1. Functions of a continuous random variable, continued

The problem: $Y=g(X)$; find f_{Y} in terms of f_{X}.
The solution: First compute F_{Y}, by hand, in terms of F_{X}, and then use the fact that $F_{Y}^{\prime}=f_{Y}$ and $F_{X}^{\prime}=f_{X}$.

Example 23.1. Suppose X has density f_{X}. Then let us find the density function of $Y=X^{2}$. Again, we seek to first compute F_{Y}. Now, for all $a>0$,

$$
F_{Y}(a)=\mathrm{P}\left\{X^{2} \leq a\right\}=\mathrm{P}\{-\sqrt{a} \leq X \leq \sqrt{a}\}=F_{X}(\sqrt{a})-F_{X}(-\sqrt{a}) .
$$

Differentiate $[d / d a]$ to find that

$$
f_{Y}(a)=\frac{f_{X}(\sqrt{a})+f_{X}(-\sqrt{a})}{2 \sqrt{a}}
$$

On the other hand, $f_{Y}(a)=0$ if $a \leq 0$. For example, consider the case that X is standard normal. Then,

$$
f_{X^{2}}(a)= \begin{cases}\frac{e^{-a}}{\sqrt{2 \pi a}} & \text { if } a>0 \\ 0 & \text { if } a \leq 0\end{cases}
$$

Or if X is Cauchy, then

$$
f_{X^{2}}(a)= \begin{cases}\frac{1}{\pi \sqrt{a}(1+a)} & \text { if } a>0 \\ 0 & \text { if } a \leq 0\end{cases}
$$

Or if X is uniform $(0,1)$, then

$$
f_{X^{2}}(a)= \begin{cases}\frac{1}{2 \sqrt{a}} & \text { if } 0<a<1 \\ 0 & \text { otherwise }\end{cases}
$$

Example 23.2. Suppose $\mu \in \mathbf{R}$ and $\sigma>0$ are fixed constants, and define $Y=\mu+\sigma X$. Find the density of Y in terms of that of X. Once again,

$$
F_{Y}(a)=\mathrm{P}\{\mu+\sigma X \leq a\}=\mathrm{P}\left\{X \leq \frac{a-\mu}{\sigma}\right\}=F_{X}\left(\frac{a-\mu}{\sigma}\right) .
$$

Therefore,

$$
f_{Y}(a)=\frac{1}{\sigma} f_{X}\left(\frac{a-\mu}{\sigma}\right) .
$$

For example, if X is standard normal, then

$$
f_{\mu+\sigma X}(a)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right) .
$$

This is the socalled $N\left(\mu, \sigma^{2}\right)$ density.
Example 23.3. Suppose X is uniformly distributed on $(0,1)$, and define

$$
Y= \begin{cases}0 & \text { if } 0 \leq X<\frac{1}{3} \\ 1 & \text { if } \frac{1}{3} \leq X<\frac{2}{3} \\ 2 & \text { if } \frac{2}{3} \leq X<1\end{cases}
$$

Then, Y is a discrete random variable with mass function,

$$
f_{Y}(x)= \begin{cases}\frac{1}{3} & \text { if } x=0,1, \text { or } 2 \\ 0 & \text { otherwise }\end{cases}
$$

For instance, in order to compute $f_{Y}(1)$ we note that

$$
f_{Y}(1)=\mathrm{P}\left\{\frac{1}{3} \leq X<\frac{2}{3}\right\}=\int_{1 / 3}^{2 / 3} \underbrace{f_{X}(y)}_{\equiv 1} d y=\frac{1}{3} .
$$

Example 23.4. Another common transformation is $g(x)=|x|$. In this case, let $Y=|X|$ and note that if $a>0$, then

$$
F_{Y}(a)=\mathrm{P}\{-a<X<a\}=F_{X}(a)-F_{X}(-a) .
$$

Else, $F_{Y}(a)=0$. Therefore,

$$
f_{Y}(a)= \begin{cases}f_{X}(a)+f_{X}(-a) & \text { if } a>0 \\ 0 & \text { if } a \leq 0\end{cases}
$$

For instance, if X is standard normal, then

$$
f_{|X|}(a)= \begin{cases}\frac{2}{\pi} e^{-a^{2} / 2} & \text { if } a>0 \\ 0 & \text { if } a \leq 0\end{cases}
$$

Or if X is Cauchy, then

$$
f_{|X|}(a)= \begin{cases}\frac{2}{\pi} \frac{1}{1+a^{2}} & \text { if } a>0 \\ 0 & \text { otherwise }\end{cases}
$$

Can you guess $f_{|X|}$ when X is uniform $(-1,1)$?
Example 23.5. It is best to try to work on these problems on a case-bycase basis. Here is an example where you need to do that. Consider X to be a uniform $(0,1)$ random variable, and define $Y=\sin (\pi X / 2)$. Because $X \in(0,1)$, it follows that $Y \in(0,1)$ as well. Therefore, $F_{Y}(a)=0$ if $a<0$, and $F_{Y}(1)=1$ if $a>1$. If $0 \leq a \leq 1$, then

$$
F_{Y}(a)=\mathrm{P}\left\{\sin \left(\frac{\pi X}{2}\right) \leq a\right\}=\mathrm{P}\left\{X \leq \frac{2}{\pi} \arcsin a\right\}=\frac{2}{\pi} \arcsin a .
$$

You need to carefully plot the arcsin curve to deduce this. Therefore,

$$
f_{Y}(a)= \begin{cases}\frac{2}{\pi \sqrt{1-a^{2}}} & \text { if } 0<a<1 \\ 0 & \text { otherwise }\end{cases}
$$

Finally, a transformation of a continuous random variable into a discrete one....

Example 23.6. Suppose X is uniform $(0,1)$ and define $Y=\lfloor 2 X\rfloor$ to be the largest integer $\leq 2 X$. Find f_{Y}.

First of all, we note that Y is discrete. Its possible values are 0 (this is when $0<X<1 / 2$) and 1 (this is when $1 / 2<X<1$). Therefore,

$$
f_{Y}(0)=\mathrm{P}\left\{0<X<\frac{1}{2}\right\}=\int_{0}^{1 / 2} d y=\frac{1}{2}=1-f_{Y}(1)=\frac{1}{2} .
$$

