1. The geometric distribution, continued

1.1. An example. A couple has children until their first son is born. Suppose the sexes of their children are independent from one another [unrealistic], and the probability of girl is 0.6 every time [not too bad]. Let X denote the number of their children to find then that $X=\operatorname{Geom}(0.4)$. In particular,

$$
\begin{aligned}
\mathrm{P}\{X \leq 3\} & =f(1)+f(2)+f(3) \\
& =p+p(1-p)+p(1-p)^{2} \\
& =p\left[1+1-p+(1-p)^{2}\right] \\
& =p\left[3-3 p+p^{2}\right] \\
& =0.784 .
\end{aligned}
$$

1.2. The tail of the distribution. Now you may be wondering why these random variables are called "geometric." In order to answer this, consider the tail of the distribution of X (probability of large values). Namely, for all $n \geq 1$,

$$
\begin{aligned}
\mathrm{P}\{X \geq n\} & =\sum_{j=n}^{\infty} p(1-p)^{j-1} \\
& =p \sum_{k=n-1}^{\infty}(1-p)^{k} .
\end{aligned}
$$

Let us recall an elementary fact from calculus.

Lemma 9.1 (Geometric series). If $r \in(0,1)$, then for all $n \geq 0$,

$$
\sum_{j=n}^{\infty} r^{j}=\frac{r^{n}}{1-r}
$$

Proof. Let $s_{n}=r^{n}+r^{n+1}+\cdots=\sum_{j=n}^{\infty} r^{j}$. Then, we have two relations between s_{n} and s_{n+1} :
(1) $r s_{n}=\sum_{j=n+1}^{\infty} r^{j}=s_{n+1}$; and
(2) $s_{n+1}=s_{n}-r^{n}$.

Plug (2) into (1) to find that $r s_{n}=s_{n}-r^{n}$. Solve to obtain the lemma.
Return to our geometric random variable X to find that

$$
\mathrm{P}\{X \geq n\}=p \frac{(1-p)^{n-1}}{1-(1-p)}=(1-p)^{n-1}
$$

That is, $\mathrm{P}\{X \geq n\}$ vanishes geometrically fast as $n \rightarrow \infty$.
In the couples example (§1.1),

$$
\mathrm{P}\{X \geq n\}=0.6^{n-1} \quad \text { for all } n \geq 1
$$

2. The negative binomial distribution

Suppose we are tossing a p-coin, where $p \in(0,1)$ is fixed, until we obtain r heads. Let X denote the number of tosses needed. Then, X is a discrete random variable with possible values $r, r+1, r+2, \ldots$. When $r=1$, then X is $\operatorname{Geom}(p)$. In general,

$$
f(x)= \begin{cases}\binom{x-1}{r-1} p^{r}(1-p)^{x-r} & \text { if } x=r, r+1, r+2, \ldots, \\ 0 & \text { otherwise } .\end{cases}
$$

This X is said to have a negative binomial distribution with parameters r and p. Note that our definition differs slightly from that of your text (p . 117).

3. The Poisson distribution

Choose and fix a number $\lambda>0$. A random variable X is said to have the Poisson distribution with parameter $\lambda($ written $\operatorname{Poiss}(\lambda))$ if its mass function is

$$
f(x)= \begin{cases}\frac{e^{-\lambda} \lambda^{x}}{x!} & \text { if } x=0,1, \ldots \tag{7}\\ 0 & \text { otherwise }\end{cases}
$$

In order to make sure that this makes sense, it suffices to prove that $\sum_{x} f(x)=$ 1 , but this is an immediate consequence of the Taylor expansion of e^{λ}, viz.,

$$
e^{\lambda}=\sum_{k=0}^{\infty} \frac{\lambda^{k}}{k!}
$$

3.1. Law of rare events. Is there a physical manner in which $\operatorname{Poiss}(\lambda)$ arises naturally? The answer is "yes." Let $X=\operatorname{Bin}(n, \lambda / n)$. For instance, X could denote the total number of sampled people who have a rare disease (population percentage $=\lambda / n$) in a large sample of size n. Then, for all fixed integers $k=0, \ldots, n$,

$$
\begin{equation*}
f_{X}(k)=\binom{n}{k}\left(\frac{\lambda}{n}\right)^{k}\left(1-\frac{\lambda}{n}\right)^{n-k} \tag{8}
\end{equation*}
$$

Poisson's "law of rare events" states that if n is large, then the distribution of X is approximately $\operatorname{Poiss}(\lambda)$. In order to deduce this we need two computational lemmas.

Lemma 9.2. For all $z \in \mathbf{R}$,

$$
\lim _{n \rightarrow \infty}\left(1+\frac{z}{n}\right)^{n}=e^{z}
$$

Proof. Because the natural logarithm is continuous on $(0, \infty)$, it suffices to prove that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} n \ln \left(1+\frac{z}{n}\right)=z \tag{9}
\end{equation*}
$$

By Taylor's expansion,

$$
\ln \left(1+\frac{z}{n}\right)=\frac{z}{n}+\frac{\theta^{2}}{2}
$$

where θ lies between 0 and z / n. Equivalently,

$$
\frac{z}{n} \leq \ln \left(1+\frac{z}{n}\right) \leq \frac{z}{n}+\frac{z^{2}}{2 n^{2}}
$$

Multiply all sides by n and take limits to find (9), and thence the lemma.
Lemma 9.3. If $k \geq 0$ is a fixed integer, then

$$
\binom{n}{k} \sim \frac{n^{k}}{k!} \quad \text { as } n \rightarrow \infty .
$$

where $a_{n} \sim b_{n}$ means that $\lim _{n \rightarrow \infty}\left(a_{n} / b_{n}\right)=1$.

Proof. If $n \geq k$, then

$$
\begin{aligned}
\frac{n!}{n^{k}(n-k)!} & =\frac{n(n-1) \cdots(n-k+1)}{n^{k}} \\
& =\frac{n}{n} \times \frac{n-1}{n} \times \cdots \times \frac{n-k+1}{n} \\
& \rightarrow 1 \quad \text { as } n \rightarrow \infty .
\end{aligned}
$$

The lemma follows upon writing out $\binom{n}{k}$ and applying the preceding to that expression.

Thanks to Lemmas 9.2 and 9.3, and to (8),

$$
f_{X}(k) \sim \frac{n^{k}}{k!} \frac{\lambda^{k}}{n^{k}} e^{-\lambda}=\frac{e^{-\lambda} \lambda^{k}}{k!} .
$$

That is, when n is large, X behaves like a $\operatorname{Poiss}(\lambda)$, and this proves our assertion.

