Solutions to Homework #2 Mathematics 5010–1, Summer 2006

Department of Mathematics, University of Utah May 31, 2006

Problem 17, Chapter 1 from Assignment 1: The solution to this one was missing, so it is added here.

Experiment #1: You have to choose 7 children to distribute the gifts to— $\binom{10}{7}$ ways to do this.

Experiment #2: Distribute 7 gifts, one to each of the chosen children—7! ways.

Total=
$$7!\binom{10}{7} = \boxed{10!/3!}$$

Chapter 2 Problems

#15, p. 57. (a) Choose the suit (4 ways) and then distribute the cards $\binom{13}{5}$ ways). $Pr = 4\binom{13}{5}/\binom{52}{5}$

- **(b)** Choose the pair (13 ways) and distribute them $\binom{4}{2}$ ways). Then choose the other 3 $\binom{12}{3}$ ways), and distribute them $\binom{4^3}{3}$ ways). Pr = $\left[13\binom{4}{2}\binom{12}{3}4^3/\binom{52}{5}\right]$.
- (c) Choose the pair faces $(\binom{13}{2})$ ways) and distribute them $(\binom{4}{2})^2$ ways). Then choose and distribute the last card (44 ways). $\Pr = \left[\binom{13}{2} \binom{4}{2}^2 44 / \binom{52}{5} \right]$.
- (d) Choose the triple (13 ways) and distribute them $\binom{4}{3}$ ways). Then choose the other two $\binom{12}{2}$ and distribute them (4^2 ways). Pr = $\left[13\binom{4}{3}\binom{12}{2}4^2/\binom{52}{5}\right]$.
- (e) Choose the four (13 ways) and distribute them (1 way). Then choose and deal the other (48 ways). Pr = $\left[13 \times 48 / \binom{52}{5}\right]$.

Chapter 2 Theoretical Problems

#15, p. 62. Choose k white balls $\binom{M}{k}$ and r black balls $\binom{N}{r}$. Pr = $\binom{M}{k}\binom{N}{r}/\binom{M+N}{k+r}$.

Chapter 3 Problems

#7, **p. 112.** Let G_i denote the event that the *i*th child is a girl. Note that the event {at least one boy} is the complement of $G_1 \cap G_2$. Therefore,

$$P\{\text{at least one boy}\} = 1 - P(G_1 \cap G_2) = 1 - \frac{1}{4} = \frac{3}{4}.$$

On the other hand,

$$P\{\text{exactly one boy}\} = P(G_1 \cap G_2^c) + P(G_1^c \cap G_2) = \frac{1}{4} + \frac{1}{4} = \frac{1}{2}.$$

Hence,

$$P\left(\text{exactly one boy} \mid \text{at least one boy}\right) = \frac{P(\{\text{exactly one boy}\} \cap \{\text{at least one boy}\})}{P\{\text{at least one boy}\}}$$
$$= \frac{P\{\text{exactly one boy}\}}{P\{\text{at least one boy}\}} = \frac{1/2}{3/4} = \boxed{\frac{2}{3}}.$$

[Why is this answering the question?]

#15, p. 112. Let $S = \{\text{smoker}\}\$ and $E = \{\text{ectopic pregnancy develops}\}\$. We know that $P(E \mid S) = 2P(E \mid S^c)$. We also know that P(S) = 0.32. We wish to know $P(S \mid E)$.

We observe that $P(E \mid S) = P(E \cap S)/P(S) = P(E \cap S)/0.32$. Also, $P(E \mid S^c) = P(E \cap S^c)/0.68$. Therefore,

$$\frac{P(E \cap S)}{0.32} = 2 \times \frac{P(E \cap S^c)}{0.68} = \frac{P(E \cap S^c)}{0.34}.$$

On the other hand, $P(E \cap S) + P(E \cap S^c) = P(E)$. Therefore,

$$\frac{P(E \cap S)}{0.32} = \frac{P(E)}{0.34} - \frac{P(E \cap S)}{0.34}.$$

Equivalently,

$$P(E \cap S) \times \frac{0.66}{0.32 \times 0.34} = P(E \cap S) \left[\frac{1}{0.32} + \frac{1}{0.34} \right] = \frac{P(E)}{0.34}.$$

Equivalently,

$$P(S \cap E) = P(E) \times \frac{0.32}{0.66}.$$

Hence,

$$P(S|E) = \frac{0.32}{0.66} = \boxed{0.\overline{48}}$$

#20, p. 113. Let $F = \{\text{female}\}\$ and $C = \{\text{computer science majors}\}\$. We know that P(F) = 0.52, P(C) = 0.05,and $P(F \cap C) = 0.02.$

(a)
$$P(F|C) = P(F \cap C)/P(C) = 0.02/0.05 = (2/5)$$
.

(b)
$$P(C|F) = P(F \cap C)/P(F) = 0.02/0.52 = \boxed{1/16}$$

#26, p. 114. Let $M = \{\text{man}\}$ and $C = \{\text{colorblind}\}$. We know that P(M) = 0.5, P(C|M) = 0.05, and $P(C|M^c) = 0.0025$. Then

$$P(M|C) = P(C|M) \frac{P(M)}{P(C)} = 0.05 \times \frac{0.5}{P(C|M)P(M) + P(C|M^c)P(M^c)}$$
$$= 0.05 \times \frac{0.5}{0.05 \times 0.5 + 0.0025 \times 0.5} \approx \boxed{0.95238}.$$

#38, p. 115. Let T and W stand for the obvious events. We know that P(T) = 0.5, $P(W \mid T^c) = 5/12$, and $P(W \mid T) = 3/15 = 1/5$. Then,

$$P(T|W) = P(W|T)\frac{P(T)}{P(W)} = \frac{1}{5} \times \frac{0.5}{P(W)} = \frac{1}{10P(W)}.$$

By Bayes' formula,

$$P(W) = P(W \mid T)P(T) + P(W \mid T^c)P(T^c) = \left(\frac{1}{5} \times 0.5\right) + \left(\frac{5}{12} \times 0.5\right) = \frac{9}{40}.$$

Therefore, $P(T|W) = \boxed{4/9}$.

#59, p. 118. (a) $P(HHHH) = p^4$

- **(b)** $P(\text{THHT}) = p^2(1-p)^2$
- (c) The only way that HHHH occurs before THHH is if we roll HHHH in the first tosses. So the answer is the same as (a).