
Lecture 24

1. Functions of a random variable, continued

Example 24.1. It is best to try to work on these problems on a case-by-
case basis. Here is an example where you need to do that. Consider X to
be a uniform (0 , 1) random variable, and define Y = sin(πX/2). Because
X ∈ (0 , 1), it follows that Y ∈ (0 , 1) as well. Therefore, FY (a) = 0 if a < 0,
and FY (1) = 1 if a > 1. If 0 ≤ a ≤ 1, then

FY (a) = P
{

sin
(

πX

2

)
≤ a

}
= P

{
X ≤ 2

π
arcsin a

}
=

2
π

arcsin a.

You need to carefully plot the arcsin curve to deduce this. Therefore,

fY (a) =






2
π
√

1− a2
if 0 < a < 1,

0 otherwise.

Finally, a transformation of a continuous random variable into a discrete
one . . . .

Example 24.2. Suppose X is uniform (0 , 1) and define Y = %2X& to be
the largest integer ≤ 2X. Find fY .

First of all, we note that Y is discrete. Its possible values are 0 (this is
when 0 < X < 1/2) and 1 (this is when 1/2 < X < 1). Therefore,

fY (0) = P
{

0 < X <
1
2

}
=

∫ 1/2

0
dy =

1
2

= 1− fY (1) =
1
2
.

This is thrown in just so we remember that it is entirely possible to start
out with a continuous random variable, and then transform it into a discrete
one.
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2. Expectation

If X is a continuous random variable with density f , then its expectation is
defined to be

E(X) =
∫ ∞

−∞
xf(x) dx,

provided that either X ≥ 0, or
∫∞
−∞ |x|f(x) dx < ∞.

Example 24.3 (Uniform). Suppose X is uniform (a , b). Then,

E(X) =
∫ b

a
x

1
b− a

dx =
1
2

b2 − a2

b− a
.

It is easy to check that b2 − a2 = (b− a)(b + a), whence

E(X) =
b + a

2
.

N.B.: The formula of the first example on page 303 of your text is wrong.

Example 24.4 (Gamma). If X is Gamma(α , λ), then for all positive values
of x we have f(x) = λα/Γ(α)xα−1e−λx, and f(x) = 0 for x < 0. Therefore,

E(X) =
λα

Γ(α)

∫ ∞

0
xαe−λx dx

=
1

λΓ(α)

∫ ∞

0
zαe−z dz (z = λx)

=
Γ(α + 1)
λΓ(α)

=
α

λ
.

In the special case that α = 1, this is the expectation of an exponential
random variable with parameter λ.

Example 24.5 (Normal). Suppose X = N(µ , σ2). That is,

f(x) =
1

σ
√

2π
exp

(
−(x− µ)2

2

)
.
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Then,

E(X) =
1

σ
√

2π

∫ ∞

−∞
x exp

(
−(x− µ)2

2

)
dx

=
1√
2π

∫ ∞

−∞
(µ + σz)e−z2/2 dz (z = (x− µ)/σ)

= µ

∫ ∞

−∞

e−z2/2

√
2π

dz

︸ ︷︷ ︸
1

+
σ√
2π

∫ ∞

−∞
ze−z2/2 dz

︸ ︷︷ ︸
0, by symmetry

= µ.

Example 24.6 (Cauchy). In this example, f(x) = π−1(1 + x2)−1. Note
that the expectation is defined only if the following limit exists regardless
of how we let n and m tend to ∞:∫ n

−m

y

1 + y2
dy.

Now I argue that the limit does not exist; I do so by showing two different
choices of (n ,m) which give rise to different limiting “integrals.”

First suppose m = n, so that by symmetry,
∫ n

−n

y

1 + y2
dy = 0.

Let n →∞ to obtain zero as the limit of the left-hand side.
Next, suppose m = 2n. Again by symmetry,

∫ n

−2n

y

1 + y2
dy =

∫ −n

−2n

y

1 + y2
dy

= −
∫ 2n

n

y

1 + y2
dy

= −1
2

∫ 1+4n2

1+n2

dz

z
(z = 1 + y2)

= −1
2

ln
(

1 + 4n2

1 + n2

)

→ −1
2

ln 4 as n →∞.

Therefore, the Cauchy density does not have a well-defined expectation.
[That is not to say that the expectation is well defined, but infinite.]


