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Lecture 9

1. The geometric distribution, continued

1.1. An example. A couple has children until their first son is born. Sup-
pose the sexes of their children are independent from one another [unreal-
istic], and the probability of girl is 0.6 every time [not too bad]. Let X
denote the number of their children to find then that X = Geom(0.4). In

particular,

P{X <3} =f(1)+ f(2)+ f(3)
=p+p(l—p)+p(l—p)
=p[l+1-p+(1-p)?
=p[3-3p+p?
= 0.784.
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1.2. The tail of the distribution. Now you may be wondering why these
random variables are called “geometric.” In order to answer this, consider
the tail of the distribution of X (probability of large values). Namely, for
alln > 1,

P{X>n}=) p(l-p)"

j=n

=p Y, (1-pt

k=n—1

Let us recall an elementary fact from calculus.
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Lemma 9.1 (Geometric series). If r € (0,1), then for alln >0,

(o] n

< T
E rl = :
. 1—r
j=n

Proof. Let s, = r" + "l 4 ... = Z;’in rJ. Then, we have two relations
between s, and s,41:

(1) rspn =272 11 17 = s,41; and
(2) Spt1 = Sn — 1™
Plug (2) into (1) to find that rs,, = s, — ™. Solve to obtain the lemma. [
Return to our geometric random variable X to find that

(1_p)n71 _ n—
T-(—p) (1—p .

That is, P{X > n} vanishes geometrically fast as n — oc.

P{X>n}=p

In the couples example (§1.1),
P{X >n}=0.6"" for all n > 1.

2. The negative binomial distribution

Suppose we are tossing a p-coin, where p € (0,1) is fixed, until we obtain
r heads. Let X denote the number of tosses needed. Then, X is a discrete
random variable with possible values r,7 + 1,7 +2,... . When r = 1, then
X is Geom(p). In general,

-1
<x 1)pr(1—p)xr fx=rr+1r+2,...,
r_

0 otherwise.

fz) =

This X is said to have a negative binomial distribution with parameters r
and p. Note that our definition differs slightly from that of your text (p.
117).

3. The Poisson distribution

Choose and fix a number A > 0. A random variable X is said to have the
Poisson distribution with parameter A (written Poiss(\)) if its mass function
is

e AN
ifz=0,1,...,
f@y=4 a2 "7 (7)

0 otherwise.
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In order to make sure that this makes sense, it suffices to prove that >~ f(z) =
1, but this is an immediate consequence of the Taylor expansion of e, viz.,
© Ak
pog
k!
k=0

3.1. Law of rare events. Is there a physical manner in which Poiss())
arises naturally? The answer is “yes.” Let X = Bin(n,A/n). For instance,
X could denote the total number of sampled people who have a rare disease
(population percentage = A/n) in a large sample of size n. Then, for all
fixed integers kK =0,...,n,

-

Poisson’s “law of rare events” states that if n is large, then the distribu-
tion of X is approximately Poiss(\). In order to deduce this we need two
computational lemmas.

Lemma 9.2. For all z € R,

lim <1 + E>n = e”°.
n

n—oo

Proof. Because the natural logarithm is continuous on (0, c0), it suffices to
prove that

lim nln <1 + E) = 2. 9)
n—oo n
By Taylor’s expansion,
2
ln(l—l—i) 23—1—9—,
n n 2
where 6 lies between 0 and z/n. Equivalently,

z z z 22
NN TS
n n n  2n?

Multiply all sides by n and take limits to find (9), and thence the lemma. [

Lemma 9.3. If k > 0 is a fized integer, then

(n) n—k asn — oo
k k! '

where a, ~ b, means that lim, o (a,/by) = 1.



Proof. If n > k, then

n! ~nn—1)---(n—-k+1)
nk(n — k) nk
n n-—1 n—k+1
= — X X oo X —m
n n n
—1 as n — o0.

The lemma follows upon writing out (Z) and applying the preceding to that
expression. O

Thanks to Lemmas 9.2 and 9.3, and to (8),

nFAE e AR
Ix(k) ~ 3rme = o

That is, when n is large, X behaves like a Poiss(\), and this proves our
assertion.



