T = y} t(Z) }g(ﬁ, 1(z))h(2)
z:t(2)=y

g(0, y)h(x)
> g6, »)h(x)

{z:t(z)=v}
_ k@
> k)

{z:t(2)=y}
Conversely, if T is sufficient, then
Po(®) = P{R = &} = Po{R =z, T = t(x)}
= Po{T = t(@V}P{R = 2| T = t(x)}
= g(0, t(x))h(x) by definition of sufficiency

which is free of 6

» Example 1. Let R,, ..., R, be independent, each Bernoulli with param-
eter 0. Show that R, + - - - + R, is sufficient for (R, ..., R,).

We have done this in the introductory discussion, using the definition of
sufficiency. Let us check the result using the factorization theorem. If
x=x+ - +2,2,=0,1,and t(x) =2, + - - - + 2, then

Pe(xlv e xn) — et(m)(l — e)n—t(m)
which is of the form specified in the factorization theorem [with A(z) = 1]. «
» Example 2. Let R,, ..., R, be independent, each Poisson with param-
eter 0. Again R; + -+ + R, is sufficient for (Ry,..., R,). (Notice that

Ry + - -+ + R, is Poisson with parameter nf.)
For

Po(®y, ..., 2,)=P{Ry=12y,..., R, =2,},%,...,2,=0,1,...

= ]:_! Po{R; = x;}

e~n96z1+ s tan

!yl

n

e
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The factorization theorem applies, with g(6, #(»)) = €0, h(x) =
! oz, @) =2, + -+ z,. <

» Example 3. Let R,,..., R, be independent, each normally distributed
with mean x4 and variance o%. Find a sufficient statistic for (R, ..., R,)
assuming

(a) u and o? both unknown; that is, 6 = (u, ¢?).

(b) 0% known; thatis, 0 = u

(¢) p known; thatis, 0 = o2
[Of course (R, . .., R,) is always sufficient for itself, but we hope to reduce
the data a bit more.] We compute

fo®) = @moty " exp [——z—la—g (@, — u)z]

8.4.1)
Let
1 E 1 z x, — :2)2
, ni=1 nis )
Since #; — = @; — u — (% — u), we have
1 n
=3 @ = =@ —p)’
Thus
f(,(:l:) = (277-0'2)_"/2 —1182/2:72 —n(i—n)2/202 (8 4 2)

By (8.4.2), if u and 62 are unknown, then [take k(z) = 1] (R, V?) is sufficient,
where R is the sample mean (1/n) 3", R, and V2 is the sample variance
(1/n) 27, (R; — R). If o? is known, then the term (2mo2)~"/2¢="s"/2s" can
be taken as A(z) in the factorization theorem; hence R is sufficient. If u
is known, then, by (8.4.1), > (R, — w)?is sufficient. <«

PROBLEMS

1. Let Ry, ..., R, be independent, each uniformly distributed on the interval
[6;, 05]. Find a sufficient statistic for (R, ..., R,), assuming
(a) 0;, 6, both unknown
(b) 6; known
(c) 0, known

2. Repeat Problem 1 if each R; has the gamma density with parameters 6, and 6,,
that is,

201 1g—2/0;

== 0
f(x) 1‘(01)0201 ’ z 2 0’ 1 02 >0

e
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3. Repeat Problem 1 if each R; has the beta density with parameters 6; and 0,,
that is,
@ 20171(1 — )01
X)) = ————,
4 50, 5)
4. Let R, and R, be independent, with R; normal (0, ¢%), R, normal (6, %), where
0% and 7% are known. Show that R,/6® + R,[7? is sufficient for (R;, Ry).
5. An exponential family of densities is a family of the form

0<2<1,0,6,>0

Jo(®) = a(0)b(x) exp[ i ci(B)ti(x)J R xzreal, e N
i=1

(a) Verify that the following density (or probability) functions can be put into
the above form.
(i) Binomial (, 6): p,(») = (H6*(1 — 6)"2, z=0,1,...,n,0<0<1

—6

(ii) Poisson (6): py(x) = T z=0,1,...,0>0
(iii) Normal (&, ¢%): fy(x) = Vo 6e—(¢—u)2/292, 0 = (u, 0®
™
201~1g—w/02

(iv) Gamma (6,, 0,): fo(x) = x> 0,0 =(0,,0,), 6,0, >0

T(6,)0,0 °
20171(1 — x)P21

(v) Beta (6;, 6,): fo(») = W ’

0<z<1,0=(6,0,),
0y, 0, > 0
(vi) Negative binomial (r, 6): p,(z) = (gj)()'(l — )=, z=r,r+1,...,
0 <6 <1, ra known positive integer
(b) If Ry, ..., R, are independent, each R; having the density fo of part (a),
find a sufficient statistic for (R, . .., R,).

6. Let T be sufficient for the family of densities fy, 6 € N. Consider the problem
of testing the null hypothesis that 6 € H, versus the alternative that 6 € H,.
Show that all possible risk points can be obtained from tests based on T [i.e.,
@(x) expressible as a function of #(z)].

8.5 UNBIASED ESTIMATES BASED ON A COMPLETE
SUFFICIENT STATISTIC ’

In this section we require our estimates v of y(0) to be unbiased; that is,
Egp(R) = y(0) for all 6 € N. Our objective is to show that in a wide class of
situations it is possible to construct unbiased estimates v that have uniformly
minimum risk ; that is, if ¢’ is any unbiased estimate of y(0), then py(0) <
p,(0) for all 6. We need a technical definition first. If T'is a statistic for R,

e
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T is said to be complete iff there are no unbiased estimates of O based on 7,
that is, iff whenever E g(T) = 0 for all 6 € N, we have P,{g(T) = 0} =1
for all 6 € N.

Theorem 1. Let T = t (R) be a complete sufficient statistic for R, and let
v be an unbiased estimate of y(0) based on T [i.e., w(x) can be expressed as a
Sunction of (z)]. Assume that the loss function L(y(6), a) is convex in a for
each fixed 0. Then v has uniformly minimum risk among all unbiased estimates

of y(9).

PrROOF. Let 3’ be any unbiased estimate of y(6), and define y"(x) =
E[y'(R) | T = t(z)]. (Since T is sufficient, v” does not depend on 0 and hence
is a legitimate estimate.) 9" is an unbiased estimate of y(6) based on 7, and
so is y, and therefore E,[p"(R) — w(R)] = 0 for all 0. But »”(R) and p(R)
can be expressed as functions of T'; hence, by completeness,

Pfy"(R) =yp(R)} =1 for all 6

It follows that p,.(6) = p,(6) for all 6. But the proof of the Rao-Blackwell
theorem, with R, replaced by T, = by #(x), (R, Ry) by %'(R), and p*(R,)
by 9"(R), shows that p,.(6) < p,(6) for all 6, as desired.

If L(y(0), @) = (y(0) — a)*, then p (6) = Ey[(y(0) — »(R))*] = Var, p(R).
Thus ¥ has the smallest variance of all unbiased estimates of y(0), regardless
of the state of nature. In this case y is said to be a uniformly minimum vari-
ance unbiased estimate (UMVUE).

» Example 1. LetR,,..., R, be independent, each Bernoulli with param-
eter 6, 0 <60 < 1. By Example 1, Section 84, T=R, +---+ R, is
sufficient for (R,, ..., R,); let us show that it is complete.

Now T is binomial with parameters » and 6; hence

Bg(T) = 309 )1 - o

(S ()l ot

If E,g(T) = 0 for all 6 € [0, 1], then 2,:;0 g(k)(7)z* = 0 for all z € [0, o0);
hence g(k) =0fork =0,1,...,n

We now look for unbiased estimates of ¢(0) based on T. If p(zy, . .. , 2,) =
gty ..., 2,), t(®@y, ..., 2,) =2, + -+ + x,, is such an estimate, the
above argument shows that Ejp(R;, ..., R,) = Eyg(T) is a polynomial in

e
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0 of degree <n. Thus y(6) must be of the form a, + a,60 + - - - + a,0%;
furthermore, an unbiased estimate of such an expression is easily found. If
T =T(T—-1)---(T—r+1),n"=m—1)-* - (n—r+1), then

E_T_"i _xkk=1)---(k—r+1 n!
[n‘”Zl TS =1 (m—r+ D)k (n — k)!

oK1 — o)+

ﬁ (K _(':)'_( ! o 67(1 — )y~ * = 676 + 1 — 0y

= 0"
Thus 37, a[T®[n®] is a UMVUE of y(0) = >, a,0%; in particular the
sample mean T/n is a UMVUE of 0. «

» Example2. LetR,,..., R, beindependent, each Poisson with parameter
6. By Example 2, Section 8.4, T = R; + - - - + R, is sufficient for (R, ...,
R,); T is also complete. For T is Poisson with parameter n6; hence

© - n no k
Eog(T) = 3 glkpe ™ &0
%=0 k!
If E,g(T) = 0 for all 6 > 0, then
i[sgﬁ")—"k]ok=o for all 6 > 0
=0l k!

Since this is a power series in 0, we must have g = 0.
If p(xy, . .., 2,) = g(t(xy, . . . , %)) is an unbiased estimate of y(0), then

$0) = Egp(Ra, - . ., R,) = Eog(T) = ¢S gl ("0)

k=0

Thus p(0) must be expressible as a power series in 6. If y(0) = e, a

then
© k
)/(0) eno z z (ne)
i=0 ~ x=0 k!
0 k i
=zgock0k where ¢, = Zo s
But

0 k
y(o)eno — z g(k)n ok
=0 k!

e



46628-0 Ash 2 4/14/08 8:31 AM Page$7l

8.5 UNBIASED ESTIMATES BASED ON COMPLETE SUFFICIENT STATISTIC

hence

g(k) =

& kla,
i—0i! n*
We conclude that

T la w©
T' —I=  isaUMVUEof  9(0) = 3 a,0"
=01. N k=0

For example, if y(0) = 0", r = 1,2,...,the UMVUE is

T 1 1 T(T) (

(T—r)'n n"

~I_ the sample mean when r = 1)
n

271

{In this particular case the above computation could have been avoided,
since we know that E (T") = (n6)" (Problem 8, Section 3.2). Since T/n" is

an unbiased estimate of 07 based on 7, it is a UMVUE.]

As another example, a UMVUE of 1/(1 —6) =3 0% 0<0< 1, is

T 1

o i! nT—

PROBLEMS

1. Find a UMVUE of ¢~ in Example 2.

2. Let Ry, ..., R, be independent, each uniformly distributed between 0 and

6 > 0. By Problem 1, Section 8.4, T = max R, is sufficient for (Rl, e

(a) Show that T is complete

R,).

(b) Find a UMVUE of y(6), assuming that y extends to a function with a
continuous derivative on [0, «), and 6%p(6) -0 as 6 — 0. [In part (a),
use without proof the fact that if 8 h(y) dy = Oforall 6 > 0, then h(y) = 0
except on a set of Lebesgue measure 0. Notice that if it is known that 4 is

continuous, then /2 = 0 by the fundamental theorem of calculus.]

3. Let Ry, ..., R, be independent, each normal with mean 6 and known variance

a2,
(a) Show that the sample mean R is a UMVUE of 6,
(b) Show that (R)2 — (¢?/n) is a UMVUE of 62.

[Use without proof the fact that if [*_ h(y)e® dy =0 for all 6 > 0, then

h(y) = 0 except on a set of Lebesgue measure 0.]

e
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4. Let R, ..., R, be independent, with P{R; =k} =1/N, k =1,..., N; take

10.

06=N,N=1,2,....
(a) Show that max, <i<n R is a complete sufficient statistic.
(b) Find a UMVUE of y(N).

. Let R have the negative binomial distribution:

PR=k} =CPprd—-pF", k=rr+1,...,0<p<1

7—1

Take 6 =1 — p, 0 < 6 < 1. Show that () has a UMVUE if and only if it is
expressible as a power series in 6; find the form of the UMVUE.

. Let

e 0 ok
p{RT_k}_——-—l_e_oE, k=1,2,...,06>0
(This is the conditional probability function of a Poisson random variable R,
given that R’ > 1.) R is clearly sufficient for itself, and is complete by an argu-
ment similar to that of Example 2.
(a) Find a UMVUE of ¢7°,
(b) Show that (assuming quadratic loss function) the estimate v found in
part (a) is inadmissible; that is, there is another estimate v’ such that
Py (0) < p,(0) for all 6, and py(6) < p,(0) for some 6. This shows that
unbiased estimates, while often easy to find, are not necessarily desirable.

. The following is another method for obtaining a UMVUE. Let R,,..., R,

be independent, each Bernoulli with parameter 6,0 < 6 < 1, asin Example 1.
Ifj=1,...,n, then

E[]i{R:l —PR = =R, =1} =

Thus RyR; - - - R; is an unbiased estimate of 67, But then y(k) = E[R, - - - R; |
71 R; =k} is an unbiased estimate of 67 based on the complete sufficient

statistic 37 | R;, so that y is a UMVUE. Compute y directly and show that the
result agrees with Example 1.

. Let R,,..., R, be independent, each Poisson with parameter 6 > 0. Show,

using the analysis in Problem 7, that

z k(k — 1
E(R1R2|2R,.=k) =(—n2——), k=0,1,...
i=1

. Let R;,..., R, be independent, each uniformly distributed between 0 and 6;

if T = max R;, then [(n + 1)/n]T is a UMVUE of 6 (see Problem 2). Compare
the risk function E,[((1 + 1/n)T — 6)?] using [(n + 1)/n]T with the risk
function Ey[((2/n) 3 | R; — 6)?] using the unbiased estimate (2/n) > R,
Let R,,...,R, be independent, each Bernoulli with parameter 6 € [0, 1].
Show that (assuming quadratic loss function) there is no best estimate of 6
based on R,, ..., R,; that is, there is no estimate u such that py(0) < pw,(())
for all 6 and all estimates v’ of 0,

e
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If Egy,(R) = Eo's"z(R)‘ = y(6) and y,, y, both minimize pp(0) = Egl(v(R) —
y(0)?], 0 fixed, show that Py{y;(R) = y,(R)} = 1. Consequently, if v, and y,
are UMVUEs of y(0), then, for each 6, ¢,(R) = y,(R) with probability 1.

Let f5, 6 € N = an open interval of reals, be a family of densities. Assume that
8fs(x)/a6 exists and is continuous everywhere, and that J® o fo(®) dx can be
differentiated under the integral sign with respect to 6.

(a) If R has density f; when the state of nature is 6, show that

)
E, [ﬁ In fe(R):| =0

(b) If Eyp(R) = y(6) and j‘fw y(@) f,(x) dx can be differentiated under the
integral sign with respect to 6, show that

d d
26 y(0) = E, [‘P(R) 20 lnfo(-R):l
(©) Under the assumptions of part (b), show that

[(d]db) y(O))*
[Eo(2 In fo(R)[06)°]

if the denominator is >0. In particular, if fy(®) = fy(x,,...,z,) =
»_, hy(z;), then

Var, ¢(R) >

0 2 0
E, (a_é In fe(R)) = Var, 3 In f4(R)
0
= nVar, 56 In ky(R;)

) ' 2
= nE, (a_e In ha(Ri))

where R = (Ry, ..., R,).
The above result is called the Cramer-Rao inequality (an analogous theorem
may be proved with densities replaced by probability functions). If v is an
estimate that satisfies the Cramer-Rao lower bound with equality for all 6,
then y is a UMVUE of y(). This idea may be used to give an alternative
proof that the sample mean is a UMVUE of the true mean in the Bernoulli,
Poisson, and normal cases (see Examples 1 and 2 and Problem 3 of this section).

If R, ..., R, are independent, each with mean x and variance o2, and V2
is the sample variance, show that V2 is a biased estimate of o?; specifically,

w=-1,

[

EWV? =

e
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8.6 SAMPLING FROM A NORMAL POPULATION

If R,,...,R, are independent, each normally distributed with mean u
and variance o2, we have seen that (R, V?), where R is the sample mean
(/m) (R, + -+ + R,) and V2= (1/n) D™ (R, — R)? is the sample vari-
ance, is a sufficient statistic for (Ry, ..., R,). R and V2 have some special
properties that are often useful. First, R is a sum of the independent normal
random variables R,/n, each of which has mean u/n and variance o?/n?;
hence R is normal with mean u and variance ¢*[n. We now prove that R and
V2 are independent.

Theorem 1. If Ry, ..., R, are independent, each normal (u,c?), the
associated sample mean and variance are independent random variables.

*PROOF. Define random variables Wy, ..., W, by

1
W1='1‘R1+"'+—

N NG

Wy = cRy + « - + ¢5,R,,

R,

W, = canl + 4 R,

where the ¢;; are chosen so as to make the transformation orthogonal.

[This may be accomplished by extending the vector (1 /\/ n...,1 /\/ ?-13 to an
orthonormal basis for E”.] The Jacobian J of the transformation is the

determinant of the orthogonal matrix 4 = [c;;] (with ¢;; = 1/\/;, j=
1,...,n), namely, +1. Thus (see Problem 12, Section 2.8) the density of
(Wy, ..., W,)is given by
f(xls~--axn)

|1

= (2mo®) " exp [— L,,_. i (; — ﬂ)z]
20

i=1

f*(yl"'~9y'n)=

where
Ly Y1

= A_l

Zn Yn
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Since D x2 =" y? by orthogonality, and Sr L =~/ny,

n 1 (3 -
f* Y5 Ya) = 2m0") " exp [— o (glyf — 2u/ny; + nﬂz)}
1 (i —nw* 1 Y
= ——2¢€X - —— € -_—
T [ 262 } I Nz R ( 20‘2)

It follows that W, . .., W, are independent, with W,, ..., W, each normal
(0, 0 and W; normal (\/ n u, o). But

nv Z(R —R2= 2R2—2R2R + n(R)?

= 3 R? — (R

=zVVi2__n/12
=1
=> W?

.
I
[

Since Vn R = Wy, it follows that R and V2 are independent, completing the
proof.

The above argument also gives us the distribution of the sample variance.

For
-4

where the W;/o are independent, each normal (0, 1). Thus nV?/o? has the
chi-square distribution with n — 1 degrees of freedom; that is, the density of
nV?/e? is
1 (n—3)/2 —x/2
x e %1%, x>0
2 DED((n — 1)2) =
(see Problem 3, Section 5.2). ~
Now since R is normal (u, o%/n), \/n (R — p)/o is normal (0, 1); hence

P{——b < i B=m - b} — F¥(b) — F¥(—b)
g

= 2F*(b) — 1

e
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where F* is the normal (0, 1) distribution function. If b is chosen so that
2F*(b) — 1 =1 — «, thatis, F*(b) = 1 — «/2 (b = N,, in the terminology
of Example 3, Section 8.2),

R—-mw
o

P{—Nalzs\/;l SNa/2}=1_OC

or

— oN — oN,
P|R — —¢22 <R+—i/2}=1—
{ FrSHSRTE «

Thus, with probability 1 — «, the true mean w lies in the random interval

I= [R‘ AT 9N~_’2}
Jn Jn
I'is called a confidence interval for p with confidence coefficient 1 — o.

The interval I is computable from the given observations of Ry, ..., R,,
provided that ¢* is known. If o® is unknown, it is natural to replace the true
variance o® by the sample variance V2 However, we then must know some-
thing about the random variable (R — u)/V. In order to provide the neces-
sary information, we do the following computation.

Let R, be normal (0, 1), and let R, have the chi square distribution with m
degrees of freedom; assume that R, and R, are independent. We compute

the density of Jm Rl/\/ E, as follows.

Let

w = Y
VR,

W2 = Rg

so that

R, = WI‘LW2
Jm

R2 = W2

Thus we have a transformation of the form

£

Y1, ¥2) = g(2y, ) = (

with inverse given by

(@1, @) = (Y, ya) = (% , y)

J

g is defined on {(z,, ,) € E?: , > 0} and 4 on {(v,, ¥,) € E2: y, > O}.

e
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By Problem 12, Section 2.8, the density of (Wy, W) is given by
1o ¥2) = fro(h(ys, 92)) (%1, 92, 92> 0

where
oz, 0% \_/1/3 Y1
0y, 0y \/ m 2\/ my, s
Ju(y1, ¥o) = = = [J2
Ozy Omy 0 1 "
0y, 0y,
Thus -
i 1 _ 2 1 /o — .
fi(y, ¥e) = E eVt uz/zm;m/TT__(m/z) oyl /21— va/2 \/%2

Therefore the density of W, is

F) = f F 10 v2) dys
But °
_ F((m 4 1)/2)2(m+1)/2
(g my

©
1 2
J; y(2m+1)/2 le (1+yy /m)yz/2d N

Hence
I((m 4+ 1)/2) 1
Jmm D(m[2) (1 + g fm) 072

Sw(yy) =

n

A random variable with this density is said to have the ¢ distribution with m

degrees of freedom.

An application of Stirling’s formula shows that the ¢ density approaches

the normal (0, 1) density as m — oo.

Now we know that v'n (R — w)]o is normal (0, 1), and nV?/¢* has the

chi-square distribution with n — 1 degrees of freedom. Thus

= 1nR=plo _ g (R=p) _ R—u

JnV/e |4

has the ¢ distribution with n — 1 degrees of freedom.

[caimn = 19 3 &, - R)2]1/2

If ¢, ,, is such that jf; o Bm(2) dt = B, where h,, is the ¢ density with m

degrees of freedom, then

P{_ta/2m—1 <\n— 1{5_;_!‘) < ta/2,n—1} =1—a
Thus

[R . Vta/Z,n—l’ R + Vta/Z,n—l]
Jn—1 Jn—=1

is a confidence interval for u with confidence coefficient 1 — o.

e
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PROBLEMS

1.

Let R, and R, be independent, chi-square random variables with m and n
degrees of freedom, respectively. Show that (R,/m)[(Ro/n) has density
(m/n)m/z p(m/2)—1
fm’n(x) = (m+n)/2
B(m[2, n[2) (1 + mx[n)
(Ry/m)[(Rg/n) is said to have the F distribution with m and n degrees of freedom,
abbreviated F(m, n).

z>0

. Calculate the mean and variance of the chi-square, ¢, and F distributions.
. (@) If T has the 7 distribution with n degrees of freedom, show that T2 has the

F(1, n) distribution.
(b) If R has the F(m, n) distribution, show that 1/R has the F(n, m) distribution.
(©) If R, is chi-square (m) and R, is chi-square (n), show that R, + R, is chi-
square (m + n).

- Discuss the problem of obtaining confidence intervals for the variance ¢® of a

normally distributed random variable, assuming that
(a) The mean x is known
(b) u is unknown

. (A two-sample problem) Let R;, Rys, ..., Ryn,> Rops Ry, . . . 5 Ryy, be inde-

pendent, with the R; normal (;, 0%) and the R,; normal (i, 62) (4, 4y and o2
unknown). Thus we are taking independent samples from two different normal
populations. Show that if R;and V2, i = 1, 2, are the sample mean and variance
of the two samples, and
ny + ny 12
k= (nV.2 V,2)L/2 1
(nVa" b Lmne(ny + ny — 2)
then [R, — R, — kt,,,, nptny—2 Ry — Ry + kt, /2,n4n,—2] 18 @ confidence interval
for u, — u, with confidence coefficient 1 — «.

. In Problem 5, assume that the samples have different variances 0,2 and 6,2

Discuss the problem of obtaining confidence intervals for the ratio 02052,

. (a) Suppose that C(R) is a confidence set for y(6) with confidence coefficient

>1 — «; that is,
Py ECR} >1 —« forall 6e N

Consider the hypothesis-testing problem

Hy: v(0) =k

Hy: () = k
and the following test.

pp(®) =1 if k¢ Cz)

=0 if ke C(x)

[Thus C(x) is the acceptance region of ¢,.] Show that ¢, is a test at level .

e



46628-0 Ash 2 4/14/08 8:31 AM Page$79

8.7 THE MULTIDIMENSIONAL GAUSSIAN DISTRIBUTION 279

(b) Suppose that for all k in the range of y there is a nonrandomized test @y
fi.e., g (&) = Oor 1 for all #] at level « for Hy: y(6) = k versus Hy: y(0) # k.
Let C(%) be the set {k: g;(z) = 0}. Show that C(R) is a confidence set for
y(60) with confidence coefficient >1 — «.

This result allows the confidence interval examples in this section to be translated

into the language of hypothesis testing.

*8.7 THE MULTIDIMENSIONAL GAUSSIAN DISTRIBUTION

IfR,, ..., R, areindependent, normally distributed random variables and we
define random variables Ry, ..., R, by R, = >7_ a,R;+ b;,i=1,...,n,
the R, have a distribution of considerable importance in many aspects of
probability and statistics. In this section we examine the properties of this
distribution and make an application to the problem of prediction.

Let R=(R,,...,R,) be a random vector. The characteristic function
of R (or the joint characteristic function of Ry, ..., R,) is defined by

M(uy, . .., u,) = E[i(u,Ry + -+ + u,R,)], Uy, ..., U, real

=J f exp (izukxk)dF(xl,...,mn)
— o —o0 k=1

where F is the distribution function of R. It will be convenient to use a vector-
matrix notation. If u = (uy, . . . , u,) € E", u will denote the column vector

with components uy, . . . , u,. Similarly we write x for col (z;, . .. ,%,) and
R for col (R, ..., R,). A superscript ¢ will indicate the transpose of a
matrix.

Just as in one dimension, it can be shown that the characteristic function
determines the distribution function uniquely.

DEerFINITION.  The random vector R = (R, . . ., R,) is said to be Gaussian
(or Ry, ..., R, are said to be jointly Gaussian) iff the characteristic
function of R is

M(uy, . . ., u,) = exp [iu’b] exp [—3u'Ku]

A n 1 n

= exp [lzu,b, -= > u,K,sus} (8.7.1)
r=1 2 r,s=1

where by, . . . , b, are arbitrary real numbers and K is an arbitrary real

symmetric nonnegative definite » by n matrix. (Nonnegative definite

means that 3* _ a K, a, is real and >0 for all real numbers 4y, . . . ,

a,.)

e
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We must show that there is a random vector with this characteristic
function. We shall do this in the proof of the next theorem.

Theorem 1. Let R be a random n-vector. R is Gaussian iff R can be
expressed as WR' + b, where b = (b, ... ,b,) € E*, W is an n by n matrix,

and Ry, . . . , R, are independent normal random variables with 0 mean.
The matrix K of (8.7.1) is given by WDW?, where D = diag (A, ..., 1,)
is a diagonal matrix with entries 4; = Var R}, j=1,...,n. (To avoid

having to treat the case 1; = 0 separately, we agree that normal with expecta-
tion m and variance 0 will mean degenerate at m.)
Furthermore, the matrix W can be taken as orthogonal.

Proor. If R = WR' + b, then

Elexp (in'R)] = exp [iwb] E[exp (iu'WR')]
But

Efexp (iv'R')] = E[ H exp (ika,;)]

n . , 12
= ]__[ E[exp (“)kRk)] = CeXp [:'— - Zﬂlcvlfjl
=1 2 k=1

exp [—1viDv]
Set v = W' to obtain
Elexp (iwtR)] = exp [ib — lutKu]

where K = WDW?. K is clearly symmetric, and is also nonnegative definite,
since u'’kKu = v:Dv = "  Awp? > 0, where v = Wtu. Thus R is Gaussian.
(Notice also that if K is symmetric and nonnegative definite, there is an
orthogonal matrix W such that W!KW = D, where D is the diagonal matrix
of eigenvalues of K. Thus K = WDW?, so that it is always possible to con-
struct a Gaussian random vector corresponding to a prescribed K and b.)

Conversely, let R have characteristic function exp [iu’b — (1/2)(u‘Ku)],
where K is symmetric and nonnegative definite. Let W be an orthogonal
matrix such that WKW = D = diag (4, ..., 4,), where the 4; are the
eigenvalues of K. Let R" = W{R — b). Then

Elexp (iu‘R")] = exp (—iu'W'b)E[exp (iu'W'R)]

=exp [—4viKv] where v = Wu

= exp [—}u’Du] = exp [— 1 > lku,f]
2r=1

e
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It follows that R;, ..., R, are independent, with R; normal (0, 4,). Since
W is orthogonal, Wt= W-; hence R = WR’ + b.

The matrix K has probabilistic signiﬁéance, as follows.

Theorem 2. In T hebrem 1 we have E(R) = b, that is, E(R;)) = b;, j =
1,...,n,and K is the covariancematrix of the R;, that is, K,; = Cov(R,, R),r,
s=1,...,n

PrOOF. Since the R; have finite second moments, so do the R;. E(R) =b
follows immediately by linearity of the expectation. Now the covariance
matrix of the R; is

[Cov (R,, R)] = [E((R, — b)(R, — b,))] = E[(R — b)(R — b)]

where E(A) for a matrix 4 means the matrix [E(4,,)]. Thus the covariance
matrix is
E[WR' (WR)] = WER'R'YW!= WDW!'=K

since D is the covariance matrix of the R}

The representation of Theorem 1 yields many useful properties of Gaussian
vectors.

Theorem 3. Let R be Gaussian with representation R = WR' + b, W
orthogonal, as in Theorem 1.

1. If K is nonsingular, then the random variables R} = R; — b; are linearly
independent; that is, if 2"_, a;RF = 0 with probability 1, then all a; = 0.
In this case R has a density given by

f(@) = 2m)™"/*(det K)7*/% exp [—}(x — b)'’K~(x — b)]

2. If K is singular, the R are linearly dependent. If, say, {RY, ..., R}}
is a maximal linearly independent subset of {R}, . .., R%}, then (Ry, ..., R)
has a density of the above form, with K replaced by K_= the first r rows and
columns of K. R¥ ., ..., R* can be expressed (with probability 1) as linear
combinations of R}, ..., R¥.

PRrOOF.
1. If K is nonsingular, all 4; are > 0; hence R’ has density
/ /20 _1/2 13y
@) =Q@my "y Ay Fexp | — = 3 7%
251 Ay

= (2m) "*(det K)*exp [-3y'D Y]

e
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The Jacobian of the transformation x = Wy + b is det W = +1; hence R
has density

J&®) =f"(W'(x — b))
= (2m)~"/2 (det K) 2 exp [—3(x — b))WD1Wi(x — b)]
Since K = WDW?, we have K = WD 'W*, which yields the desired ex-

pression for the density.
Now if > | a;,R* = 0 with probability 1,

n 2 n
0=E[|3ars| | = 3 aBRRDa,
j=1 » r,s=1
n
= 2 arKrsas
r,s=1

Since K is nonsingular, it is positive rather than merely nonnegative definite,
and thus all @, = 0. ,

2. If K is singular, then X", a,K,.a, will be 0 for some ai, . .. , a,, not
all 0. (This follows since w’Ku = >7_, 4,2 where v = W'a;if K is singular,
then some 4, is 0.) But by the analysis of case 1, E[|>"_, a;R¥|?] = 0; hence

¥, a;R¥ =0 with probability 1, proving linear dependence. The re-
maining statements of 2 follow from 1.

REMARK. The result that K is singular iff the R} are linearly dependent is
true for arbitrary random variables with finite second moments, as
the above argument shows.

» Example 1. Let (R, R,) be Gaussian. Then

2
01" Opp
K =
O 0

where 0,2 = Var R;, 0,2 = Var R,, 075 = Cov (R, R;). Also, det K =
0,20,2(1 — p,?), where p;, is the correlation coefficient between R; and R,.
Thus X is singular iff |p;5| = 1. In the nonsingular case we have

0y —0ys
K= = (0y%05%(1 — p?)) ™
— 0y 0y?
and the density is given by
1
2moy0y(1 — P122)1/2
o’(x — a)® — 20,4(x — a)(y — b) + o,°(y — b)z}
20,%0,°(1 — P122)

f(z,y) =

X exp [—

e
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where a = E(R,), b = E(R,). The characteristic function of (R, R,) is
M(uy, u) = exp [i(aw; + buy)lexp [—% (02242 + 200uu, + 0%u%)]
Notice that if » = 1, the multidimensional Gaussian distribution reduces to
the ordinary Gaussian distribution. For in this case we have

KE=1[c%, Mu)=e e, f(z)= N zi o (amY2at
T 0

where m = E(R). € -

Theorem 4. If R, is a Gaussian n-vector and Ry = AR,, where A is an m
by n matrix, then R, is a Gaussian m-vector.

ProOOF. Let R, = WR' + b as in Theorem 1. Then R, = AWR' + 4b,
and hence R, is Gaussian by Theorem 1. '

COROLLARY.

(@) If Ry, ..., R, are jointly Gaussian, so are Ry,..., R, m < n.

(b) If Ry, ..., R, are jointly Gaussian, then a;R; + -+ a,R, is a
Gaussian random variable.

Proor. For (a) take 4 = [I 0], where I is an m by m identity matrix.
For (b) take 4 = [aya, . .. a,].

Thus we see that if Ry, ..., R, are jointly Gaussian, then the R, are
(individually) Gaussian. The converse is not true, however. It is possible to
find Gaussian random variables R,;, R, such that (R, R,) is not Gaussian,
and in addition R, + R, is not Gaussian.

For example, let R, be normal (0, 1) and define R, as follows. Let Ry
be independent of Ry, with P{R; = 0} = P{R; = 1} = 1/2. If R; =0, let
R, = R,; if Ry = 1, let R, = —R;. Then P{R, <y} = (1/2)P{R, < y} +
(1/2) P{—R, < y} = P{R, < y}, so that R, is normal (0, 1). But if R; = 0,
then R, + R, =2R,, and if R;=1, then R, + R, = 0. Therefore
P{R, + R, = 0} = 1/2; hence R, + R, is not Gaussian. By corollary (b)
to Theorem 4, (R;, R,) is not Gaussian.

Notice that if Ry, ..., R, are independent and each R, is Gaussian, then
the R, are jointly Gaussian (with K = the diagonal matrix of variances of the
R)).

Theorem 5. If Ry, ..., R, are jointly Gaussian and uncorrelated, that is,
if K;; = 0 for i # j, they are independent.

e
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Proor. Let 0, = Var R;. We may assume all ¢, > 0; if 0,2 = 0, then
R; is constant w1th probablhty 1 and may be deleted Now K = diag
(04% ..., 0,%); hence K~ = diag (1/o?, . . ., 1/5,?), and so, by Theorem 3,
Ry, ..., R, have a joint density given by

ﬂ%nqm=Qﬁm@~WJ%m[ Iy 9]

;»—1

Thus R, ..., R, are independent, with R; normal (b;, ¢;?).

We now consider the following prediction problem. Let Ry, ..., R, be
jointly Gaussian. We observe R, = 2, ..., R, = z, and then try to predict
the value of R,,;. If the predicted value is (z,, ..., z,) and the actual
value is z,,, we assume a quadratic loss (z,,; — p(2y, . . . , 2,))% In other
words, we are trying to minimize the mean square difference between the
true value and the predicted value of R,,,,. This is simply a problem of Bayes
estimation with quadratic loss function, as considered in Section 8.3; in
this case R, plays the role of the state of nature and (R, ..., R,) the
observable. It follows that the best estimate is

'l)u(xla"',xn)=E(Rn+1|R1=x19"‘,Rn=xn)

We now show that in the jointly Gaussian case y is a linear function of
%y, ..., %, Thus the optimum predictor assumes a particularly simple
form. )

Say{R,, ..., R,}isa maximal linearly independent subset of {R;, . . . , R,}.
If Ry,...,R,, R, are linearly dependent, there is nothing to prove; if
R,, ..., R,, R, are linearly independent, we may replace Ry, ..., R, by
Ry, ..., R, in the problem. Thus we may as well assume Ry, ..., R,
linearly independent. Then (R,, ..., R,.;) has a density, and the con-
ditional density of R, ,; given R, = z,,..., R, = %, is

f(xla R xn-e—l)
f f@ys s Ty da,

h(z, | Ti50 0y

n+1
Qry et K) P exp |~ 5 S g

r,s=1

1 n+1
exp [_ 5 Z xrqrsxs} dxn+1

r,s=1

(277)_("“”2(det K)—l/Zf

—00

where K is the covariance matrix of Ry,..., R, ., and Q = [g,] = K.

e
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Thus

M2y | %0 oo, @) = ————
@i | 21 2 B(z, . .., x,)

1 n n
X exp [_ 5( Z Tpdys%s + wn+1214n+1.sxs
=

r,s=1

n
2
+ xn+lz xrqr,n—i—l + qn+1,n+1xn+1)]
r=1

A®y, - %)

= exp [-(CzZ,, + D=,
Bz, ..., ) p[—(Cxrpy ]

where
n

C = %qn-f-l,n—}-l’ D = D(xla LR ) xn) = an+1,rxr
r=1

Therefore the conditional density can be expressed as

A D? D\?
jaliy —_ __.C - —_—
BP [4C] P [ (m s 26)]

285

Thus, given R, = ,, ..., R, = ,, R, is normal with mean —D/2C and

variance 1/2C = 1/q, ;1 ».1- Hence

E(Rn+1IR1=x15'-'sRn=xn)=_

1 n
z qn+1.rxr

qn+1.n+17=1
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Common Density Functions and Their Properties

Type Density Parameters
. 1
Uniform on [a, b] 5= a<xz<b a,breal,a <b
Normal v e (@—p)%20° ureal, o >0
wo
xa—le—m/ﬁ
Gamma W, xZO “,ﬁ>0
mr—l(l — Z‘)s——l
Beta e 0<Lz<L1 r,s >0
B(r, s)
Exponential e, z>0 A>0
(= gamma with
a=1,p=1/[%
Chi-square 1 .
. pn/2)-1,a/ -
(= gamma with | 20727 (n2) anfilem, 220 n=1,2,
o =nf2,8 =2)
) T + 1)[2] 1 _ 1
Viiw T(n/2) a +x2/n)(n+1)/2 n=1,az,
P (m/n)"”z (m/2)—1 0
: Bom]2, 712) (L + Grjmmyiora» © 20 | mn=1,2,...
Cauch 6 6>0
auchy @B >
286
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Common Density Functions (continued)

Generalized Characteristic
Function (If Easily-

Type Mean Variance Computable)

Uniform on a+b b — a)? 1 eS¢ —¢g % 1

[a, b] 2 12 b—a s » @58
Normal u o e—sees*2 gl
Gamma of ap? ll—ﬁ Y Res> —1/p

s +1/8)°

Bet r rs

cta r+s r+ 5% +s+1)
E tial ! ! A R A

Xxponentia . 2 7 m s es > —
Chi-square n 2n 2s + 1)™/2,

Res > —1/2
. n
t 0if n > 1; does ifn >2;
n—2
not exist if n = 1 wifn=2
n 2n2(m + n — 2)
f . — f
F n—21n>2’ m(n—2)2(n——4)l
wifn =1 n>4;, oifn=3
or2 or 4

Cauchy Does not exist Does not exist el s = ju, ureal

Common Probability Functions and Their Properties

Type Probability p(k) Parameters
1

Discrete uniform N’ k=12, , N N =1,2,.

Bernoulli ﬁ(l); :{; 0<p<Ll,g=1-p

Binomial ®p*q™*, k=0,1, ,n|0<p<l,g=1-p,
n=1,2,

Poisson e A2k, k=0,1,... A>0

Geometric ¢p, k=12,... 0<p<lg=1-p

Negative binomial | ¢-Dprg*~" = ;7 )p"(—¢)* ", [0 <p <1l,g=1 —p,

k=rr+1,... r=12,...

e
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Common Probability Functions (continued)

Generalized Characteristic
Type Mean Variance Function
. . N +1 N2 —1 e 31 — %)
Discrete uniform —2—— T —]V—(l——_?;s— . all s
Bernoulli P pad —p) q +pe®, alls
Binomial np np(l — p) q +per, alls
Poisson A A exp [A(e™ — 1], all s
. 1 1 —p pe’ —S
Geometric ;) 7 [ —ge’ lge—] <1
1—p)* —s \r
Negative binomial L CE——2—P) (L_s) , lges| <1
P P 1 —ge

Selected Values of the Standard Normal Distribution Function
F@) = Qa)y V2 [* e *2dt,  F(—x) =1 — F(@)

v F@ z  F@ »  F@ ©  F@)
.0 .500 9 .816 1.64 950 2.33 .990
.1 .540 1.0 .841 1.7 955 2.4 992
2 579 1.1 .864 1.8 .964 2.5 994
3 618 1.2 .885 1.9 971 2.6 995
4 .655 1.28 .900 1.96 975 2.7 996
S .691 1.3 .903 2.0 977 2.8 997
.6 726 1.4 919 2.1 982 2.9 .998
i 758 1.5 933 2.2 .986 3.0 .999
.8 .788 1.6 945 2.3 .989
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A Brief Bibliography

An excellent source of examples and applications of basic probability
is the classic work of W. Feller, Introduction to Probability Theory and Its
Applications (John Wiley, Vol. 1, 1950; Vol. 2, 1966). Another good source
is Modern Probability Theory by E. Parzen (John Wiley, 1960).

Many properties of Markov chains and other stochastic processes are
given in 4 First Course in Stochastic Processes by S. Karlin (Academic Press,
1966). A. Papoulis’ Probability, Random Variables, and Stochastic Processes
(McGraw-Hill, 1967) is a treatment of stochastic processes that is directed
toward engineers. ’

A comprehensive treatment of basic statistics is given in Introduction to
Mathematical Statistics by R. Hogg and A. Craig (Macmillan, 1965). A
more advanced work emphasizing the decision-theory point of view is
Mathematical Statistics, A Decision Theoretic Approach by T. Ferguson
(Academic Press, 1967).

The student who wishes to take more advanced work in probability will
need a course in measure theory. H. Royden’s Real Analysis (Macmillan,
1963) is a popular text for such a course. For those with a measure theory
background, J. Lamperti’s Probability (W. A. Benjamin, 1966) gives the
flavor of modern probability theory in a relatively light and informal way.
A more systematic account is given in Probability by L. Breiman (Addison-
Wesley, 1968).
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Solutions to Problems

CHAPTER 1

Section 1.2

LANBNC={4;,4Av(BNC)={0,1,2,3,4,5,7},
AuB)NC={0,1,3,57},ANBN[AVC)] =g
3. W = registered Whigs
F = those who approve of Fillmore
E = those who favor the electoral college

z +y +2+100 = 550
z +y +25 =325

Thus z + 100 — 25 = 550 — 325 = 225,502 = 150

()
(TN

E (550

PrOBLEM 1.2.3
290

e
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5..If a<z <b then « <b —1/n for some n, hence ze U2,@b — 1/n].
Conversely, if e (J2 , (¢, b — 1/n], thena <z < b — 1/n for some n, hence

z € (a, b). The other arguments are similar.

9. z€ 4 N (U; By iff € A and = € B, for at least one i
iff € A NB; for at least one i
iffee J; (4 N B).

Section 1.3

1. (@) Let 4 = Q, and let # consist of &, Q, 4 and A4°.

(b) Let 4;, A4y, . .. be disjoint sets whose union is Q. Let & consist of all finite
or countable unions of the 4, (including & and Q).

Section 1.4
1. 432

2. (a) The sequence of face values may be chosen in 9 ways (the high card may be
anything from an ace to a six); the suit of each card in the straight may be
chosen in 4 ways. Thus the probability of a straight is 9(4%)/ 2.

(b) Select the face value to appear three times (13 choices); select the two other
face values [(1?) choices]. Select three suits out of four for the face value
appearing three times, and select one suit for each of the two odd cards.
Thus p = 13(3)(H16)/(32). '

(©) Select two face values for the pairs [(13) possibilities]; then choose two
suits out of four for each of the pairs. Finally, choose the odd card from

the 44 cards that remain when the two face values are removed from the
deck. Thus p = ()(H (B 44)/(32).

3. 149/432

4. (a) (52)@8) - - - (20)(16)/5210
(b) [4C$)39 + 4GPV EGH)

5. We must have exactly one number > 8 (2 ¢hoices) and exactly 3 numbers < 8
[() possibilities]. Thus p = 29/ C9).

- (m + 1)/ (miw)

1= @I

- 2O - QOEDIE

. Let 4, be the event that the ticket numbered 7 appears at the ith drawing. The
probability of at least one matchis P(4; U - - - U 4,). Now P(4,) = ( — 1)!/
n! = 1/n (the first ticket must have number 1, the second may be any one of
n — 1 remaining possibilities, the third one of n — 2, etc.) By symmetry,
P(4;) = 1/n for all i Similarly, P(4; N A4) = (n —2)![n! = 1/n(n — 1),
i<j, PA; 0N A; N A) =@~ n! =1nn — D@ —2), i <j<k, etc.
By the expansion formula (1.4.5) for the probability of a union, P(4; U - -+ U

© oo N O

e
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292 SOLUTIONS TO PROBLEMS
Ay) = n([n) — @@ —2)!n! + @@ — 3)n! — - + (=D)L (H)0Yn! =
1 —1/20 +1/30 — -+ + (=) YYnl.

11. (365),/365" ’

12. The number of arrangements with occupancy numbers r; = r, =4, ry =r, =
rs = 2,rg = 0,is (H(DEG)(3) = 14!/4! 41212121 0!. We must select 2 boxes
out of 6 to receive 4 balls, then 3 boxes of the remaining 4 to receive 2; the
remaining box receives 0. This can be done in (§)($)}) = 6!/2!3! 1! ways.
Thus the total number is 14! 6!/(41)2(21)*3!.

Section 1.5
4. (a) This is a multinomial problem. The probability is

30! 50 \10 (30 10 /90 \10
1or10! 10! \100) \100) \100

(b) This is a binomial problem. The probability is

30\ (30 \'2 /70 \®
12)\100/ \100
5. The probability that there will be exactly 3 ones and no two (and 3 from {3, 4,
5, 6}) is, by the multinomial formula, (6!/3! 0! 31)(3)*(3)°(3)®. The probability of

exactly 4 ones and 1 two is (6!/4! 1! 1)($)*()* (). The sum of these expressions
is the desired probability.

Section 1.6
s
1. (7p4q6 + 6p5q5 + 5p6q4) z (1’?)qulo—k
r=4
) 1—g" —mpg" ™ — %"

1 —qgn

3. We have the following tree diagram:

n heads

Less than n heads

n heads

Less than n heads

PROBLEM 1.6.3

e
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The desired probability is

P{unbiased coin used and » heads obtained}
P{n heads obtained}

B (1/2)n+
CaARM + a2pn

4. Let A = {heads}. By the theorem of total probability,

PU) = 3 P = mP4| T =n) = 3 (1/2ye
n=1

n=1
= (1/2e7/(1 — fe™)

Remark. To formalize this problem, we may take Q = all pairs (n,1), n =1,
2,...,i=0,1 [where (n, 1) indicates that I = n and the coin comes up
heads, and (#, 0) indicates that J/ = » and the coin comes up tails].

We assign p(n,i) = (1/2)%e™ if i =1, and (1/2*(1 —e™) if i =0.
Alternatively, a tree diagram can be constructed; a typical path is indicated
in the diagram.

PrROBLEM 1.6.4

5. @) ©E/E = .36
®) [OGY + OEIED =2)3ED/(3) = .48
(©) 2()(EY/EY = .15
(d) 239/ = .01

7. By the theorem of total probability, if X,, is the result of the toss at ¢ = n, then
(see diagram)

Yni1 = P{Xny = H} = P{X,, = H}P{X,,;, = H|Xn = H}
+ P{X, = T{P{X,y = H| X, =T} =y,(1/2) + (I — y)B/4)

Thus ¥,y + (1/4)y, = 3/4. The solution to the homogeneous equation ¥, ., +
1/4)y, = 0is y,, = A(—1/4)". Since the “forcing function” 3/4 is constant, we
assume as a “‘particular solution” y,, = ¢. Then (5¢)/4 = 3/4, or ¢ = 3/5. Thus

the general solution is y,, = A(—1/4)* + 3/5. Since ¥, is given as 1/2, we have
A =1/2 —3/5 = —1/10. Thus y,, = 3/5 — 1/10(—1/4)".

e
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294 SOLUTIONS TO PROBLEMS

Nl

In Y+l

1=y, > 1= Y41

Iy
PRrROBLEM 1.6.7

9. We have (see diagram) P(D | R) P(D N R)/P(R) = .2(.9)(.25)[.2(.9)(.25) +
8(.3)(.25) = 3/7

P=positive
N=negative
R=rash

PrOBLEM 1.6.9

CHAPTER 2

Section 2.2

1. (@) {w: R(w)€ E'} = Qe #, hence E'€%. If By, B, ...€%, then {w: R(w) €
U, Bu} = U, {w: R(w) € B,} € F since each B, €%; thus 2, B, €
. If BE¥, then {w: R(w) € B} = {w: R(w) € B} € #, hence B°€%.
(b) % is a sigma field containing the intervals, hence is at least as large as the
smallest sigma-field containing the intervals. Thus all Borel sets belong to %.
Section 2.3 ‘
1. (@) Fr@) =4, <0; Fp@) =1 — e, 0 >0

(®) 1. PRI <2} =P{~2 R <2} = |2, fp@) dv = Fp(2) — Fx(=2) =
1 —e2

e
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SOLUTIONS TO PROBLEMS 295
2. PR <20rR>0} =P{R> —2} =1 — Fp(=2) =1 — }e?
3. P{{R| <2and R< —1} =P{-2 < R< -1} =}(" — e?)
4. P{R| +|R =3/ <3} =P{0 <R <3} =31 — ¢
5. P{RE—R2—R—2<0} =P{(R—2)(R* +R +1) <0} =P{R<2}
(since R? + R + 1is always > 0) =1 — {72
6. P{esinrR > 1} = Pfsin 7R > 0} = P{0 <R <1} + P2 < R < 3}
+PA<R LS+
4P{—2<R< -1} +P{-4 <R< -3} +---

But P{2n — 1 < R <2n} = P{—2n £ R < —2n + 1} since f p is an even
function. Thus

o0 0
P{evwmR > 1} =S P(2n < R<2n + 1} + 2 P{2n — 1 < R < 2n}

n=0 n=1

= PR >0} =}

7. P{R irrational} = 1 — P{R rational}. The rationals are a countable set,
say {@,, @y, ...}. Hence, P{Rrational} = > P{R = z;} =0, so P{R
irrational} = 1.

2. By direct enumeration,

P{R =0} =p* +p'q + p°¢* +p°¢° +p¢* + 4
P{R =1} = 4p'q + 6p°¢" + 6p°¢" + 4pq"*
P{R =2} = 3p°¢" + 3p’q®

Section 2.4

.If0<y <1,

[ ®
Fy(y) = P{R, <y} +P{R1 > —} =f e dx +f e dx
Y 0 1/y

=1—e?+eth

Fy) =0,y £0; Fu=1y2=>1

F, is the integral of

d 1
@ =@F2(y) =e 7 +y—2€_1/y, 0<y<l1

= 0 elsewhere

Hence R, is absolutely continuous.

1
fz(y)=2—y,e‘1<y <e

= 0 elsewhere

e
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3.
) =2y7%2<y <4
=3y 2y >4
=0,y <2

y/2 | 2
4.If2$y£4,F2(y)=P{R2$y}=f de:].__
1

Y
If4 <y <5 F@ =}
Ify 25, Ky =1
P{R, =5} = P{R, > 2} =1, s0 R, is not absolutely continuous.

7. Consider the graph of y = g(x). The horizontal line at height ¥ will intersect

N
//1 5\ /‘
I ! |
Mm@ ha(y) \/ O

PROBLEM 2.4.7

the graph at points (say) z; , . . ., T, with z; € I,. If we choose a sufficiently small
interval (a, b) about y, we have (except for finitely many y, which lead to inter-
sections at the endpoints of intervals)
7
Fy(b) — Fy(@) = P{a < R, < b} =z Plc; <R, < dj}
j=1
where ¢; = h;(a) and d; = h;(b) ifje{iy, ..., ixy and h; is increasing at z;
¢; = h;(b) and d; = hy(@) if je {i;, . .., iy} and h; is decreasing at x;
¢; = (say) land d; = 0if j¢ {i, ..., ix}. Thus

n dj n
Fyb) — Fy@ = 3, | fi@)de =3, [Fy(d)) — Fy(e))]

i=1Je; =1
where F,(d;) — Fy(c,) is interpreted as 0 if ¢; > d;. Differentiate with respect to
b to obtain f,(b) = z;;l filh;(B)] lh;.(b)l, as desired.

Section 2.5

1. (@) %
(®) § :
© 1+ Fp(l5) — F(5) =3 +3 — 1) = 7/12
(d) FR(3) - FR(S) =35 — ﬁ =

6
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Section 2.6

4. (@) 23 ()
(b) 22 ) 1
. 5 +81n4 ® 1

® 1 — et

In each case, the probability is } (shaded area).

[
Nl

x+y

(b)

W
/
\

xy = %\
© @

y=e
~ oY=t
- N %
y=—e*
(@) U] (®
PROBLEM 2.6.4
Section 2.7

1. (a) fi(@) = 62® — 4230 < = < 1),
o) =2y(0 <y < 1)
®) 3/8

e
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2. fi(@) =2e® — 27,2 >0
fo(y) =27,y >0
3.

L) () f(2)

yd

-1 0

N
fury .
\S]
K]
<
- Nl
N f—
w

o 1 -1 0

PROBLEM 2.7.3

1 1—a? 31
8. (a) P{R2 + R, < 1} =f f e +y)dyde = —
=0 Ju=0 480

(b) Let A ={R, <1,R, <1}, B={R, <1,R,>1}, C={R, >1,R, <1}

0 1 2
PRrROBLEM 2.7.8

The probability that at least one of the random variables is <1 is
PAUBUC) =PA) +P(B) +P(C) =% +1+1=1%

The probability that exactly one of the random variablesis <1is P(B U C) =
P(B)+ P(C) = }. If D = {exactly one random variable < 1} and E =
{at least one random variable < 1}, then

oo PDAE) _P(D) 12 4
DIE)=—pE~ P& 58 5

1 2
(Notice that, for example, P(B) =f f @ +y)dyde =%, etc.)
—0 Jy=1

(c) P{R, < 1,R, <1} =} s P{R, < 1}P{R, < 1} = (3/8)%, hence the random
variables are not independent.

e
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Section 2.8
Lfi@) =30 <2 < 15f3) =372, 2> 13 £4) = 0,2 <0
2- (a) f3(z) = zeﬁz, z 2 0;f3(z) = 05 z < 0

1
®) f3(z) = CTIP ,220,f3(2) =0,2 <0
, 1
3. f:?.(z) = Tr(l—_l-—zT) 5 all z

4. f3(2) =$,z >1,f3() =0,z <1
5.3V3/8

6. 2/3

7. 827

9. 2/33

10. Let R, = arrival time of the man, R, = arrival time of the woman. Then the
probability that they will meet is

shaded area
— R, £ == =1-=-(0 —22 =22 —
P{Ry = Ryl <2} =~ (1 =9 =22 ~2)

7

0 2 1
ProBLEM 2.8.10

—d7
1. [1-%] if(n—1)d <L and 0if (v — 1)d > L

1 1
13, fRo(r) =5 rer¥ . s Q: fao(e) =50 0<0<2m,

Section 2.9

2. (a) n > 4600
(b) 1 —35¢2
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3. (a) No.
(b).9

k
4.P{R1+R2=k}=ZP{R1—z R, =k — i}

S (5) e (o) e
g E ( )( ) But
@ 30" ) !

[We may select k positions out of n 4+ m in ("+m) ways. The number of selections
in which exactly 7 positions are chosen from the first n is (™). Sum over i to
obtain (a).] Thus P{R, + R, =k} = ("+m)p7‘q"+m_7”, K= 0 1,...,n +m.
(Intuitively, R, 4+ R, is the number of successes in # + m Bernoulli trials, with
probability of success p on a given trial.) Now P{R; =/, R, + Ry = k} =
P{'Rl =j, R2 =k _1} — (’;:L)ijn—ﬂ Ic—:)P —aqm k+i — (;,)(k_’)Phann—k _] — 0
L...,n,k=jj+1,...,n4+m

Thus P{R, =j| R, + Ry, =k} =

(MG
(™ °
function (see Problem 7 of Section 1 5)' Intuitively, given that k successes have
occurred in # + m trials, the positions for the successes may be chosen in (4m)
ways. The number of such selections in which j successes occur in the ﬁrst n
trials is (”)(k_J)

the hypergeometric probability

CHAPTER 3
Section 3.2
2. (@) E([R)) = f [2]f1(2) dx =f [ele de
—w 0
2 3 4 n+l
=f e dx +f 2e* dw +f 3edr + - - +f ne*de + - -
1 2 3 ' n
=el—e2 42— +3eP -+

=elte?te?+ - -=ellt+tel+e?+--)=

e
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n+1
() P{R, =n} =P{n <R <n+1} =f evdy = e — g~ (D)

ER) =3 nP(Ry = n} =3 nlen — eve0)]

n=0 n=0

=el—e¢24202—e3)+3e3—edHh+---

e—l
=1 as above.
3.@1 (b) o ©1
4. 1/3
5.2 +30e72

Ck(k—1) - (k—r +1
8. EIRR—1) - (R—r + D] =2 - kf T+,
k=0 !

oy

= ZTZ @ _l )' e AT = Femhet = AT

Set r =1 to obtain E(R) = 1; set r =2 to obtain E(R*— R) = 22,
E(R?) = 4 + 2. 1t follows that Var R = A.
Section 3.3
1. This is immediate from Theorem 2 of Section 2.7.
2. E[(R — m™] =0, nodd

=o"(n — (@ — 3) - (5)(3)1), neven
Section 3.4

301

hence

1. Let a(R, — ER,) + b(R, — ERy) = 0 (with probability 1). If, say, b = 0 then
we may write R, — ER, = c(R1 — ER)). Thus 6,2 = ¢%6,2 and Cov (R;, Ry) =

co,2. Therefore p(Ry, Ry) = , hence [p| = 1.

4. In (a), let R take the values 1 2 .., n, each with probability 1/n, and set

=g(R), Ry = h(R), where g(i) = a;, h(i) = b;. Then

1 n 1
E(R,R,) 2 ~ab;, ER,Y) _Z ’-l a2,  ER® =D - b2

=1 g=1
In (b) let R be uniformly distributed between a and b, and set R; = g(R),
R, = h(R). Then
g (@)h(a) Fo) b (@)

2) =
b—adx’ E(R? fb—

a

E(R,Ry) = f

a a

In each case the result follows from Theorem 2 of Section 3.4.
5. This follows from the argument of property 7, Section 3.3.

e

adx, E(R,%) =f -
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Section 3.5

! ) ]
3. P(R, = j, Ry = k} = T,;(nf’_—k),( (i

Jok=0,1,...,n,j+ k < n (see Example 1, Section 2.9).

4. (0 = p(l — p).

5. Let A; = {trial i results in success and trial i + 1 in failure}. Then R, = z 1,
and Ry? _EIA +2214IA Lyl =0,andifj >i+2,1, andIA are
1ndependent w1th E(I 4, I 1) = P(A,)P(A,) = (pg)®. Thus

ERY) = (n — )pq + 22” gz(pq)z

= (0 — D)pg +2(pg? S (n — 2 — )

i=1
=@ —Dpg +2(pgPlt +2 + - + (n — 3)]
= (n = Dpg + (pg*(n — 3)(n — 2).

Therefore, Var Ry = E(Ry?) — [E(R)P = (n — )pg + (n — 2)(n — 3)(pq)® —
(n — 1)*(pg)?, g =1 — p (assuming n > 2).
6. 50(49/50)100

Section 3.6

1. (a).532
(b)—2.84

Section 3.7

l.m= ffxe®de =1, E(R? = [ a*e®dr =2, hence o> =1. P{|R —m| >
ko} =P{IR —1| 2 k}. If 0 <k < 1, this is [}*e=dv + Jipeede =1 —
e=0-R)  ~(4) When k > 1, it becomes J i3, €@ dx = e+ Notice that the
Chebyshev bound is vacuous when k < 1, and for k > 1, e~***) approaches zero
much more rapidly than 1/k2.

CHAPTER 4
Section 4.2
1. T'(r) = f o frle~t dt = (with t = 22) 2 j' © g2r—lg=a® gy
Thus T(NI(s) = 4 [ [ a?r—ly2sle= @™ go dy
= (in polar coordinates) 4 [7/2d0 [ (cos 6)*(sin 6)2s—le—® p2ri2s—1 g
Now [ p*+2s=le=0" dp = (set u = p?)} Jowts e du = {T(r + )

INING)]

Therefore ————
erefore T

/2
= f (cos 0)21(sin 0)2~1 4
0

e
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Letz = cos? 6 so that 1 — z = sin% 0, dz = —2 cos 0sin 0 db,

dz
df = — 242(1 — 2)l/2

Thus
Ir'(nHr 0
21((? +(53) %fl zT_l(l z)s_l dz = %IB(V’ s)

3. pale™ — € + pole™ — ) + pale® — ) + py(1 —e7®) + ps(1 —e™)
56 =% 0<y<l1

1
22’

y>1

Section 4.3

1. h(y|@) =" v, 0 <z <y, and O elsewhere; P{R, <y | R, =2} =1 — eV,
y > x, and 0 elsewhere.

2 @ =fmkwa'y kol 41,0 <5 <1
—1

@x
=f —kxdy = —kax(z + 1), -1 <2 <0

-1

) ,
f2(®) =f ke de =3k(l —9%),0 <y <1
Y

0 1
=J —kx dx +f kxde =%3k(l +9%, -1 <y <0
v 0

Since 1, f,(x) dx = 1, fo(y) dy = k, we must have k = 1.
The conditional density of R, given R, is

h =L ; 1<y <
2y | ) @ ~e T 1<2<1, -1 <y<x=
The conditional density of R, given R, is
[, y) 2z
hx|y) = =——,0<y <],y <1
2 1<y <0,0 1
i1 Ly<£0,0<L2<
2 1< 0 0
——m,— L<y<L0,yLz <

4. The conditional density of R; given Ry =2 is h(z |») =e%,2 > 0,2 >0,

Pl <R, L2|R, =x}=e¢l—e2,2>0

e
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5. P{g(Ry, Ry)) < 2| Ry =} =P{g(x,Ry) <z| R, =} = f h(y | %) dy
{v:9(x,y) <z}
Section 4.4
f@y) 8ay 2y
1. (a)hz(ylx)—m‘)——m—x—z, 0<y<xz<L1
8 2x
h|y) = AGE)) il 0<y<z<l1

() Tyl - 1-9°

© z (2
Thus E(R, | R, = ) =f yho(y | ) dy =fy ;‘g) dy =%, 0<x<1
—o0 0

E(R, | Ry =) fm hy (x| y) d fl Rl W ek )

= = X, x| nr = S e— = — e

1' 2 Y i 1 ly 5 1"?/2 X 3(1_?/2)’
0<y<1

0 x zy
(b) E(R* | Ry = 7) = { yihy(y | 2) dy = ( 94(;2) dy = la*
- V=00 J 0
(c) The conditional density of (Rl, R,) given Ais

f@, y) = 128y, 0<y<z<
P(A)
d:c 8963/ dy

The conditional density of R, given A is

f@y|A) =

1/2

Ly | A =f [, y| A)de =f 128xy dx = 16y — 64y%, 0 <y <3}
w v
= 0 elsewhere

£ 1/2
E(R, | 4) =f Yfa(y | A) dy =f y(l6y — 64y®) dy
—0

0

=2 2 = _4
57 % T 15
I‘l/zfm
)y (8xy) dy dx
E(R,I
Alternatively, E(R, | A) = (Rolp) =0 JOo = ﬁ— = 4/15

P(A) 1/2 [
8xy dy dx
o Jo

DO

Alternatively, E(R, | 4) = | © [i@ | ADE(R, | R, = z)dx, where fi(z | A) =

[i@)[P(4) if 0 <z < 1, and 0 elsewhere. Thus

43

1/2
E(R, | 4) =f
2| L 716 5

dr = 4/15

1 n
5 1+
n!

. w=w1+...+xn

e
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. E(Ry| R, = o) = 2/2, 0<z<1
=1/2, 1<z<2

4. t(n — k)
. (@) 3/7
(b) 19/21
. EQR) =1P{R=1} + 2P{R =2} +3P{R = 3}
where
_ _ 30! 1 (50)(30)(20
P{R =1} = 3 TOTIOTI0N (‘5)10('?)10('2)10 +§ 10(1;2():)) 10

P{R =2} = 3GD(3)(T)8
P{(R=3}=1—-P{R=1} —P{R=2}

. (@) P{Ry <2} =P{Ry; <2z, R*+ R2<1} + P{R; <7z, R2+R2>1}. If
0 <z <1, then R®> + R,® > 1 implies Ry =2 > 2, s0 R{R; < 2, R +
Ry? > 1} = 0. Thus

Fy(2) = P{R; <z, R2 + R2 < 1}

z (l_zz)l/z 2
= f [, y)dedy =f dxf dy =f (1 — 2?2 do
0 0 0

2% +y%<1,
<z

=1[z(1 —2»)Y2 +arcsinz], 0 <2z < 1

If1 <2 <2, P{Ry <z, R+ Ry? > 1} is still 0, and Fy(2) = P{R; < 2,
R2+R2<1} =P{R2+R2< 1} = nfd If2>2 P{Ry <2} = 1.

Fy(2)
o— 1
o
4
| |
0 1 2 z
PROBLEM 4.4.8

By (4.4.6), E(Ry) = 2P{R; =2} + f 21— 22 g
0

Y AT
B 4) 3737

Ny

e
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®) f g(x, ) fia, y) de dy = f f of @) o) die dy

@ +y?<1

+ H 21(#) fo(y) dz dy

z2+y2>1

1 (1—a2)V/2
=f xdxf dy +2 Jf dr dy
0 ()

0<2<1,0<y<1,
22y >1

1 T
=f x(1 — 22 dw + 2(1 - —)
o 4

=%+ 2(1 - Z) as before.

(c) Since Ry =2 when R® + R,> > 1, E(R3 | Ry> + R, > 1) = 2. The con-
ditional density of (R;, Ry) given 4 = {R,® + R,®> < 1} is

[,y 4

[yl =F7 =7

-, 2 <1, 2,y >0

= 0 elsewhere

E(RsL)  E(RL)
P(4)  P(A)

E(Ry | A) = since Ry? + R, < 1 implies Ry = R;

= E(R, | A) =f f zf(x,y | A)dxdy =fooxf1(x| A)dx

where
o 4
fu@ | 4) =f f@,y| dydy == -2 0<a <1

= 0 elsewhere
14 4
Thus E(Rs | A) = “ —x(l —a)V2dy = —
Jo 7 37

11 1 (1—a?) /2
xl oy dx dy f x dwf dy
(R,Ly) J; »[) {e?+y2<1} b A

. Ei
Alternatively, PA) = T = T

4
T 3x
Now E(Rg) = P(A)E(R; | A) + P(A)E(R, | A9

(4 TR PP
_Z 3—77 + —Z —§—Eas clore.

e



46628-0 Ash 2 4/14/08 8:32 AM Page$07

10.

11.
14.

16.
17.

SOLUTIONS TO PROBLEMS 307
Let R; = R, + Ry, Ry = R, — R,. The joint density of R; and R, is
A, )

f34("1 U) =f12(.'17, y) a(u, U)

where u =2z +y, v =2 —y, x =§(u +v), y = $(u — v) (see Section 2.8,
problem 12). Thus fg(u,v) =%, 0 <2 <1, 0<y <1. But 0 <z <1,
0 <y <1 corresponds to (u, v) € D (see diagram).

a1

(0,0) 2. 0) u

1.-1

PRrOBLEM 4.4.10

The density of R, is f,(v) =f Saalu, v)du =1 — |v], vl <1

= () elsewhere

fuln) 1

Therefore i3(u | v) = 70 =3 _U),Ogvsl,vSuSZ-—v
4

—1<v<£0, - v<u<2+v

T2 +o)°
1 2—v 4 —20 + 02
, 2 —_ —_— 2 = e—
160 <o <1, BRE | Ry =0) = 55 _U)L u® du 3
1 2+ 4 + 20 + 02
— 2 = R — 2 = ,—_—
If -1 <v <0, ER?| R, =) 2(1+v)f_vudu 3

Thus E[(R; + R)® | R, — Ry =0v] = 4[4 —2|o] + %], -1 <v < 1.

x? + 7/6

fRG|Ry =ay,...,R, =) =21 — D"/l +a,n —2z +1),0< 1 <1,
wherex =2, + - + 2,

ER|Ry =2,,...,R, =2,) = (@ + 1)/(n +2)

(p — mpg™ |1 — ¢ — npg™Y)

1+ 5@ — 22)/(% ~ 15V2)

e
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1
18. fia(®,y | 2) = —5, 2 +y* <%, and 0 elsewhere

(@) E(D|R =2) =fw fw @ + )V a(z,y | 2) dw dy

1

- @2 + y?)V2 du dy

22 +y2< 22

1 2 z ©
=— fo a’Of(J r* dr = 2z. Thus E(D) =J(; Sze " de =%

®) k|2, y) =f@,y,2)f12, ) = fr()f12(x, ¥ | z)/fwf(x, Y,2) dz

—Z 2
> @ e
(@)l TE
19. (b)
d@) = -1, —-3<x< —1
=0, -1<z<1
=1, 1<z<3

E,[(6% — 0] = 1]2
20. 3@ + 1)

CHAPTER 5

Section 5.2

1 3
1. Ny(s) = Ny(s)N(s)N3(s) = {27 (e — e‘s)}

1 L
=58 (e — 3es +3es — e %), alls

So@) = 5l + 3@ +3) — 3@ + D2l + 1) + 3@ — D@ —1)

—(@ = 3)%u(z — 3)]
Thus
fo@) = 5@ + 37, =3 <z < -1
3 — a2

=3 , -1 <z <1

=& —32% 1<z <3

= 0 elsewhere.

e
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2. /i@ = @ + u +2) + 2@ + Du@ + 1) — 3au@) — 4@ — Du@ — 1)

+4(x — u(x — 2)]

® 1
. NR'."(S) = E(e—sRiZ) = f e—-s:c? W e—x2/2 dx = [With y = (s + %)llzx]

— 0 T .

f ® R27(s + DIV2e v dy = [2(s + 1Y%, Res > —3

. .
Ng(s) = HNR.?(S) =27"2(s 4 1) ™/2 Res > —%
i=1

and the result follows from Table 5.1.1.

1 ©
P a—lo—(s+p-1)
. NR(S) I‘(O()ﬁa J; xre = dx

N L Res> — -
= =  ——,RECS —_—
T Jy &+ F0* ™ = @ + poy* g
If Ry = R; + R, where R, and R, are independent and R; has the gamma
distribution with parameters o; and #, i =1, 2, then

1 \uatae
Ny(s) = Ny(s)Ny(s) = (m) ,Res > —1/p

80 R, has the gamma distribution with parameters o«; + «, and §.

5. fo®) = Ana e~ 2y(z)[(n — 1)!

9.

e—tuz '
Integrate ——— around contour (q) if # > 0, and around contour (b) if
w(l + 22)

u < 0. (Notice that [e~*(=+%)| js bounded if > 0, as longasy < 0.)Ifu >0,

(=)

S T
Al

(@) ()

PROBLEM 5.2.9

e
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e—tuz [e—iu(—i)]
=1+ ™ (=20)
e~ tuz :l Z”i[e—iu(i)]

Ifu< i is 2i | resi —_— =i
u < 0, the integral is 2 [remdue of o) atz =i D)

The result follows since the integral around the semicircle of radius r approaches
0asr — o.

the integral is —2ni l:residue of atz = —i:l = =2 =e

U

Section 5.3

4. Mp) = 3 ppe et where p, = P{R = a + nd}. Thus Mp@) =

n=—ao
e "M (u) where M is periodic with period 2n7/d; the numbers p, are the
coefficients of the Fourier series of M.

5. Ngi(s) = 2exp [A(e~s — 1)], hence dl\gz(s) = —Aesexp [A(e™* — 1)] = —4Awhen
d
s =0. Zg(s) =(Ae9? exp [Me* — D]+ e exp [Mes =D =2+ 1

when s = 0. By (5.3.3), E(R) = 4,E(R% = 7* 4 4, hence Var R = 4.

Section 5.4

1. @) P{R, <2} =P{R, <z,R>z + ¢} +P{R, <z,R <z + &}

<P{R, —R| > ¢} + P{R<z + ¢}

since R, <, R >z + ¢ implies |R, — R| > ¢ and

R, <z, R <z + ¢implies R <z + &
Similarly P{R <« — ¢} =P{R <z — ¢, R, >z} + P{R<x — ¢, R, <}
< P{R, — R| > ¢} + P{R, <z}
Thus F(x — ¢) — P{|R, — R| > &} < F,(x) < P{|R, — R| > ¢} + F(x + ¢)
(b) Given 8 > 0, choose ¢ > 0 so small that

) )
F(x+e)<F(oc)+i, F(x—e)>F(x)—§.

(This is possible since F is continuous at x.) For large enough n,
P{|R, — R| > ¢} < §[2since R, -£> R. By (a), F(z) — & < F,(x) < F(z) +
d for large enough n. Thus F,(») — F().
5. (@) n > 1,690,000
(b) n > 9604

R—-1 .005n
7. P{{R — }n| > .005n} =P{| el >

} ~ P{|R¥| > .01 Vn}

—%\/ n ‘12‘\/ n
=2P{R* > .01Vn} = __2___ Ry dr <*i___ 1 _ —-00012/2
V2m Jov'n T V2r Olvy
2 —4 . L2
= ——= e W/ For example, if n = 108, this is —= ™0
V2un V2

e
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CHAPTER 6
Section 6.2

1. f1(®) = 4% and f,(x) = A,® [or f1(%) = 73, fo(¥) = %A® in the repeated root case]
are linearly independent solutions. For if ¢, f; + ¢pf; = 0 then

A" + cphy® =0
A8t 4 o2t =0

If ¢, and ¢, are not both 0, then

]_lm Z2m.
+ +
VAR 1
hence
11
= 0, a contradiction
]'1 }'2

If £ is any solution then for some constants 4 and C,

1) [0 c /2
=A +
f AQ) £
since three vectors in a two-dimensional space are linearly dependent. But then

1 —_
f@) = ds f10) +dy [, dy = dy = —]—,i’

= di[4f1(0) + Cf>,(0)] + d,[4f5(1) + Cfx(D]
= Af1(2) + Cfa(2)

Recursively, f(z) = Af1(x) + Cf3(*). Thus all solutions are of the form Af;(x) +
Cf»(x). But we have shown in the text that A4 and C are uniquely determined by
the boundary conditions at 0 and b; the result follows.

2. By the theorem of total expectation, if R is the duration of the game and 4 =
{win on trial 1} then

E(R) = P(A)E(R 1 A) + P(A)E(R [ A%
Thus

D@) =p[1 + D@ + D] +¢fl + D —-D],z=1,2,...,b—1

since if we win on trial 1, the game has already lasted for one trial, and the
average number of trials remaining after the first is D(z + 1). [Notice that this
argument, just as the one leading to (6.2.1), is intuitive rather than formal.]

3. In standard form, pD(x +2) — D(x + 1) +¢D(@®) = —p —q = —1, D(0) =
D(b) =0.

e
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Casel. p #q.

The homdgeneous equation is the same as (6.2.1), with solution 4 + C(g/p)®.
To find a particular solution, notice that the “forcing function” —1 already
satisfies the homogeneous equation; so try D(x) = kx. Then

klpx +2) — (x +1) +gz] = Cp-Dk=@p—-—9k=
Thus

x
D(x) = A + C(g/p)* + ——.
qp. 7—p
Set D(0) = D(b) = 0 to solve for 4 and C.

Case2. p=gq=1/2.

The homogeneous solution is A + C=z. Since polynomials of degree 0 and 1

already satisfy the homogeneous equation, try as a particular solution
D(x) = ka?. Then

| ki@ +2 — @ + D + 3l = k = —1
Thus
D) =A4 + Cx — 22

D) =4 =0, D(b) = b(C — b) = 0so that C = b.
Therefore D(x) = z(b — x).

If we let b — o we obtain

D@) = wifp >¢q; D(@) =

i
P P <9
Section 6.3

1. P{S; >0,...,8,, ; >0,S,, = 0} is the number of paths from (0, 0) to (2n, 0)
lying on or above the axis, times (pg)". These paths are in one-to-one corre-
spondence with the paths from (-1, —1) to (2», 0) lying above —1 [connect
(=1, —1) to (0, 0) to establish the correspondence]. Thus the number of paths
is the same as the number from (0, 0) to 2z + 1, 1) lying above 0, namely

2n + 1 —-b .
wherea + b =2n+ 1,a — b = 1,thatis,a=n+1,b =n
a 2n + 1

Thus the desired probability is

2n +1 1 ‘ no_ @2n)! o Yo
n+1)2n+1(pq) Sl P T

_ (), . _Cm! . QmV2a2n o (dpgn 1
5. Uy, = (n)(pq) —m(pq) N—(n”VZTn)2 (p" = Vor Vi

e
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By Problem 2,
Upp_o 1 1 1
oy = ~— ~——
2n 20N —n  2Vand?

Let T be the time required to return to 0. Then

- 0
P{T =2n} = hyy,n =1,2,... where Y hy, =1

n=1

ET) =S 20P(1 = 20} = S 20y,

n=1 n=1
But 2nh,,, ~K/\/;and 2 1/vVn = o, hence E(T) = .

6. The probability that both players will have k heads is [()(3)"]2; sum fromk = 0
to n to obtain the desired result.

7. The probability that both players will recsive the same number of heads = the
probability that the number of heads obtained by player 1 = the number of
tails obtained by player 2 (since p = ¢ = 1/2), and this is the probability of being
at 0 after 2n steps of a simple random walk, namely (3%)(3)*". Comparing this
expression with the result of Problem 6, we obtain the desired conclusion.

(Alternatively, we may use the formula of Section 2.9, Problem 4, with m =
k =n)

Section 6.4

1 (1 — 4pg22p2 = 3 al(—dpge?yr

n=0

=3 cin-4pgra
n=0

Thus
HE =1 = (1~ 4pg2 = — 3 0l)(~4pgyaa»
n=1
Thus
hyy = (_1)n+1(17/L2)(4Pq)n, n=1,2,...
But '

— (1/2) _ (e DRI - [0 = 3]
n

n!

_1:3:5---Qn—3) @n - 2)!
N 27 T 2124 (2n —2)

3 @2n —2)! 2 (2n =2\ (1"
T 2" — D127 — 1)! “ﬁ(n -1 )(E)

Therefore hy, = (2/n)(**—»)(pg)", in agreement with (6.3.5).

e
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s @, 0 4
2. zﬂn+1zn—3§anzn=42zn=1 —
n=0 n=0 n=0
If
4
A@) = Z a,2", then - [A(z) —a] —34() = 1
n=0 -
or
a4
-1 _ 3) = h
AQR)(z 3) - + .
Thus
A 4z . ao
@O=T—3a-3 1%
2 2 +a & S ann
RS il e ) AR S CR HODEL

Thus a, = (2 + a4)3" — 2. Notice that (2 + a;)3" is the homogeneous solution,
—2 the particular solution.

6. (@) P{N, = k} = P{the first k — 1 trials result in exactly r — 1 successes, and
trial k results in a success} = (:=)p"Yg*"p, k =r,r +1,.... Now

CED=CD=C-Dk -2+ Dr/k — !
=(=D"(=n(=r = D)(=r =2) - [—-r — (k =2 — ]
X [—r—Gk —1 -]k —r!
= (=1)*"(;-"), and the result follows.

Note that if j = k —r, this computation shows that (—1)i(— )=
G, r=1,2,...,j=0,1,.

(b) We show that T, and T, are independent. The argument for T, ..., T,is
similar, but the notation becomes cumbersome.

P{T, =j, T, =k} =P{R, =--- =R, ;=0,R;, =1,
Rjpy=""=Ryp 1=0,R; =1}
=pt Rk =1,2,..
Now P{T, = j} = ¢*~%p by Problem 5, and
e8] o0
P{T, =k} =23 P{T, =), Ty =k} = (Eq"‘l)ﬁq’“‘l

=1 =1

Pqu—l
=T
Hence P{T, = j, T, = k} = P{T, =j}P{T, = k} and the result follows.

= pg*t

e
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(©) E(N,) =r[p, Var N, = r[(1 — p)[p*] since N, = Ty + --- + T, and the T
are independent. The generalized characteristic function of N, is

s \r
(= BUSRE
Set s = iu to obtain the characteristic function, z = e~ to obtain the gener-
ating function.
7. P{R =k} =p*q +q"p,k =1,2,...; E(R) =pg* +qp~*
8. 1/v2
Section 6.5
2. P{an even number of customers arrives in (¢, ¢ + 7]} = Z;=o.2. o, €M (An)E[k!
=13 e wOnyk! + 1S et anyik!
k=0 k=0
= }e (e + e7h) = 1(1 + %)

P{an odd number of customers arrives in (¢, ¢t + 7] = 21?:1.3. 5. e r(Ar)elk!
[ee] o)
=31 eM(A)tk! — 3 e Ar(—An)H k!
k=0 k=0

—_ %e—lr(eir — e—ir) = %(1 — e—2lr)

. w (Ar)y*
[Alternatively, we may note that 2k=0,2. “. = cosh Ar and

) (G k!
Ek=1.3,5.... o= sinh 47.]
3. @ P{R;, =1,R,,, =1} =P{R, = =1, R, = —1} = }(1 + &%)
P{R,=1,R,, = —1} =P{R,= —1, R, =1} = }(1 — e2¥)
(b) K(t, ‘7') = g~ 2ir

Section 6.6

4. (a) is immediate from Theorem 1.

(b) If w € A4, for infinitely many n, then w € 4, which in turn implies that
o € A, eventually. Thus lim sup 4, < A < lim inf 4,, < lim sup 4, so all
these sets are equal.

(c) Let 4, = [1 — 1/n,2 — 1/n]; limsup 4, = liminf 4, = [1,2) (Another
example. If the A4,, are disjoint, lim sup 4, = liminf 4, = &.)

@D N, 4 < 4, < U2, 4p, and B, = N, 4r expands to lim, inf
A, = A, C, = U2, 4; contracts to lim, sup 4, = 4. Thus P(4,) is
boxed between P(B,) and P(C,), each of which approaches P(A4).

(e) (lim, inf A,)° = (U2, N, 40° = Ny Uil 4 = lim, sup Ay°
by the DeMorgan laws; (lim, sup 4,)° = lim, inf 4,° similarly.

6. liminf 4, = {z, y): 22 + 42 < 1},
limsup 4, = {(z, y):2® + y*> <1} — {(0, 1), (0, —1)}.

e
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8. P(lim, sup 4,) =lim_, , P(U., 4;) by definition of lim sup, hence

P(lim, sup 4,) = lim,_,  lim,__PWU™  A4;)
Now
m c m m
P( U Ak) = P( n Ak") = T P(4x°) by independence
k=mn k=n k=n
< T[ e P40 since P(4,9) = 1 — P(4y) < ePldw
k=n
m
— 3 P(4y)
= e k=n — 0 as m — o since > P(4,) = ©
The result follows. ) "

9. If 377 P{IR, — c| > &} < = forevery ¢ > 0, R, ~"> ¢ by Theorem 5. Thus
assume that > 7 | P{|R, — c| > &} = w for some & > 0. Then by the second
Borel-Cantelli lemma, P{|R, —c| > ¢ for infinitly many n} =1. But
[R, —¢| 2 ¢ for infinitely many # implies that R, +- c, hence P{R,, +»c} =1,
that is, P{R, —c} = 0.

12. Let S, = (Ry + -+ + R,)[n; then E(S,/n)? = (1/n2) Var S,

L@ yp M2l
A2 V< 2 g
But
1
§+

Hence

1 n 1 o1 1
+ - +-<| —dr=Inn|notice- <-ifk -1 <2<k
n 1 @ k=~ x

W =

2 M
E(—) < _n—2(1 + In ), so that

S,\2 S, .
i E( ") < . By Theorem 6,7n£>0

CHAPTER 7

Section 7.1

) Z PrPriy """ Piy_giy 1 Piy_yj
__ 15y n—1 — pin)
= _P &
P» 5
z P{Ty=1iy..., Thy =iy, T, =]}
Tgseees in—1
2 UePriy " Piy iy Pin s =P

{izeeoyin_1

It
Il

PT, =j}

e
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4. P{Rn+1 = il’ “ee ”,‘R"'I—k = ik | Rn = i}
=P{R, =i,Ryy =1Iy,..., Ry = iy}/P{R, =i}

) Z PiyPigin """ Pin_gin-1PiniPtiy "~ " Piy_yi,

Jgseeesin_

R z . Pjopfoh o ‘pjn—Zjn—IPjn—li

Ggseeesin_1

= Piiy " Py

Section 7.2

1. The desired probability is

PID O {R, =i, Ry =iy, ..., Rypr = i3}
PID N {R, =i}]

D must be of the form (R,,..., R,) € B for some B < S™, hence D is a
countable union of sets of the form {Ry = jo, ..., R, = j,}. Now

P{R0=j0’~--,Rn=j7i9Rn=ia~‘~'aRn-}-k=ik}=0 if jn¢l'
= P{Ry=jo- s Roy = juzs Ry = i¥P{Rpsy =iy, -+, Rure = i | Ry =1}

ifj, =i
Thus the numerator is simply
PID N {R, = i}IP{Ryy =i, ..., Ry = iy | R, =1}

and the result follows.

Section 7.3

1. (a) If n, € 4, then n, is a multiple of d, say n, = ryd. If r; = 1 then {n,} is the
required set. If not choose n, € 4 such that »; does not divide n, (if n, does
not exist then d =n,, hence r; =1). If n, =r;d then ged(ny,ny) =
ged(ryd, rid) = ryd for some positive integer ry <ry; (if ry =ry, then n;
divides n,). If r, = 1, {n;, n,} is the required set, if not, find n3 € 4 such
that r,d does not divide n;. [If n; does not exist, then r,d divides everything
in 4 including n, and n,. But r,d = gcd(ny, ny) so that rd =d, hence
ry =1, a contradiction.] If ng = rjd then ged(ny, ny, ny) = ged(ryd, ryd) =
rod, r3 < rs. I rg = 1, {ny, ny, ng} is the desired set. If not, find n, € 4 such
that rgd does not divide n,, and continue in this fashion. We obtain a
decreasing sequence of positive integers r;, > r, > - - - ; the sequence must
terminate in a finite number of steps, thus yielding a finite set whose ged is d.

(b) By (a) there are integers n,, . . . , n; € A, such that ged(ny, . . . , n) = d. Thus
for some integers ¢y, . . . , ¢y wehave ¢yny + - - - + ¢y, = d. Collect positive
and negative terms to obtain, since 4 is closed under addition, md, nd € A
such that md — nd = d, thatis,m —n = 1. Now letq = cd, ¢ > n(n = 1).

e
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Writec =an +b,a >n —1,0<b <n —1.Thenqg = cd = [(a — b)n +
(bn + b)ld = [(@a — b)n + bm]d € A, sincea — b > 0 and A is closed under
addition. The result follows.

(© Let A ={n>1:p{® >0}, B={n>1:f{®» >0} Then d; = gcd(4). If
e; = ged(B), then since B < 4 we have e; > d;. To show that d; > e; we
show that e; divides all elements of 4. If this is not the case, let n be the
smallest positive integer such that p{#) > 0 and e; does not divide n. Write
n=ae; +b,0<b<e;. Then

n a
— k) — ) A b—res
P =2 1l = 3 fleiplgerttred
k=1 . r=1
Now e; does not divide (@ — r)e; + b, so by minimality of #,
Pg%eﬁb—rei) =0forallr=1,2,...,a.

But then p{») = 0, a contradiction. The result follows.

4. (a) S forms a single aperiodic equivalence class. Starting from 1, the probability
of returning to 1 is 1 if p < g, and g + p(q/p) = 2q if p > q (see 6.2.6).
Thus S is recurrent if p < g, transient if p > g.

(b) and (c) S forms a single aperiodic equivalence class. By Theorem 6, S is
recurrent.

(d) The equivalence classes are C = {1} and D = {2, 3}. C is not closed, hence
is transient; D is closed, hence recurrent. C and D are aperiodic.

Section 7.4

1. For each n so that f,, > 0, form the following system of states (always originating
from a fixed state 7). It is clear from the construction that f{») = f, for all n.

PROBLEM 7.4.1

Also, p{») = u, by induction, using the First Entrance Theorem.
Note. we need not have ged{j: f; > 0} = 1 for this construction.

e
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2. Construct a Markov chain such that for some i,
f@ =P{T, =n}, n=12...

We claim that G(n) = p{») for all n =1,2,.... For G(1) = P{T; =1} =
D =pW), and if G(r) = p{P) forr = 1,2, ..., n, then

) .
Gn+1)=>P{T,+- -+ T, =n+1}
k=1

0 n+1
=Y YPT,=0P{T, +  +T,=n+1-1}
k=11=1 .

n+1
=> fWGn + 1 — D), if we define G(0) = 1

=1
n+l A .

= Zl Wpln+1-1 by induction hypothesis
1=

= p{#+1) by the First Entrance Theorem

Now state i is recurrent since >© | P{T; = n} =1, and has period d by hy-
pothesis. Thus by Theorem 2(c), lim,,_, , G(rnd) = d/p.

Since a renewal can only take place at times nd, n = 1,2, ..., G(nd) is the
probability that a renewal takes place in the interval [nd, (n + 1) d). If the average
length of time between renewals is x, for large n it is reasonable that one
renewal should take place every u seconds, hence there should be, on the average,
d[n renewals in a time interval of length d. Thus we expect intuitively that
G(nd) — dfu.

4. (a) Let the initial state be i. Then V;; = 2;‘:’:0 IR, ;> and the result follows.

(® By (@, N =32  Q"sothat N = > Q" = N — L (In particular, QN
is finite.)

(© By (b), {—QN=1I But N=>> Q" so that QN = NQ, hence
NI —-Q) =1
Section 7.5

2. (a) jp is recurrent since pg‘o) > 6 for all n > N (see Problem 2, Section 7.1),
hence

S )
Ep:i:fo =®
n=1

If i is any recurrent state then since pg‘t’, ) > 6 > 0, i leads to j,. By Theorem
5 of Section 7.3, j, leads to i, so that there can only be one recurrent class.
Since p{7) > & > 0 for all n > N, the class is aperiodic, so that lim, p{"} =
1/,u,~0. But then 1/'“"0 > 6 >0, hence p; < o and the class is positive.

e
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(Note also that if i is any state and C is the equivalence class of j,, then,
for n >N, P{R,¢ C|Ry =i} <1 — 0, hence P{Ry, ¢ C|Ry =i} <
(1 — 8k —0as k — . Thus j;, =1, and it follows that a steady state
distribution exists.)

(b) If HN has a positive column then by (a) there is exactly one recurrent class,
which is (positive and) aperiodic, and therefore a steady state distribution
exists. Conversely, let {v;} be a steady state distribution. Pick j, so that

[=1lim, pz‘";’] > 0. Since the chain is finite, p‘g‘) >O0foralliifnis
sufﬁmently large, say n > N. But then T]V has a pos1t1ve column.

3.1. If p # g, the chain is transient, so p{#») — 0 for all i, j. If p = ¢ the chain is
recurrent. We have observed (Problem 5, Section 6.3) that the mean recurrence
time is infinite, hence the chain is recurrent null, and thus pgﬂ — 0. In either
case there is no stationary distribution, hence no steady state distribution.
The period is 2.

2. There is one positive recurrent class, namely {0}; the remaining states form a
transient class. Thus there is a unique stationary distribution, given by v, = 1,
v; =0, j > 1. Now starting from i > 1, the probability of eventually reaching
0 is lim,,_, , p{#), since the events {R, = 0} expand to {0 is reached eventually}.
By (6.2.6),
limp{e) = @lp)* if  p>q
n—> 0

=1 if p<q

(Also p{#) =1, p{») — 0, j > 1). If p > ¢ the limit is not independent of i so
there is no steady state distribution.

3. There are two positive recurrent classes {0} and {b}. {1,2,...,b — 1} is a
transient class. Thus, there are uneountably many stationary distributions,
given by vy = p;, vy = p,,v; = 0,1 <i < b — 1, wherep,,p, 20,p; +p, =
1. There is no steady state distribution. By (6.2.3) and (6.2.4),

. @qlp)t — Glp® . ’
:T:OP%E%# if  p#q
—1-; if p=g

lim p{n) =1 — lim p{®

n=r oo n—+o
limp =0, 1<j<b—1
n=r o

4. The chain is aperiodic. If p > g then f;; = (g/p)*™* < 1, i > 1, hence the chain
is transient. Therefore pi.’]?) —0 asn—» @ for all 7, j, and there is no stationary

e
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or steady state distribution. Now if p < ¢ then f;; =1 for i > 1, hence f}; =
q + pfiy =1, and the chain is recurrent. The equations VII = V' become

019 + 09 =1y
Uip -+ Ugg =0y

Vop + 049 =03

This may be reduced to v; = (p/q)v;_5, j =2,3,....If p =g then all v; are
equal, hence v; = 0 and there is no stationary or steady state distribution. Thus
the chain is recurrent null. If p < g, the condition Z;";l v; = 1 yields the unique

solution
- j—1
vj=(q P)(IL’)J . j=1,2,...
q q ’

Thus there is a unique stationary distribution, so that the chain is recurrent
positive; {v;} is also the steady state distribution.

5. The chain forms a recurrent positive aperiodic class, hence p{»’ — v; where the
v; form the unique stationary distribution and the steady state distribution.
The equations VII = ¥, >, v; = 1 yield

_ (plgy—
1
> (plpit
j=1

i

6. The chain forms a recurrent positive aperiodic class. Since II* has identical

rows (p% pq,qp,q») =V, there is a steady state distribution (= the unique
stationary distribution), namely V.

7. The chain forms a recurrent positive aperiodic class, hence p{#’ — v; where the
v; form the unique stationary distribution and the steady state distribution.
The equations V1L = ¥, >;v; = 1 yield

v, = 9%, vy =3, v = 34, v =3

8. There is a single positive recurrent class {2, 3}, which is aperiodic, hence
PP — v; where the v; form the unique stationary distribution and the steady
state distribution. We find that v; = 0, v, = 3/7, v; = 4/7.

9. We may take p;; = P{R, = j}foralli, j(with initial distributionp; = P{R, = j}
also). The chain forms a recurrent class since from any initial state, P{R,
never = j} = T[>, P{R, =j} = T[2_,p; =0. The class is aperiodic.
Clearly v; = p; is a stationary distribution, so that the chain is recurrent
positive and the stationary distribution is unique and coincides with the steady
state distribution.

e
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10. The chain forms a positive recurrent class of period 3 (see Section 7.3, Example
2). Thus there is a unique stationary distribution given by

o

= 1 _ 2 = 1 —_ 2 = 1 —_ _1_ —
UV =9, Ug =%, U3 =19, Uy =%, U5 =713, U =3¢ U;=

Now the cyclically moving subclasses are Cy ={1,2}, C; = {3,4}, C, =
{5, 6, 7}. By Theorem 2(c) of Section 7.4, if i € C,,j € C,, then p(gn+a) — 3p,.

Thus
12345 67
12 3000 0 07
2042000 0 0
30032000
m 40 0% 30 0 0
0000} & 2
600000} & 2
710 000 1 & 2
12345 6 7
1700120 0 07
20003 30 00
310000} & 2
It 40 0 0 0 } & 2
522000 0 0
61 2000 00
714 3000 0 0
12345 67
170000 } & 2]
200000} 4 2
313000 0 0
w2 .4/ 1 2 000 0 0
500320 00
600320 00
77001 20 0 0

i
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CHAPTER 8

Section 8.2
1. (@) L(x) =2¢2[e™ = 2¢ %, 50 L(x) > 1iff v < ¢ = —In /2. Thus

c
a=Je‘wdw=1~e—c
0

[}
B =f 2¢ % dr =72 = (1 — a)?
(4

Hence as in Example 1 of the text, S, = {(¢, (1 — @)?), 0 < « <1} and
S={(,P:0<La<],(l -2 <1 —a?

(b) e° =1 — a =.95, so that ¢ = .051. Thus we reject H if # < .051, accept
Hy if x > .051. We have 8 = (1 — «)? = .9025, which indicates that tests
based on a single observation are not very promising here.

(©) Set « =f =(1 —o)?; thus « =3 — V5)2 =38 =1 — e, so that

c = 471
3. @

x 1 2 3 4 56

O EEEEE

IZICONE S I B B

L § 38 &1 i
LRT Rejection Region  Acceptance Region 3 B
0<i<$ all z empty 1 0
i<i<s x=1,2 z=23,4,5,6 1 .
2<i<L empty all z 0 1

The admissible risk points are given in the diagram.

Nl

o
Wi
—

PRrROBLEM 8.2.3(a)

e
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(b) Reject with probability a if # =1 or 2, accept if = 3, 4, 5 or 6, where
a/3 = .1, thatis, @ = .3. We have 1 — B = .3(1/2) = .15, or § = .85.

© 2 =pc,/(1 — p)ey = 3[2, s0 reject with probability a if # = 1 or 2, accept
ife =3,4,5,6,whereais any number in [0, 1]. Thus there are uncountably
many Bayes solutions.

n>13.

By Problem 24, the test is of the form

p) =1if > a2 >c
k=1

- .
, =0ifY z2 <c
i ) k=1
k(3
= anything if > ;2 = ¢
k=1

Now if the true variance is 6, z,’:=1 (R;)/6 has the chi-square density 4, with
n degrees of freedom (see Problem 3, Section 5.2), hence

%kiw>4=f%@m=%wm

k=1 /6
(The numbers A4, are tabulated in most statistics books.) Thus the error prob-
abilities are given by
o = An(c/ 60)

1 — = A,(c/6)

For a given value of n, the specification of « determines ¢, which in turn
determines 8. In practice, one must keep trying larger values of » until 8 is
reduced to the desired figure.

. First consider 6 = 6, versus 6 = 6, 6, > 6,.

L(x) =f81(x)/foo(oc) = (6,/0)" if 0 < #(2) = max; < §,
= o if 6, < #(x) <0,
Let 4 = (6,/6,)" and consider the following test
@(x) = 1 if L(z) > A, that is, if 6, < r(x) < 6,
= 0 if L(xz) < 2 (this never occurs)
= 1if L() = 4 and () < 6,2}/, that is, if 0 < #(x) < Gyel/?
=0if L(») = 2 and t(z) > Ogot/", that is, if 6t/ < #(z) < 6,

Since #(x) can never be <0 or > 6;, ¢ is exactly the test proposed in the
statement of the problem. Its type 1 error probability is

Py {v: max @; < Ot} = (Bpa/"[0)" = o

e
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Since ¢ is a LRT, it is most powerful at level «. But ¢ does not depend on 6,,
hence is UMP for 6 = 6, versus 6 > 6,.
Now let 6, < 6,. Then

L(x) = (6,/0)" if 0 < t(x) < 6y
C =0if 0 <#(@) <6
Let 4 = (6,/6,)" and consider the following test.
¢'(x) = 1if L(z) > A (this never occurs)
=0if L(z) < 4
= 1if L(x) = Aand #(x) < ol/”
= 0if L(z) = 4 and t(x) > Gyol/”

Since #(z) cannot be > 6, in this case, ¢’ = @. Again, ¢ is UMP for 6 = 6,
versus 6 < 6, and the result follows. The power function is (see diagram)

0(6) = Egp =1if 0 < 6 < Gpa/"
= (600‘1/"/9)" = “(00/0)"a eoal/n <0< 60
=1 — Pyfz: 60u/" < (x) < 6y}
=1 — [(6,/6)" — (6p0"/"/6)"]
=1 — (1 — a)(6,/0)", 6 > 6,

Q)

0 00(11/’1' 00
PROBLEM 8.2.6

7. The risk set is {(«¢, £):0 < a <1, (1 — )27 < B <1 — a27}, and the set
of admissible risk points is {(a, (1 — )27):0 < « < 1}.

10. If o) = o < o, let o' =1 and ¢, = (1 —Hp + 19", 0 <t < 1. Then
a(@y) = (1 — Do) + ta(9’)
Ble) = (1 — DB(p) + 1B(¢")

e
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Since (@) < ay, a(p,) will be < o, for some z€ (0, 1). But S(¢') =0 and

B(®) > 0 hence f(¢,) < B(9), contradicting the assumption that ¢ is most
powerful at level o,.

For the counterexample, let R be uniformly distributed between a and b,
andlet Hy:a =0,b =1, H:a =2,b=3.Let g,(x) =1ifx > ¢, g, (®) =0
otherwise, where 0 < ¢ < 1. Then f(¢,) =0, a(p) =1 — . Fort < 1, ¢, is
most powerful at level «, = 1, but is of size <1.

14. (a) @, isBayeswithc; = ¢, =1,p =1/2 (hence 2 = 1), and L(x) =ﬁ1(ac)/feo(x)
where fo(x) = TTr, #6(;); the result follows. ‘
(b) P,,o{x:' gn@) > 1} = Py {gn(R) > 1} < Eoo[gn(R)m] by Chebyshev’s in-
equality )
= E Eoot(RZ-) = [Eoot(Rl)]"
since all R; have the same density.
(©) Vary, ((R)) = Eq *(R,) —[E, t(Ry)]*> 0 (assuming 1y # hy,)> 0 Ey H(Ry) <
[Eeotz(Rl)]” 2, But
E, 2(R)) = E, [y (R)/hy (R)] = WASD)
0, Ry = 6, 0,(Ry 6, = >heo(mz‘)

{mi:hoo(wi) >0}

hg, (@) dv; <1

Section 8.3

L@0=-n/3" Inz;, ®O=5 () 0=max(,...,z,)
2. 0 = ||

3.0=r/z

4. p(6) =601 — O)/n

5. By (8.3.2) with g(6) = 1,0 < 6 <1, we have

1/n

-+1 — n—2u
L(x)ew -9 de_ﬁ(x+2,n—9c+1)_x+1
fl(:)ﬂx(l—O)"—”dG ple+1,n—xz+1) n+2
0\

6. For each x, we wish to minimize j L(m67(1 — 0)"*[(6 — w(x))*/0(1 — 6)] db [see
(8.3.1)]. In the same way that we derived (8.3.2), we find that

(@) =

1
62(1 — 6y dp
fo -9 Bt lLn—a)
1 _

y@) =
0

X
Tn
The risk function is

[(Rln) — 617 1
0(1 — 6) ] T 2001 —0)

P.p(e) = Eal:

1
Var, R = - = constant
n

e
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Section 8.4

L fo@y, ..., 2p) = (8, — 0™ | 1[91,92](50,-), where [ is an indicator function
= (6, — el)wl[el,w)(min xi)l(_oo,ez](max ;)

Thus in (a), (min R;, max R;) is sufficient; in (b), max R; is sufficient; in (c)
min R; is sufficient

n
L2 0,1 —2 a:,-lez
Jo@p oo ) = (sz) e =t

=1

[T(0p0"T"

hence if 6, 6, are both unknown, (JTw, Ris D72, Ry) is sufficient; if 0, is
known, z;f;l R; is sufficient; if 0, is known, H?=1 R; is sufficient.

3. [TT%: R, T2 (1 —R))] is sufficient if 6; and 6, are unknown; if 6; is known,
» . (1 — R)) is sufficient, and if 6, is known, H?=1 R; is sufficient.
Section 8.5
1. 1 —1/n)7.

2. (a) T has density fp(y) = ny" /6", 0 <y < 0 (Example 3, Section 2.8), so
Egg(T) = (3 g fr(y) dy = (n]0™) [Sy"g(y) dy. If Eag(T) =0 for all
6 > 0 then y"'g(y) = 0, hence g(y) =0, for all y (except on a set of
Lebesgue measure 0). Thus

Py{g(T) =0} = f frdy =1

{v:9(y)=0}

(b) If g(T) is an unbiased estimate of y(6) then

6
Eg(T) = % f ¥ e (y) dy = y(6)
0

Assuming g continuous we have

6"y(6)

9”'1g(0) = f: [
do n

0
} or g0 =y(®) +- y'(6)

Conversely, if g satisfies this equation then n6"g(6) = d/d6[6"y(6)] hence
n fo y"7g(y) dy = 6my(6), assuming 6"y(6) — 0 as 6 — 0. Thusa UMVUE
of y(6) is given by g(T) = »(T) + (T/n)y'(T). For example, if y(f) = 6
then g(T) =T + T/n = [(n + D/n]T; if () =1/6 then g(T)=1/T
+ (TIn)(—1/T? = (1/T)H[1 — (1/n)], assuming that n > 1.

e
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We have

1 »
Py{Ry =y, Ry =y =<5 T Ly g @D,y (maxay)
i=1

.....

hence T = max R; is sufficient. Now

k n
PAT <k} = (=), k=1,2,...,N;

N
therefore ‘
kv — (k — 1)®
A N
Thus ‘ ~

‘ N kn — Gk —1)»
Ewgn) =3 g [ |
k=1

IfExg(T) = OforallN =1,2,...,take N = 1 to conclude that g(1) = 0.
Ifgk) =0fork =1,...,N — 1, then Eyg(T) = 0 implies that

N® — (N — 1)
gN) [T]

hence g(N) = 0. By induction, g = 0 and T is complete. To find a UMVUE of
y(N), we must solve the equation

§1g(k)[kn — (k — D™ = N™p(N), N=1,2,...
or
gN)IN™ — (N — D] = N*p(N) — (N — D)*(N — 1)
Thus
N"p(N) — (N = 1)*»(N = 1)
N"—(N—1)" ’

gWN) = N=12,...

. R is clearly sufficient for itself, and

© k—1
Eyg(B) = 2. g(k) (r _ 1)(1 = 0ot

If Ezg(R) =0 for all 6 € [0, 1) then z;f: , §EEDOT =0, so that g = 0.
Thus R is complete. The above expression for Ezg(R) shows that fora UMVUE
to exist, y(6) must be expandable in a power series. Conversely, let y(6) =
> ,a,6i,0 < 6 < 1. We must find g such that

3 k—1 ®
2. g(k) (r _ 1) o= = (1 — O)y(0) = gobiei =

@0,
bi_rgz—-r
=i =

%

e
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Therefore
by

g = T
(20

For example, if y(6) = 6* then

i=r,r+1,...

(<) — o) i -1
(1 — 0 7p(6) = 68 > (—1) ( jr) 6= (J tr . )ekﬂ’ (Problem 6a,
i=0
Section 6.4)

Thus b; = 0 fori < k,and b; = (¢+7-1-%) for i > k
i—1—k\
N r—1 )
g(l)——i'_’—l‘—,

r—1

= ( otherwise

i=r+k,r+k+1,...

In particular, if £ = 1 then

Thusa UMVUEof 6 =1 —pis (R —r)/(R — 1);aUMVUEofp =1 — 0is
1-R=nNR-1 = —1/(R—1) (The maximum likelihood estimate
of p is r/R, which is biased; see Problem 3, Section 8.3.)

e 0 0 ok 0
6. () Egp(R) = P kgl p(k) n =€
Thus
°s) 6k © Bk
vl 5 =1—e? =3 (-1
,Zl k! ,2:1 k!

The UMVUE is given by

pk) = (=11 = —1if kis even
+1if k is odd

e



46628-0

330

11.

Ash 2 4/14/08 8:32 AM Page$30

SOLUTIONS TO PROBLEMS

(b) Since e % is always >0, the estimate found in part (a) looks rather silly.
If y'(k) =1 then E{[y'(R) — e 9P} < Ep{[y(R) — 912} for all 6, hence
v is inadmissible.

2 n 4 62
—_— 6 —_ - . = - P
[( z_Z1R )] Vare(n z§1 Rz) - Var, R; n
n+1 ¥ +1 + 1)2
EB[(( )T—o)] =Var9[(n )T:l @D s, T
n n n?
ET =— f y" dy = 0 (see Problem 2b),
and
n [° n6?
2 — n+1 _
ET" =5 f R Ay
Thus
Var. T — 62 n n? n62
T, = — ==
o nt2 @E D ¥ D+ 2)
Therefore
n+1 2 62 62
0| =— <«
Eg[ n d ] n(n + 2) <%
ifn>1
In the inequality [(a + b)/2]® < (a® + b%)[2, set a = p;(R) — y(6), b =

po(R) — 7(0), to obtain

R) — (6 R) — y(6)72
Eo[wl( )2 7(6) + ¢ )2 »( )} <3y 0 + £, (O] = 5, (0)

By minimality, we actually have equality. But the left side is

1lpy, (0) + py,(0) + 2E{[v1(R) — y())]y(R) — »(O)]}

= 1p,,(0) + % Covy [¥1(R), ¥2(R)]
Thus

Covy [12(R), o] = p,,(6) = [, (6)p (OF2
[Varg 9, (R) Vary v, (R)}/2

I

We therefore have equality in the Schwarz inequality, and it follows that (with
probability 1) one of the two random variables p;(R) — y(6), po(R) — y(6) isa
multiple of the other (Problem 3, Section 3.4). The multiple is 41 or —1 since
¥,(R) and y,(R) have the same variance. If the multiple is +1, we are finished,
and if it is —1, then (y;(R) + vo(R))/2 = y(6). The minimum variance is
therefore 0, hence 9, (R) = y,(R) = y(0), as desired.

e
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Section 8.6

R ‘ w a2y
1. P{f < Z: = f f fr2(x, y) de dy
0 Jo

2

1 J‘ @ 2y
= y(n/2)—1e—yl2 f a(m/2)—1g—a/2 dy dy
2m+m) /2 T (m|2)T'(nf2) J, 0

But j‘ &y x2(m/2-1e=e/2 do = (with x = uy) j'(z) (uy)\ ™/ —Le=wv/2y dy, Thus

where ‘
= 1 /2)—1‘[Oo (m+n)/2—1o—(y/2)(1+2) g
@) = S AT G T D) .Y € Y
_ T[(m + n)/2]xtm/2-1 2(m+n)/2 ‘
T 2mn) 2T (m )T (nf2) (1 + z)m+m/2
1 (m/2)—1
= Bz ) 4 ¥ © 20
If

W_Rllm_an th )_hm m
R w0 =G

= fun(®), as desired

2. If R is chi-square with n degrees of freedom then R = R,? + - - - + R,? where
the R; are independent and normal (0, 1). Thus E(R) = n, and Var R = n Var
R? = n[E(R?) — [E(R)?] = n(3 — 1) =2n. If R has the ¢ distribution with
n degrees of freedom, then E(R) = 0 by symmetry, unless #» = 1, in which case
R has a Cauchy density and E(R) does not exist. Now in the integral

© 22 1
| Tremmm e o e

so that
—2x[n —2xy?
YT @ e "
But
a 2 11—y
—=_-1, h dy = ——= [— 2 y2dx
" ” ence ly v ” Y

The integral becomes

1 (1 —y - y 1
n ntl)/2 v/ [ _ dy
ZL ( y )y \/l—yy2

1
— 1 f ymD-2(1 — y)l/2 dy = %”3/2/3("21 -1, E)

0 .

e
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Thus -
(= + D/2] B2 T'[(#2) — 11I'(3/2)
Vam T(nf2) Tl(n + 1)/2]

B nf2 _n
Twy -1 n-2°

If n = 2, the same calculation gives Var R = .

A similar calculation shows that if R has the F(m, n) distribution then E(R) =
nfn —2) if n>2, E(R) = o if n =1 or 2, Var R = [2n?(m + n — 2)]/
mm — 2)%(n — 4)]ifn >4,VarR = o if n = 3 or 4.

Var R = E(R?) =

n>2
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Index

Absolutely continuous random variable, 53
Absolutely continuous random vector, 72
Actions, set of, 242

Admissible and inadmissible tests, 247
Admissible risk points, 248

Alternative, simple and composite, 243
Average value, see Expectation

Bayes estimate, 260
with constant risk, 262
with quadratic loss function, 260
Bayes risk, 244, 260
Bayes test, 244
Bayes’ theorem, 36, 150
Bernoulli distribution, see Distribution
Bernoulli trials, 28, 38, 58, 128, 151, 175,
177,187, 190, 195, 207, 215
generalized, 29
see also Distribution, binomial
Beta distribution, see Distribution
Beta function, 133, 261
Binomial distribution, see Distribution
Boolean algebra, 3ff
Borel-Cantelli lemma, 205
second, 209
Borel measurable function, 83
Borel sets, 47, 50
Bose-Finstein assumption; 21

Cauchy distribution, see Distribution
Central limit theorem, 169ff, 171
Characteristic function(s), 154ff
correspondence, theorem for, 156
properties of, 166ff
of a random vector, 279
Chebyshev’s inequality, 126, 127, 129, 206
208

>

Coin tossing, see Bernoulli trials; Distribution,
binomial
Combinatorial problems, 15ff
fallacies in, 39ff
multiple counting in, 22
Complement of an event, 4
Conditional density, 136, 148
Conditional distribution function, 139, 140,
148
Conditional expectation, 140ff
Conditional probability, 33ff, 130ff
Conditional probability function, 98, 142
Confidence coefficient, 276
Confidence interval, 276
Confidence set, 278
Continuous random variable, 69
Convergence, almost surely (almost every-
where), 204—206, 208, 210
in distribution, 170, 171, 175,176
in probability, 171,175, 176, 205, 208,
210
Convex function, 262
Convexity of the risk set, 248
Convolution theorem, 164
Correlation, 119ff
Correlation coefficient, 120
Covariance, 119
Covariance function, 203
Covariance matrix, 281
Cylinder, 180
measurable, 180 .

Decision function, 242, 243
nonrandomized, 242
Decision scheme, 151
DeMorgan laws, 7,9, 11
Density function(s), 53

333
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conditional, 136, 148
joint, 70ff, 181
marginal, 78
Difference equation, 24, 39, 182, 186, 195
characteristic equation of, 183
Discrete probability space, 15
Discrete random variables, 51, 95ff
Disjoint events, 5
Distribution, 95
Bernoulli, 256, 264, 266, 269, 272
beta, 260, 268
binomial, 29, 32, 95,97-99, 113, 122, 141,
176, 256, 258, 260, 264, 268
Cauchy, 161, 166, 264
chi-square, 165, 275, 276, 278
exponential, 56, 65, 93,110,111, 113,129,
139, 150-152, 166, 168, 196, 200—
202, 256, 263, 264
F, 278
gamma, 166, 267, 268
geometric, 195, 196
hypergeometric, 33, 256
multidimensional Gaussian (joint Gaussian),
279ff
negative binomial, 196, 264, 268, 272
normal (Gaussian), 87, 88,92, 94, 108,
113,118,124-126,162, 165, 166,
171,173-176, 252,256, 267, 268,
271, 274-276,278
Poisson, 96—99, 114, 152, 163, 169, 197,
198, 200, 202, 256, 264, 266, 268,
270,272
t, 277,278
uniform, 54, 73, 76, 84, 92,93, 113, 118,
141, 149, 150-152, 165, 208, 257,
263, 264, 267,271,272
Distribution function(s), 52
conditional, 139, 140, 148
joint, 72
properties of, 66ff
Dominated convergence theorem, 231

Essentially constant random variable, 85,
115
Estimate, 258
Bayes, 260
with constant risk, 262
inadmissible, 272
maximum likelihood, 258
minimax, 262
randomized, 258, 263
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INDEX

risk function of, 261
unbiased, 268
uniformly minimum variance unbiased
(UMVUE), 269
Estimation, 152, 242, 243, 258ff
Event(s), 2, 11
algebra of, 3ff
complement of, 4
contracting sequence of, 67
exhaustive, 35
expanding sequence of, 66
impossible, 3, 55
independent, 26, 27
intersection of, 4
mutually exclusive (disjoint), 5
union of, 4
upper and lower limits of sequence of, 204,
209
sure (certain), 3
Expectation, 100ff
conditional, 140ff
general definition of, 103
properties of, 114ff
Exponential distribution, see Distribution

F distribution, see Distribution
Factorization theorem, 266
Fatou’s lemma, 230
Fermi-Dirac assumption, 20
Fourier series, 167

Fourier transform, 155

Gambler’s ruin problem, 182ff, 235
Gamma distribution, see Distribution
Gamma function, 109, 133
Gaussian distribution, see Distribution, normal
Generating function, 169, 191ff
moments obtained from, 192
Geometric distribution, see Distribution

Hypergeometric distribution, see Distribution
Hypothesis, 243ff
a priori probability of, 244
composite, 243
null, 243
simple, 243
Hypothesis testing, 151, 242, 243ff
fundamental theorem of, 246
see also Test

Independence, 25£f

e
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INDEX

Independence of sample mean and variance in
normal sampling, 274

Indepdndent events, 26, 27

Independent random variables, 80

Indicators, 122ff

Intersection of events, 4

Jensen’s inequality, 262

Joint characteristic function, 279

Joint density function, 70ff, 181

Joint distribution function, 72

Joint probability function, 76, 96, 180, 181

Kolmogorov extension theorem, 180

Laplace transform, 155
properties of, 156, 157
Lattice distribution, 169
Law of large numbers, strong, 129, 203, 206,
207
weak, 128,169,171, 207
Lebesgue integral, 114
Level of a test, 246
Liapounov condition, 175
Likelihood ratio, 245
test (LRT), 245
Limit inferior (lower limit), 204, 209
Limit superior (upper limit), 204, 209
Linearly dependent random variables, 121,
281
Loss function (cost function), 242
quadratic, 260

Marginal densities, 78
Markov chain(s), 211ff
closed sets of, 224
cyclically moving subclasses of, 227
definition of, 214
equivalence classes of states of, 223
first entrance theorem for, 220
initial distribution of, 213
limiting probabilities of, 230ff
state distribution of, 214
state space of, 213
states of, 220ff
aperiodic, periodic, 229
essential, 229
mean recurrence time of, 230
period of, 226—229
recurrent (persistent), 221ff
recurrent null, 233

335

recurrent positive, 233
transient, 221ff
stationary distribution for, 236
steady state distribution for, 215, 237
stopping time for, 217 :
strong Markov property of, 219
transition matrix of, 214
n-step, 214
transition probabilities of, 214
Maximum likelihood estimate, 258
Maxwell-Boltzmann assumption, 20
Median, 112
Mean, see Expectation
Minimax estimate, 262
Minimax test, 250
Moment-generating property of character-
istic functions, 167, 168
Moments, 107
central, 108
joint, 119
obtained from generating functions, 192
Multinomial probability function, 30, 98
Mutually exclusive events, 5

Negative binomial distribution, see Distri-
bution

Negative part of a random variable, 104

Neyman-Pearson lemma, 246

Normal distribution, see Distribution

Observable, 242
Order statistics, 91

Partial fraction expansion, 159
Poisson distribution, see Distribution
Poisson random process, 196ff
Poker, 19, 23, 40
Positive part of a random variable, 104
Power function of a test, 253
Power of a test, 246
Probability, 10ff
a posteriori, 36
classical definition of, 1, 13, 16
conditional, 33ff
frequency definition of, 2, 13
Probability function, 51
conditional, 98, 142
joint, 76, 96, 180, 181
Probability measure(s), 12
consistent, 180
Probability space, 12

e
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discrete, 15
Queueing, 216

Random process, 196
Random telegraph signal, 203
Random variable(s), 46ff
absolutely continuous, 53
central moments of, 108
characteristic function of, 154ff
classification of, S1ff
continuous, 69
definition of, 48, 50
degenerate (essentially constant), 85, 115
density function of, 53
discrete, 51, 95ff
functions of, 58ff, 84, 85ff, 94
generating function of, 192ff
independent, 80
infinite sequences of, 178ff
linearly dependent, 121, 281
moments of, 107
positive and negative parts of, 104
probability function of, 51
simple, 101
Random vector, 72
absolutely continuous, 72
Random walk, 184ff
combinatorial approach to, 186ff
simple, 184
with absorbing barriers, 184, 185, 215,
228, 240
with no barriers, 185, 186191, 193—
195, 215,228, 240
average length of time required to
return to 0 in, 186, 191, 195
distribution of first return to 0 in, 189
first passage times in, 190
probability of eventual return to O in,
185
with reflecting barriers, 229, 240
Rao-Blackwell theorem, 263
Recurrent (persistent) states of a Markov
chain, 221
Reflection principle, 188
Renewal theorem, 235
Risk function, 261
Risk set, 248

Sample mean, 259, 274
Sample space, 2

INDEX

Sample variance, 259, 274
Samples, 16ff
ordered, with replacement, 16
without replacement, 16
unordered, with replacement, 18
without replacement, 17
Sampling from a normal population, 274
Schwarz inequality, 119, 121, 207
Sigma field, 11
Simple random variable, 101
Size of a test, 246
Standard deviation, 108
States of nature, 241
Statistic, for a random variable, 265
complete, 269
sufficient, 265
Statistical decision model, 241
Statistics, 24 1ff
Stirling’s formula, 43, 191
Stochastic matrix, 212
Stochastic process, 196
Stopping times, 21 7ff
Strong law of large numbers, 129, 203, 206,
207
Strong Markov property, 219

t Distribution, see Distribution
Test, 243
acceptance region of, 278
admissible and inadmissible, 247
Bayes, 244
level of, 246
likelihood ratio (LRT), 245
minimax, 250
power of, 246
power function of, 253
rejection region (critical region) for, 243
risk set of, 248
size of, 246
type 1 and type 2 errors of, 243
uniformly most powerful (UMP), 253
Total expectation, theorem of, 144, 149, 152,
153
Total probability, theorem of, 35, 90, 130,
132,134,150, 182, 214
Transient states of a Markov chain, 221

Uniform distribution, see Distribution
Uniformly most powerful (UMP) test, 253
Union of events, 4

Unit step function, 157

e



46628-0 Ash 2 4/14/08 8:32 AM Page$37

INDEX 337
Variance, 108, 155-118 Weak law of large numbers, 128, 169, 171,
Venn diagrams, 4 207
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