1. Random Variables

We would like to say that a random variable X is a "numerical outcome of a complicated experiment." This is not sufficient. For example, suppose you sample 1,500 people at random and find that their average age is 25 . Is $X=25$ a "random variable"? Surely there is nothing random about the number 25!

What is random? The procedure that led to 25 . This procedure, for a second sample, is likely to lead to a different number. Procedures are functions, and thence

Definition 8.1. A random variable is a function X from Ω to some set D which is usually [for us] a subset of the real line \mathbf{R}, or d-dimensional space \mathbf{R}^{d}.

In order to understand this, let us construct a random variable that models the number of dots in a roll of a fair six-sided die.

Define the sample space,

$$
\Omega=\{1,2,3,4,5,6\} .
$$

We assume that all outcome are equally likely [fair die].
Define $X(\omega)=\omega$ for all $\omega \in \Omega$, and note that for all $k=1, \ldots, 6$,

$$
\begin{equation*}
\mathrm{P}(\{\omega \in \Omega: X(\omega)=k\})=\mathrm{P}(\{k\})=\frac{1}{6} . \tag{5}
\end{equation*}
$$

This probability is zero for other values of k. Usually, we write $\{X \in A\}$ in place of the set $\{\omega \in \Omega: X(\omega) \in A\}$. In this notation, we have

$$
\mathrm{P}\{X=k\}= \begin{cases}\frac{1}{6} & \text { if } k=1, \ldots, 6 \tag{6}\\ 0 & \text { otherwise }\end{cases}
$$

This is a math model for the result of a coin toss.

2. General notation

Suppose X is a random variable, defined on some probability space Ω. By the distribution of X we mean the collection of probabilities $\mathrm{P}\{X \in A\}$, as A ranges over all sets in \mathscr{F}.

If X takes values in a finite, or countably-infinite set, then we say that X is a discrete random variable. Its distribution is called a discrete distribution. The function

$$
p(x)=\mathrm{P}\{X=x\}
$$

is then called the mass function of X. Note that $p(x)=0$ for all but a countable number of values of x. The values x for which $p(x)>0$ are called the possible values of X.

Some important properties of mass functions:

- $0 \leq p(x) \leq 1$ for all x. [Easy]
- $\sum_{x} p(x)=1$. Proof: $\sum_{x} p(x)=\sum_{x} \mathrm{P}\{X=x\}$, and this is equal to $\mathrm{P}\left(\cup_{x}\{X=x\}\right)=\mathrm{P}(\Omega)$, since the union is a countable disjoint union.

3. The binomial distribution

Suppose we perform n independent trials; each trial leads to a "success" or a "failure"; and the probability of success per trial is the same number $p \in(0,1)$.

Let X denote the total number of successes in this experiment. This is a discrete random variable with possible values $0, \ldots, n$. We say then that X is a binomial random variable [" $X=\operatorname{Bin}(n, p)$ "].

Math modelling questions:

- Construct an Ω.
- Construct X on this Ω.

Let us find the mass function of X. We seek to find $p(x)$, where $x=$ $0, \ldots, n$. For all other values of $x, p(x)=0$.

Now suppose x is an integer between zero and n. Note that $p(x)=$ $\mathrm{P}\{X=x\}$ is the probability of getting exactly x successes and $n-x$ failures. Let S_{i} denote the event that the i th trial leads to a success. Then,

$$
p(x)=\mathrm{P}\left(S_{1} \cap \cdots \cap S_{x} \cap S_{x+1}^{c} \cap \cdots S_{n}^{c}\right)+\cdots
$$

where we are summing over all possible ways of distributing x successes and $n-x$ failures in n spots. By independence, each of these probabilities is
$p^{x}(1-p)^{n-x}$. The number of probabilities summed is the number of ways we can distributed x successes and $n-x$ failures into n slots. That is, $\binom{n}{x}$. Therefore,

$$
p(x)=\mathrm{P}\{X=x\}= \begin{cases}\binom{n}{x} p^{x}(1-p)^{n-x} & \text { if } x=0, \ldots, n, \\ 0 & \text { otherwise }\end{cases}
$$

Note that $\sum_{x} p(x)=1$ by the binomial theorem. So we have not missed anything.
3.1. An example. Consider the following sampling question: Ten percent of a certain population smoke. If we take a random sample [without replacement] of 5 people from this population, what are the chances that at least 2 people smoke in the sample?

Let X denote the number of smokers in the sample. Then $X=\operatorname{Bin}(n, p)$ ["success" = "smoker"]. Therefore,

$$
\begin{aligned}
\mathrm{P}\{X \geq 2\} & =1-\mathrm{P}\{X \leq 1\} \\
& =1-\mathrm{P}(\{X=0\} \cup\{X=1\}) \\
& =1-[p(0)+p(1)] \\
& =1-\left[\binom{n}{0} p^{0}(1-p)^{n-0}+\binom{n}{1} p^{1}(1-p)^{n-1}\right] \\
& =1-\left[1-p+n p(1-p)^{n-1}\right] \\
& =p-n p(1-p)^{n-1} .
\end{aligned}
$$

Alternatively, we can write

$$
\mathrm{P}\{X \geq 2\}=\mathrm{P}(\{X=2\} \cup \cdots\{X=n\})=\sum_{j=2}^{n} p(j)
$$

and then plug in $p(j)=\binom{n}{j} p^{j}(1-p)^{n-j}$.

4. The geometric distribution

A p-coin is a coin that tosses heads with probability p and tails with probability $1-p$. Suppose we toss a p-coin until the first time heads appears. Let X denote the number of tosses made. Then X is a so-called geometric random variable [" $X=\operatorname{Geom}(p)$ "].

Evidently, if n is an integer greater than or equal to one, then $\mathrm{P}\{X=$ $n\}=(1-p)^{n-1} p$. Therefore, the mass function of X is given by

$$
p(x)= \begin{cases}p(1-p)^{x-1} & \text { if } x=1,2, \ldots \\ 0 & \text { otherwise }\end{cases}
$$

