1. Two important properties

Theorem 27.1 (Uniqueness). If X and Y are two random variables—discrete or continuous—with moment generating functions M_X and M_Y, and if there exists $\delta > 0$ such that $M_X(t) = M_Y(t)$ for all $t \in (-\delta, \delta)$, then $M_X = M_Y$ and X and Y have the same distribution. More precisely:

1. X is discrete if and only if Y is, in which case their mass functions are the same;
2. X is continuous if and only if Y is, in which case their density functions are the same.

Theorem 27.2 (Lévy’s continuity theorem). Let X_n be a random variables—discrete or continuous—with moment generating functions M_n. Also, let X be a random variable with moment generating function M. Suppose there exists $\delta > 0$ such that:

1. If $-\delta < t < \delta$, then $M_n(t), M(t) < \infty$ for all $n \geq 1$; and
2. $\lim_{n \to \infty} M_n(t) = M(t)$ for all $t \in (-\delta, \delta)$, then

$$\lim_{n \to \infty} F_{X_n}(a) = \lim_{n \to \infty} P\{X_n \leq a\} = P\{X \leq a\} = F_X(a),$$

for all numbers a at which F_X is continuous.

Example 27.3 (Law of rare events). Suppose $X_n = \text{binom}(n, \lambda/n)$, where $\lambda > 0$ is fixed, and $n \geq \lambda$. Then, recall that

$$M_{X_n}(t) = (q + pe^{-t})^n = \left(1 - \frac{\lambda}{n} + \frac{\lambda e^{-t}}{n}\right)^n \to \exp(-\lambda + \lambda e^{-t}).$$
Note that the right-most term is \(M_X(t) \), where \(X = \text{Poisson}(\lambda) \). Therefore, by Lévy’s continuity theorem,

\[
\lim_{n \to \infty} \Pr \{ X_n \leq a \} = \Pr \{ X \leq a \},
\]

(20)

at all \(a \) where \(F_X \) is continuous. But \(X \) is discrete and integer-valued. Therefore, \(F_X \) is continuous at \(a \) if and only if \(a \) is not a nonnegative integer.

If \(a \) is a nonnegative integer, then we can choose a non-integer \(b \in (a, a+1) \) to find that

\[
\lim_{n \to \infty} \Pr \{ X_n \leq b \} = \Pr \{ X \leq b \}.
\]

Because \(X_n \) and \(X \) are both non-negative integers, \(X_n \leq b \) if and only if \(X_n \leq a, \) and \(X \leq b \) if and only if \(X \leq a. \) Therefore, (20) holds for all \(a. \)

Example 27.4 (The de Moivre–Laplace central limit theorem). Suppose \(X_n = \text{binomial}(n, p), \) where \(p \in (0, 1) \) is fixed, and define \(Y_n \) to be its standardization. That is, \(Y_n = (X_n - \text{EX}_n)/\sqrt{\text{Var}X_n}. \) Alternatively,

\[
Y_n = \frac{X_n - np}{\sqrt{npq}}.
\]

We know that for all real numbers \(t, \)

\[
M_{X_n}(t) = (q + pe^{-t})^n.
\]

We can use this to compute \(M_{Y_n} \) as follows:

\[
M_{Y_n}(t) = \mathbb{E} \left[\exp \left(t \cdot \frac{X_n - np}{\sqrt{npq}} \right) \right].
\]

Recall that \(X_n = I_1 + \cdots + I_n, \) where \(I_j \) is one if the \(j \)th trial succeeds; else, \(I_j = 0. \) Then, \(I_1, \ldots, I_n \) are independent binomial(1, \(p \))’s, and \(X_n - np = \sum_{j=1}^{n} (I_j - p). \) Therefore,

\[
\mathbb{E} \left[\exp \left(t \cdot \frac{X_n - np}{\sqrt{npq}} \right) \right] = \mathbb{E} \left[\frac{t}{\sqrt{npq}} \sum_{j=1}^{n} (I_j - p) \right]
\]

\[
= \left(\mathbb{E} \left[\exp \left(\frac{t}{\sqrt{npq}} (I_1 - p) \right) \right] \right)^n
\]

\[
= \left(p \exp \left\{ \frac{t}{\sqrt{pq}} (1 - p) \right\} + q \exp \left\{ -\frac{t}{\sqrt{pq}} (0 - p) \right\} \right)^n
\]

\[
= \left(p \exp \left\{ t \sqrt{\frac{q}{np}} \right\} + q \exp \left\{ -t \sqrt{\frac{p}{nq}} \right\} \right)^n.
\]
According to the Taylor–MacLaurin expansion,
\[
\exp \left\{ t \sqrt{\frac{q}{np}} \right\} = 1 + t \sqrt{\frac{q}{np}} + \frac{t^2 q}{2np} + \text{smaller terms},
\]
\[
\exp \left\{ -t \sqrt{\frac{p}{nq}} \right\} = 1 - t \sqrt{\frac{p}{nq}} + \frac{t^2 p}{2nq} + \text{smaller terms}.
\]
Therefore,
\[
p \exp \left\{ t \sqrt{\frac{q}{np}} \right\} + q \exp \left\{ -t \sqrt{\frac{p}{nq}} \right\} = p \left(1 + t \sqrt{\frac{q}{np}} + \frac{t^2 q}{2np} + \cdots \right) + q \left(1 - t \sqrt{\frac{p}{nq}} + \frac{t^2 p}{2nq} + \cdots \right)
\]
\[
= p + t \sqrt{\frac{pq}{n} + \frac{t^2 q}{2np}} + \cdots + q - t \sqrt{\frac{pq}{n} + \frac{t^2 p}{2nq}} + \cdots
\]
\[
= 1 + \frac{t^2}{2n} + \text{smaller terms}.
\]
Consequently,
\[
M_{X_n}(t) = \left(1 + \frac{t^2}{2n} + \text{smaller terms} \right)^n \rightarrow \exp \left(-\frac{t^2}{2} \right).
\]
We recognize the right-hand side as \(M_Y(t) \), where \(Y = N(0, 1) \). Because \(F_Y \) is continuous, this prove the central limit theorem of de Moivre: For all real numbers \(a \),
\[
\lim_{n \to \infty} P \{ Y_n \leq a \} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{a} e^{-x^2/2} \, dx.
\]

2. Jointly distributed continuous random variables

Definition 27.5. We say that \((X, Y)\) is jointly distributed with joint density function \(f \) if \(f \) is piecewise continuous, and for all “nice” two-dimensional sets \(A \),
\[
P\{(X, Y) \in A\} = \int\int_A f(x, y) \, dx \, dy.
\]
If \((X, Y)\) has a joint density function \(f \), then:

1. \(f(x, y) \geq 0 \) for all \(x \) and \(y \);
2. \(\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) \, dx \, dy = 1 \).

Any function \(f \) of two variables that satisfies these properties will do.
Example 27.6 (Uniform joint density). Suppose A is a subset of the plane that has a well-defined finite area $|A| > 0$. Define

$$f(x, y) = \begin{cases} \frac{1}{|A|} & \text{if } (x, y) \in A, \\ 0 & \text{otherwise.} \end{cases}$$

Then, f is a joint density function, and the corresponding random vector (X, Y) is said to be distributed uniformly on A. Moreover, for all planar sets E with well-defined areas,

$$P\{(X, Y) \in E\} = \int_E \int_{E \cap A} \frac{1}{|A|} \, dx \, dy = \frac{|E \cap A|}{|A|}.$$

See Figure 1.

Example 27.7. Suppose (X, Y) has joint density

$$f(x, y) = \begin{cases} Cxy & \text{if } 0 < y < x < 1, \\ 0 & \text{otherwise.} \end{cases}$$
2. Jointly distributed continuous random variables

Let us first find C, and then $P\{X \leq 2Y\}$. To find C:

$$1 = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) \, dx \, dy = \int_{0}^{1} \int_{0}^{x} Cxy \, dy \, dx$$

$$= C \int_{0}^{1} x \left(\int_{0}^{x} y \, dy \right) \, dx = C \int_{0}^{1} \frac{x^{3}}{2} \, dx = C \frac{1}{2} \cdot \frac{1}{3} = C \frac{1}{6}$$

Therefore, $C = 8$, and hence

$$f(x, y) = \begin{cases} 8xy & \text{if } 0 < y < x < 1, \\ 0 & \text{otherwise.} \end{cases}$$

Now

$$P\{X \leq 2Y\} = P\{(X, Y) \in A\} = \iiint_{A} f(x, y) \, dx \, dy,$$

where A denotes the collection of all points (a, b) in the plane such that $a \leq 2b$. Therefore,

$$P\{X \leq 2Y\} = \int_{0}^{1} \int_{x/2}^{x} 8xy \, dy \, dx = \frac{3}{32}.$$

See Figure 2.