Lecture 9

1. The geometric distribution, continued

1.1. An example. A couple has children until their first son is born. Suppose the sexes of their children are independent from one another [unrealistic], and the probability of girl is 0.6 every time [not too bad]. Let X denote the number of their children to find then that X = Geom(0.4). In particular,

$$P\{X \le 3\} = f(1) + f(2) + f(3)$$

= $p + p(1-p) + p(1-p)^2$
= $p [1 + 1 - p + (1-p)^2]$
= $p [3 - 3p + p^2]$
= 0.784.

1.2. The tail of the distribution. Now you may be wondering why these random variables are called "geometric." In order to answer this, consider the tail of the distribution of X (probability of large values). Namely, for all $n \geq 1$,

$$P\{X \ge n\} = \sum_{j=n}^{\infty} p(1-p)^{j-1}$$
$$= p \sum_{k=n-1}^{\infty} (1-p)^{k}.$$

Let us recall an elementary fact from calculus.

Lemma 9.1 (Geometric series). If $r \in (0, 1)$, then for all $n \ge 0$,

$$\sum_{j=n}^{\infty} r^j = \frac{r^n}{1-r}$$

Proof. Let $s_n = r^n + r^{n+1} + \cdots = \sum_{j=n}^{\infty} r^j$. Then, we have two relations between s_n and s_{n+1} :

(1) $rs_n = \sum_{j=n+1}^{\infty} r^j = s_{n+1}$; and (2) $s_{n+1} = s_n - r^n$.

Plug (2) into (1) to find that $rs_n = s_n - r^n$. Solve to obtain the lemma. \Box

Return to our geometric random variable X to find that

$$P\{X \ge n\} = p\frac{(1-p)^{n-1}}{1-(1-p)} = (1-p)^{n-1}.$$

That is, $P\{X \ge n\}$ vanishes geometrically fast as $n \to \infty$.

In the couples example $(\S1.1)$,

$$P\{X \ge n\} = 0.6^{n-1}$$
 for all $n \ge 1$.

2. The negative binomial distribution

Suppose we are tossing a *p*-coin, where $p \in (0, 1)$ is fixed, until we obtain r heads. Let X denote the number of tosses needed. Then, X is a discrete random variable with possible values $r, r + 1, r + 2, \ldots$. When r = 1, then X is Geom(p). In general,

$$f(x) = \begin{cases} \binom{x-1}{r-1} p^r (1-p)^{x-r} & \text{if } x = r, r+1, r+2, \dots, \\ 0 & \text{otherwise.} \end{cases}$$

This X is said to have a *negative binomial distribution with parameters* r and p. Note that our definition differs slightly from that of your text (p. 117).

3. The Poisson distribution

Choose and fix a number $\lambda > 0$. A random variable X is said to have the *Poisson distribution with parameter* λ (written Poiss(λ)) if its mass function is

$$f(x) = \begin{cases} \frac{e^{-\lambda}\lambda^x}{x!} & \text{if } x = 0, 1, \dots, \\ 0 & \text{otherwise.} \end{cases}$$
(7)

In order to make sure that this makes sense, it suffices to prove that $\sum_{x} f(x) = 1$, but this is an immediate consequence of the Taylor expansion of e^{λ} , viz.,

$$e^{\lambda} = \sum_{k=0}^{\infty} \frac{\lambda^k}{k!}.$$

3.1. Law of rare events. Is there a physical manner in which $\text{Poiss}(\lambda)$ arises naturally? The answer is "yes." Let $X = \text{Bin}(n, \lambda/n)$. For instance, X could denote the total number of sampled people who have a rare disease (population percentage $= \lambda/n$) in a large sample of size n. Then, for all fixed integers $k = 0, \ldots, n$,

$$f_X(k) = \binom{n}{k} \left(\frac{\lambda}{n}\right)^k \left(1 - \frac{\lambda}{n}\right)^{n-k}.$$
(8)

Poisson's "law of rare events" states that if n is large, then the distribution of X is approximately $Poiss(\lambda)$. In order to deduce this we need two computational lemmas.

Lemma 9.2. For all $z \in \mathbf{R}$,

$$\lim_{n \to \infty} \left(1 + \frac{z}{n} \right)^n = e^z.$$

Proof. Because the natural logarithm is continuous on $(0, \infty)$, it suffices to prove that

$$\lim_{n \to \infty} n \ln\left(1 + \frac{z}{n}\right) = z.$$
(9)

By Taylor's expansion,

$$\ln\left(1+\frac{z}{n}\right) = \frac{z}{n} + \frac{\theta^2}{2},$$

where θ lies between 0 and z/n. Equivalently,

$$\frac{z}{n} \le \ln\left(1 + \frac{z}{n}\right) \le \frac{z}{n} + \frac{z^2}{2n^2}$$

Multiply all sides by n and take limits to find (9), and thence the lemma. \Box

Lemma 9.3. If $k \ge 0$ is a fixed integer, then

$$\binom{n}{k} \sim \frac{n^k}{k!} \qquad as \ n \to \infty.$$

where $a_n \sim b_n$ means that $\lim_{n\to\infty} (a_n/b_n) = 1$.

Proof. If $n \ge k$, then

$$\frac{n!}{n^k(n-k)!} = \frac{n(n-1)\cdots(n-k+1)}{n^k}$$
$$= \frac{n}{n} \times \frac{n-1}{n} \times \cdots \times \frac{n-k+1}{n}$$
$$\to 1 \qquad \text{as } n \to \infty.$$

The lemma follows upon writing out $\binom{n}{k}$ and applying the preceding to that expression.

Thanks to Lemmas 9.2 and 9.3, and to (8),

$$f_X(k) \sim \frac{n^k}{k!} \frac{\lambda^k}{n^k} e^{-\lambda} = \frac{e^{-\lambda} \lambda^k}{k!}.$$

That is, when n is large, X behaves like a $\mathrm{Poiss}(\lambda),$ and this proves our assertion.