1. Combinatorics

Recall the two basic principles of counting [combinatorics]:
First principle: m distinct garden forks plus n distinct fish forks equals $m+n$ distinct forks.

Second principle: m distinct knives and n distinct forks equals $m n$ distinct ways of taking a knife and a fork.

2. Unordered Selection

Example 6.1. 6 dice are rolled. What is the probability that they all show different faces?

$$
\begin{aligned}
& \Omega=? \\
& |\Omega|=6^{6} .
\end{aligned}
$$

If A is the event in question, then $|A|=6 \times 5 \times 4 \times 3 \times 2 \times 1$.

Definition 6.2. If k is an integer ≥ 1, then we define " k factorial" as the following integer:

$$
k!=k \cdot(k-1) \cdot(k-2) \cdots 2 \cdot 1 .
$$

For consistency of future formulas, we define also

$$
0!=1
$$

Example 6.3. Five rolls of a fair die. What is $\mathrm{P}(A)$, where A is the event that all five show different faces? Note that $|A|$ is equal to 6 [which face is left out] times 6^{5}. Thus,

$$
\mathrm{P}(A)=\frac{6 \cdot 5!}{6^{5}}=\frac{6!}{6^{5}} .
$$

3. Ordered Selection

Example 6.4. Two-card poker.

$$
\mathrm{P}(\text { doubles })=\frac{13 \times\left(\frac{4 \times 3}{2}\right)}{\left(\frac{52 \times 51}{2}\right)} .
$$

Theorem 6.5. n objects are divided into r types. n_{1} are of type 1; n_{2} of type $2 ; \ldots ; n_{r}$ are of type r. Thus, $n=n_{1}+\cdots+n_{r}$. Objects of the same type are indistinguishable. The number of permutations is

$$
\binom{n}{n_{1}, \ldots, n_{r}}=\frac{n!}{n_{1}!\cdots n_{r}!} .
$$

Proof. Let N denote the number of permutations; we seek to find N. For every permtation in N there are $n_{1}!\cdots n_{r}$! permutations wherein all n objects are treated differently. Therefore, $n_{1}!\cdots n_{r}!N=n!$. Solve to finish.

Example 6.6. n people; choose r of them to form a "team." The number of different teams is then

$$
\frac{n!}{r!(n-r)!} .
$$

You have to choose r of type 1 ("put this one in the team"), and $n-r$ of type 2 ("leave this one out of the team").

Definition 6.7. We write the preceding count statistic as " n choose r," and write it as

$$
\binom{n}{r}=\frac{n!}{r!(n-r)!}=\frac{n!}{(n-r)!r!}=\binom{n}{n-r} .
$$

Example 6.8. Roll 4 dice; let A denote the event that all faces are different. Then,

$$
|A|=\binom{6}{4} 4!=\frac{6!}{2!}=\frac{6!}{2} .
$$

The 6 -choose- 4 is there because that is how many ways we can choose the different faces. Thus,

$$
\mathrm{P}(A)=\frac{6!}{2 \times 4^{6}} .
$$

Example 6.9. There are

$$
\binom{52}{5}=2,598,960
$$

different standard poker hands possible.

