
Lecture 5

1. Independence

• Events A and B are said to be independent if

P(A ∩B) = P(A)P(B).

Divide both sides by P(B), if it is positive, to find that A and B are inde-
pendent if and only if

P(A |B) = P(A).
”Knowledge of B tells us nothing new about A.”

Two experiments are independent if A1 and A2 are independent for all
outcomes Aj of experiment j.

Example 5.1. Toss two fair coins; all possible outcomes are equally likely.
Let Hj denote the event that the jth coin landed on heads, and Tj = Hc

j .
Then,

P(H1 ∩H2) =
1
4

= P(H1)P(H2).

In fact, the two coins are independent because P(T1 ∩ T2) = P(T1 ∩H2) =
P(H1∩H2) = 1/4 also. Conversely, if two fair coins are tossed independently,
then all possible outcomes are equally likely to occur. What if the coins are
not fair, say P(H1) = P(H2) = 1/4?

• Three events A1, A2, A3 are independent if any two of them. Events
A1, A2, A3, A4 are independent if any three of are. And in general,
once we have defined the independence of n − 1 events, we define
n events A1, . . . , An to be independent if any n − 1 of them are
independent.

• One says that n experiments are independent, for all n ≥ 2, if any
n− 1 of them are independent.
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You should check that this last one is a well-defined (albeit inductive)
definition.

2. Gambler’s ruin formula

You, the “Gambler,” are playing independent repetitions of a fair game
against the “House.” When you win, you gain a dollar; when you lose, you
lose a dollar. You start with k dollars, and the House starts with K dollars.
What is the probability that the House is ruined before you?

Define Pj to be the conditional probability that when the game ends you
have K + j dollars, given that you start with j dollars initially. We want to
find Pk.

Two easy cases are: P0 = 0 and Pk+K = 1.
By Theorem 4.4 and independence,

Pj =
1
2
Pj+1 +

1
2
Pj−1 for 0 < j < k + K.

In order to solve this, write Pj = 1
2Pj + 1

2Pj , so that
1
2
Pj +

1
2
Pj =

1
2
Pj+1 +

1
2
Pj−1 for 0 < j < k + K.

Multiply both side by two and solve:

Pj+1 − Pj = Pj − Pj−1 for 0 < j < k + K.

In other words,

Pj+1 − Pj = P1 for 0 < j < k + K.

This is the simplest of all possible “difference equations.” In order to solve
it you note that, since P0 = 0,

Pj+1 = (Pj+1 − Pj) + (Pj − Pj−1) + · · · + (P1 − P0) for 0 < j < k + K

= (j + 1)P1 for 0 < j < k + K.

Apply this with j = k + K − 1 to find that

1 = Pk+K = (k + K)P1, and hence P1 =
1

k + K
.

Therefore,

Pj+1 =
j + 1
k + K

for 0 < j < k + K.

Set j = k − 1 to find the following:

Theorem 5.2 (Gambler’s ruin formula). If you start with k dollars, then
the probability that you end with k+K dollars before losing all of your initial
fortune is k/(k + K) for all 1 ≤ k ≤ K.
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3. Conditional probabilities as probabilities

Suppose B is an event of positive probability. Consider the conditional
probability distribution, Q( · · · ) = P( · · · |B).

Theorem 5.3. Q is a probability on the new sample space B. [It is also a
probability on the larger sample space Ω, why?]

Proof. Rule 1 is easy to verify: For all events A,

0 ≤ Q(A) =
P(A ∩B)

P(B)
≤ P (B)

P(B)
= 1,

because A ∩B ⊆ B and hence P(A ∩B) ≤ P(B).
For Rule 2 we check that

Q(B) = P(B |B) =
P(B ∩B)

P(B)
= 1.

Next suppose A1, A2, . . . are disjoint events. Then,

Q

( ∞⋃

n=1

An

)
=

1
P(B)

P

( ∞⋃

n=1

An ∩B

)
.

Note that ∪∞n=1An ∩ B = ∪∞n=1(An ∩ B), and (A1 ∩ B), (A2 ∩ B), . . . are
disjoint events. Therefore,

Q

( ∞⋃

n=1

An

)
=

1
P(B)

∞∑

N=1

P (An ∩B) =
∞∑

n=1

Q(An).

This verifies Rule 4, and hence Rule 3. !


