1. Independence

- Events A and B are said to be independent if

$$
\mathrm{P}(A \cap B)=\mathrm{P}(A) \mathrm{P}(B) .
$$

Divide both sides by $\mathrm{P}(B)$, if it is positive, to find that A and B are independent if and only if

$$
\mathrm{P}(A \mid B)=\mathrm{P}(A)
$$

"Knowledge of B tells us nothing new about A."
Two experiments are independent if A_{1} and A_{2} are independent for all outcomes A_{j} of experiment j.

Example 5.1. Toss two fair coins; all possible outcomes are equally likely. Let H_{j} denote the event that the j th coin landed on heads, and $T_{j}=H_{j}^{c}$. Then,

$$
\mathrm{P}\left(H_{1} \cap H_{2}\right)=\frac{1}{4}=\mathrm{P}\left(H_{1}\right) \mathrm{P}\left(H_{2}\right) .
$$

In fact, the two coins are independent because $\mathrm{P}\left(T_{1} \cap T_{2}\right)=\mathrm{P}\left(T_{1} \cap H_{2}\right)=$ $\mathrm{P}\left(H_{1} \cap H_{2}\right)=1 / 4$ also. Conversely, if two fair coins are tossed independently, then all possible outcomes are equally likely to occur. What if the coins are not fair, say $\mathrm{P}\left(H_{1}\right)=\mathrm{P}\left(H_{2}\right)=1 / 4$?

- Three events A_{1}, A_{2}, A_{3} are independent if any two of them. Events $A_{1}, A_{2}, A_{3}, A_{4}$ are independent if any three of are. And in general, once we have defined the independence of $n-1$ events, we define n events A_{1}, \ldots, A_{n} to be independent if any $n-1$ of them are independent.
- One says that n experiments are independent, for all $n \geq 2$, if any $n-1$ of them are independent.

You should check that this last one is a well-defined (albeit inductive) definition.

2. Gambler's ruin formula

You, the "Gambler," are playing independent repetitions of a fair game against the "House." When you win, you gain a dollar; when you lose, you lose a dollar. You start with k dollars, and the House starts with K dollars. What is the probability that the House is ruined before you?

Define P_{j} to be the conditional probability that when the game ends you have $K+j$ dollars, given that you start with j dollars initially. We want to find P_{k}.

Two easy cases are: $P_{0}=0$ and $P_{k+K}=1$.
By Theorem 4.4 and independence,

$$
P_{j}=\frac{1}{2} P_{j+1}+\frac{1}{2} P_{j-1} \quad \text { for } 0<j<k+K .
$$

In order to solve this, write $P_{j}=\frac{1}{2} P_{j}+\frac{1}{2} P_{j}$, so that

$$
\frac{1}{2} P_{j}+\frac{1}{2} P_{j}=\frac{1}{2} P_{j+1}+\frac{1}{2} P_{j-1} \quad \text { for } 0<j<k+K
$$

Multiply both side by two and solve:

$$
P_{j+1}-P_{j}=P_{j}-P_{j-1} \quad \text { for } 0<j<k+K .
$$

In other words,

$$
P_{j+1}-P_{j}=P_{1} \quad \text { for } 0<j<k+K .
$$

This is the simplest of all possible "difference equations." In order to solve it you note that, since $P_{0}=0$,

$$
\begin{aligned}
P_{j+1} & =\left(P_{j+1}-P_{j}\right)+\left(P_{j}-P_{j-1}\right)+\cdots+\left(P_{1}-P_{0}\right) \quad \text { for } 0<j<k+K \\
& =(j+1) P_{1} \quad \text { for } 0<j<k+K .
\end{aligned}
$$

Apply this with $j=k+K-1$ to find that

$$
1=P_{k+K}=(k+K) P_{1}, \quad \text { and hence } \quad P_{1}=\frac{1}{k+K} .
$$

Therefore,

$$
P_{j+1}=\frac{j+1}{k+K} \quad \text { for } 0<j<k+K
$$

Set $j=k-1$ to find the following:
Theorem 5.2 (Gambler's ruin formula). If you start with k dollars, then the probability that you end with $k+K$ dollars before losing all of your initial fortune is $k /(k+K)$ for all $1 \leq k \leq K$.

3. Conditional probabilities as probabilities

Suppose B is an event of positive probability. Consider the conditional probability distribution, $\mathrm{Q}(\cdots)=\mathrm{P}(\cdots \mid B)$.

Theorem 5.3. Q is a probability on the new sample space B. [It is also a probability on the larger sample space Ω, why?]

Proof. Rule 1 is easy to verify: For all events A,

$$
0 \leq \mathrm{Q}(A)=\frac{\mathrm{P}(A \cap B)}{\mathrm{P}(B)} \leq \frac{P(B)}{\mathrm{P}(B)}=1
$$

because $A \cap B \subseteq B$ and hence $\mathrm{P}(A \cap B) \leq \mathrm{P}(B)$.
For Rule 2 we check that

$$
\mathrm{Q}(B)=\mathrm{P}(B \mid B)=\frac{\mathrm{P}(B \cap B)}{\mathrm{P}(B)}=1
$$

Next suppose A_{1}, A_{2}, \ldots are disjoint events. Then,

$$
\mathrm{Q}\left(\bigcup_{n=1}^{\infty} A_{n}\right)=\frac{1}{\mathrm{P}(B)} \mathrm{P}\left(\bigcup_{n=1}^{\infty} A_{n} \cap B\right) .
$$

Note that $\cup_{n=1}^{\infty} A_{n} \cap B=\cup_{n=1}^{\infty}\left(A_{n} \cap B\right)$, and $\left(A_{1} \cap B\right),\left(A_{2} \cap B\right), \ldots$ are disjoint events. Therefore,

$$
\mathrm{Q}\left(\bigcup_{n=1}^{\infty} A_{n}\right)=\frac{1}{\mathrm{P}(B)} \sum_{N=1}^{\infty} \mathrm{P}\left(A_{n} \cap B\right)=\sum_{n=1}^{\infty} \mathrm{Q}\left(A_{n}\right)
$$

This verifies Rule 4, and hence Rule 3.

