
Lecture 22

1. Examples of continuous random variables

Example 22.1 (Standard normal density). I claim that

φ(x) =
1√
2π

exp
(
−x2

2

)

defines a density function. Clearly, φ(x) ≥ 0 and is continuous at all points
x. So it suffices to show that the area under φ is one. Define

A =
∫ ∞

−∞
φ(x) dx.

Then,

A2 =
1
2π

∫ ∞

−∞
exp

(
−x2 + y2

2

)
dx dy

=
1
2π

∫ 2π

0

∫ ∞

0
exp

(
−r2

2

)
r dr dθ.

Let s = r2/2 to find that the inner integral is
∫∞
0 exp(−s) ds = 1. Therefore,

A2 = 1 and hence A = 1, as desired. [Why is A not −1?]
The distribution function of φ is

Φ(x) =
1√
2π

∫ x

−∞
e−z2/2 dz.

One can prove that there is “no nice formula” that “describes” Φ(x) for all
x (theorem of Liouville). Usually, people use tables of integrals to evaluate
Φ(x) for concrete values of x.
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Example 22.2 (Gamma densities). Choose and fix two numbers (parame-
ters) α, λ > 0. The gamma density with parameters α and λ is the proba-
bility density function that is proportional to

{
xα−1e−λx if x ≥ 0,

0 if x < 0.

Now,
∫ ∞

0
xα−1e−λx dx =

1
λα

∫ ∞

0
yα−1e−y dy.

Define the gamma function as

Γ(α) =
∫ ∞

0
yα−1e−y dy for all α > 0.

One can prove that there is “no nice formula” that “describes” Γ(α) for all α
(theorem of Liouville). Thus, the best we can do is to say that the following
is a Gamma density with parameters α, λ > 0:

f(x) =






λα

Γ(α)
xα−1e−λx if x ≥ 0,

0 if x < 0.

You can probably guess by now (and correctly!) that F (x) =
∫ x
−∞ f(y) dy

cannot be described by nice functions either. Nonetheless, let us finish by
making the observation that Γ(α) is computable for some reasonable values
of α > 0. The key to unraveling this remark is the following “reproducing
property”:

Γ(α + 1) = αΓ(α) for all α > 0. (18)

The proof uses integration by parts:

Γ(α + 1) =
∫ ∞

0
xαe−x dx

=
∫ ∞

0
u(x)v′(x) dx,

where u(x) = xα and v′(x) = e−x. Integration by parts states that1

∫
uv′ = uv −

∫
v′u for indefinite integrals.

1This follows immediately from integrating the product rule: (uv)′ = u′v + uv′.
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Evidently, u′(x) = αxα−1 and v(x) = −e−x. Hence,

Γ(α + 1) =
∫ ∞

0
xαe−x dx

= uv
∣∣∣
∞

0
−

∫ ∞

0
v′u

=
(
−αxα−1e−x

) ∣∣∣
∞

0
+ α

∫ ∞

0
xα−1e−x dx.

The first term is zero, and the second (the integral) is αΓ(α), as claimed.
Now, it easy to see that Γ(1) =

∫∞
0 e−x dx = 1. Therefore, Γ(2) = 1×Γ(1) =

1, Γ(3) = 2× Γ(2) = 2, . . . , and in general,

Γ(n + 1) = n! for all integers n ≥ 0.

2. Functions of a continuous random variable

The basic problem: If Y = g(X), then how can we compute fY in terms of
fX?

Example 22.3. Suppose X is uniform on (0 , 1), and Y = − lnX. Then,
we compute fY by first computing FY , and then using fY = F ′

Y . Here are
the details:

FY (a) = P{Y ≤ a} = P {− lnX ≤ a} .

Now, − ln(x) is a decreasing function. Therefore, − ln(x) ≤ a if and only if
x ≥ e−a, and hence,

FY (a) = P
{
X ≥ e−a

}
= 1− FX(e−a).

Consequently,

fY (a) = −fX(e−a)
d

da
(e−a) = e−afX(e−a).

Now recall that fX(u) = 1 if 0 ≤ u ≤ 1 and fX(u) = 0 otherwise. Now e−a

is between zero and one if and only if a ≥ 0. Therefore,

fX(e−a) =

{
1 if a ≥ 0,

0 if a < 0.

It follows then that

fY (a) =

{
e−a if a ≥ 0,

0 otherwise.
Thus, − lnX has an exponential density with parameter λ = 1. More gen-
erally, if λ > 0 is fixed, then −(1/λ) ln X has an exponential density with
parameter λ.
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Example 22.4. Suppose X has density fX . Then let us find the density
function of Y = X2. Again, we seek to first compute FY . Now, for all a > 0,

FY (a) = P{X2 ≤ a} = P
{
−
√

a ≤ X ≤
√

a
}

= FX
(√

a
)
− FX

(
−
√

a
)
.

Differentiate [d/da] to find that

fY (a) =
fX (

√
a) + fX (−

√
a)

2
√

a

On the other hand, fY (a) = 0 if a ≤ 0. For example, consider the case that
X is standard normal. Then,

fX2(a) =






e−a

√
2πa

if a > 0,

0 if a ≤ 0.

Or if X is Cauchy, then

fX2(a) =






1
π
√

a(1 + a)
if a > 0,

0 if a ≤ 0.

Example 22.5. Suppose µ ∈ R and σ > 0 are fixed constants, and define
Y = µ + σX. Find the density of Y in terms of that of X. Once again,

FY (a) = P {µ + σX ≤ a} = P
{

X ≤ a− µ

σ

}
= FX

(
a− µ

σ

)
.

Therefore,

fY (a) =
1
σ

fX

(
a− µ

σ

)
.

For example, if X is standard normal, then

fµ+σX(a) =
1√

2πσ2
exp

(
−(x− µ)2

2σ2

)
.

This is the socalled N(µ , σ2) density.

Example 22.6. Suppose X is uniformly distributed on (0 , 1), and define

Y =






0 if 0 ≤ X < 1
3 ,

1 if 1
3 ≤ X < 2

3 ,

2 if 2
3 ≤ X < 1.

Then, Y is a discrete random variable with mass function,

fY (x) =

{
1
3 if x = 0, 1, or 2,

0 otherwise.
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For instance, in order to compute fY (1) we note that

fY (1) = P
{

1
3
≤ X <

2
3

}
=

∫ 2/3

1/3
fX(y)︸ ︷︷ ︸
≡1

dy =
1
3
.


