Lecture 22

1. Examples of continuous random variables

Example 22.1 (Standard normal density). I claim that

o) = —— e (—f‘;)

defines a density function. Clearly, ¢(x) > 0 and is continuous at all points
x. So it suffices to show that the area under ¢ is one. Define

A= /_Z o(x) da.

Then,

1 [e¢) 2 2
A? exp (_m —;—y > dzx dy

:% .

1 2 00 7,2
= — —— | rdrdf.
o . /0 exp ( 9 ) Tar

Let s = r?/2 to find that the inner integral is [ exp(—s) ds = 1. Therefore,
A% =1 and hence A = 1, as desired. [Why is A not —17]

The distribution function of ¢ is

®(z) = \/12?/ e 72 dz.

One can prove that there is “no nice formula” that “describes” ®(z) for all
x (theorem of Liouville). Usually, people use tables of integrals to evaluate
®(x) for concrete values of .
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Example 22.2 (Gamma densities). Choose and fix two numbers (parame-
ters) a, A > 0. The gamma density with parameters o and A is the proba-
bility density function that is proportional to

2 le= A if g > 0,
0 if x <0.

Now,

o0

/OO -\ 1 1
2 e dr = — y* e Y dy.
0 A% Jo

Define the gamma function as
oo
INa) = / y* eV dy for all o > 0.
0

One can prove that there is “no nice formula” that “describes” I'(«) for all «
(theorem of Liouville). Thus, the best we can do is to say that the following
is a Gamma density with parameters a, A > 0:

b
flz) =1 (o)
0

z® e if £ >0,

it z < 0.

You can probably guess by now (and correctly!) that F(z) = ffoo fly)dy
cannot be described by nice functions either. Nonetheless, let us finish by
making the observation that I'(«) is computable for some reasonable values

of @ > 0. The key to unraveling this remark is the following “reproducing
property”:

MNa+1) =al(«a) for all & > 0. (18)

The proof uses integration by parts:
o0
Ma+1)= / x%e T dx
0
(0.9]
= / u(z)v' (r) dx,
0
where u(z) = 2 and v/(z) = e~®. Integration by parts states that!

/ w’ = uv — / v'u for indefinite integrals.

I This follows immediately from integrating the product rule: (uv)’ = u'v + uv’.
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Evidently, u/(r) = ax®~! and v(x) = —e~*. Hence,

I'a+1) :/ x%e Vdx
0

00 o
= ’LL’U} — v'u
0 0

1 & > 1
= (—axo‘_ e_x) —|—a/ 2% e T dx.
0 0

The first term is zero, and the second (the integral) is al'(«), as claimed.
Now, it easy to see that I'(1) = [ e™* dx = 1. Therefore, I'(2) = 1xI'(1) =
1,T(3) =2xTI(2) =2, ..., and in general,

F'n+1)=mn! for all integers n > 0.

2. Functions of a continuous random variable

The basic problem: If Y = g(X), then how can we compute fy in terms of
Ix?

Example 22.3. Suppose X is uniform on (0,1), and ¥ = —In X. Then,
we compute fy by first computing Fy, and then using fy = FYy,. Here are
the details:

Fy(a)=P{Y <a} =P{-InX <a}.
Now, —In(z) is a decreasing function. Therefore, —In(z) < a if and only if
%, and hence,

Fy(a)=P {X > e_“} =1—Fx(e™?).

x>e

Consequently,
d
fr(a) = —fx(e™) (™) = e fx(e™).

Now recall that fx(u) =11if 0 <wu <1 and fx(u) = 0 otherwise. Now e~
is between zero and one if and only if a > 0. Therefore,

—a 1 ifa>0,
6 g
Jx(e™) {0 if a < 0.

It follows then that
fr(a) =

e ifa>0,

0 otherwise.
Thus, —In X has an exponential density with parameter A = 1. More gen-
erally, if A > 0 is fixed, then —(1/A\)In X has an exponential density with

parameter A.
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Example 22.4. Suppose X has density fx. Then let us find the density
function of Y = X2. Again, we seek to first compute Fy. Now, for all a > 0,

Fy(a) =P{X*<a} =P{-va< X <a} = Fx (Va) — Fx (—Va).
Differentiate [d/da] to find that
fy(a) = fx (Va) + fx (=Va)
2Va

On the other hand, fy(a) =0 if a < 0. For example, consider the case that
X is standard normal. Then,

if a >0,
[x2(a) = { V2ra
0 ifa <O.
Or if X is Cauchy, then
L if a >0
——— ifa ,
fxz(a) = { m/a(l + a)

0 if a <0.

Example 22.5. Suppose i € R and ¢ > 0 are fixed constants, and define
Y = pu+ 0X. Find the density of Y in terms of that of X. Once again,

Fy(a):P{u+aX§a}:P{X§a;M}:FX (“‘“).

g

Therefore,

fy(a) = %fx (a — M) :

o
For example, if X is standard normal, then

futox(a) = \/2;76?(10 (—W) :

This is the socalled N(u,0?) density.

Example 22.6. Suppose X is uniformly distributed on (0, 1), and define
0 if0<X <,
V=41 if; <X <32,
2 if2<X<1
Then, Y is a discrete random variable with mass function,

$ ifz=0,1,0r2,
0 otherwise.

fy(z) =
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For instance, in order to compute fy (1) we note that

1 2 2/3 1
fy(l)zP{3<X<3}= fxlu)dy = 3



