
Lecture 9

1. The geometric distribution, continued

1.1. An example. A couple has children until their first son is born. Sup-
pose the sexes of their children are independent from one another [unreal-
istic], and the probability of girl is 0.6 every time [not too bad]. Let X
denote the number of their children to find then that X = Geom(0.4). In
particular,

P{X ≤ 3} = f(1) + f(2) + f(3)

= p + p(1− p) + p(1− p)2

= p
[
1 + 1− p + (1− p)2

]

= p
[
3− 3p + p2

]

= 0.784.

1.2. The tail of the distribution. Now you may be wondering why these
random variables are called “geometric.” In order to answer this, consider
the tail of the distribution of X (probability of large values). Namely, for
all n ≥ 1,

P{X ≥ n} =
∞∑

j=n

p(1− p)j−1

= p
∞∑

k=n−1

(1− p)k.

Let us recall an elementary fact from calculus.
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Lemma 9.1 (Geometric series). If r ∈ (0 , 1), then for all n ≥ 0,
∞∑

j=n

rj =
rn

1− r
.

Proof. Let sn = rn + rn+1 + · · · =
∑∞

j=n rj . Then, we have two relations
between sn and sn+1:

(1) rsn =
∑∞

j=n+1 rj = sn+1; and
(2) sn+1 = sn − rn.

Plug (2) into (1) to find that rsn = sn− rn. Solve to obtain the lemma. !

Return to our geometric random variable X to find that

P{X ≥ n} = p
(1− p)n−1

1− (1− p)
= (1− p)n−1.

That is, P{X ≥ n} vanishes geometrically fast as n→∞.
In the couples example (§1.1),

P{X ≥ n} = 0.6n−1 for all n ≥ 1.

2. The negative binomial distribution

Suppose we are tossing a p-coin, where p ∈ (0 , 1) is fixed, until we obtain
r heads. Let X denote the number of tosses needed. Then, X is a discrete
random variable with possible values r, r + 1, r + 2, . . . . When r = 1, then
X is Geom(p). In general,

f(x) =






(
x− 1
r − 1

)
pr(1− p)x−r if x = r, r + 1, r + 2, . . . ,

0 otherwise.

This X is said to have a negative binomial distribution with parameters r
and p. Note that our definition differs slightly from that of your text (p.
117).

3. The Poisson distribution

Choose and fix a number λ > 0. A random variable X is said to have the
Poisson distribution with parameter λ (written Poiss(λ)) if its mass function
is

f(x) =






e−λλx

x!
if x = 0, 1, . . . ,

0 otherwise.
(7)
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In order to make sure that this makes sense, it suffices to prove that
∑

x f(x) =
1, but this is an immediate consequence of the Taylor expansion of eλ, viz.,

eλ =
∞∑

k=0

λk

k!
.

3.1. Law of rare events. Is there a physical manner in which Poiss(λ)
arises naturally? The answer is “yes.” Let X = Bin(n ,λ/n). For instance,
X could denote the total number of sampled people who have a rare disease
(population percentage = λ/n) in a large sample of size n. Then, for all
fixed integers k = 0 , . . . , n,

fX(k) =
(

n

k

) (
λ

n

)k (
1− λ

n

)n−k

. (8)

Poisson’s “law of rare events” states that if n is large, then the distribu-
tion of X is approximately Poiss(λ). In order to deduce this we need two
computational lemmas.

Lemma 9.2. For all z ∈ R,

lim
n→∞

(
1 +

z

n

)n
= ez.

Proof. Because the natural logarithm is continuous on (0 ,∞), it suffices to
prove that

lim
n→∞

n ln
(
1 +

z

n

)
= z. (9)

By Taylor’s expansion,

ln
(
1 +

z

n

)
=

z

n
+

θ2

2
,

where θ lies between 0 and z/n. Equivalently,

z

n
≤ ln

(
1 +

z

n

)
≤ z

n
+

z2

2n2
.

Multiply all sides by n and take limits to find (9), and thence the lemma. !

Lemma 9.3. If k ≥ 0 is a fixed integer, then
(

n

k

)
∼ nk

k!
as n→∞.

where an ∼ bn means that limn→∞(an/bn) = 1.
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Proof. If n ≥ k, then
n!

nk(n− k)!
=

n(n− 1) · · · (n− k + 1)
nk

=
n

n
× n− 1

n
× · · ·× n− k + 1

n
→ 1 as n→∞.

The lemma follows upon writing out
(n
k

)
and applying the preceding to that

expression. !

Thanks to Lemmas 9.2 and 9.3, and to (8),

fX(k) ∼ nk

k!
λk

nk
e−λ =

e−λλk

k!
.

That is, when n is large, X behaves like a Poiss(λ), and this proves our
assertion.


