1. Examples of continuous random variables

Example 22.1 (Standard normal density). I claim that

$$
\phi(x)=\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{x^{2}}{2}\right)
$$

defines a density function. Clearly, $\phi(x) \geq 0$ and is continuous at all points x. So it suffices to show that the area under ϕ is one. Define

$$
A=\int_{-\infty}^{\infty} \phi(x) d x .
$$

Then,

$$
\begin{aligned}
A^{2} & =\frac{1}{2 \pi} \int_{-\infty}^{\infty} \exp \left(-\frac{x^{2}+y^{2}}{2}\right) d x d y \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi} \int_{0}^{\infty} \exp \left(-\frac{r^{2}}{2}\right) r d r d \theta
\end{aligned}
$$

Let $s=r^{2} / 2$ to find that the inner integral is $\int_{0}^{\infty} \exp (-s) d s=1$. Therefore, $A^{2}=1$ and hence $A=1$, as desired. [Why is A not -1 ?]

The distribution function of ϕ is

$$
\Phi(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} e^{-z^{2} / 2} d z
$$

One can prove that there is "no nice formula" that "describes" $\Phi(x)$ for all x (theorem of Liouville). Usually, people use tables of integrals to evaluate $\Phi(x)$ for concrete values of x.

Example 22.2 (Gamma densities). Choose and fix two numbers (parameters) $\alpha, \lambda>0$. The gamma density with parameters α and λ is the probability density function that is proportional to

$$
\begin{cases}x^{\alpha-1} e^{-\lambda x} & \text { if } x \geq 0 \\ 0 & \text { if } x<0\end{cases}
$$

Now,

$$
\int_{0}^{\infty} x^{\alpha-1} e^{-\lambda x} d x=\frac{1}{\lambda^{\alpha}} \int_{0}^{\infty} y^{\alpha-1} e^{-y} d y
$$

Define the gamma function as

$$
\Gamma(\alpha)=\int_{0}^{\infty} y^{\alpha-1} e^{-y} d y \quad \text { for all } \alpha>0
$$

One can prove that there is "no nice formula" that "describes" $\Gamma(\alpha)$ for all α (theorem of Liouville). Thus, the best we can do is to say that the following is a Gamma density with parameters $\alpha, \lambda>0$:

$$
f(x)= \begin{cases}\frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\lambda x} & \text { if } x \geq 0 \\ 0 & \text { if } x<0\end{cases}
$$

You can probably guess by now (and correctly!) that $F(x)=\int_{-\infty}^{x} f(y) d y$ cannot be described by nice functions either. Nonetheless, let us finish by making the observation that $\Gamma(\alpha)$ is computable for some reasonable values of $\alpha>0$. The key to unraveling this remark is the following "reproducing property":

$$
\begin{equation*}
\Gamma(\alpha+1)=\alpha \Gamma(\alpha) \quad \text { for all } \alpha>0 \tag{18}
\end{equation*}
$$

The proof uses integration by parts:

$$
\begin{aligned}
\Gamma(\alpha+1) & =\int_{0}^{\infty} x^{\alpha} e^{-x} d x \\
& =\int_{0}^{\infty} u(x) v^{\prime}(x) d x
\end{aligned}
$$

where $u(x)=x^{\alpha}$ and $v^{\prime}(x)=e^{-x}$. Integration by parts states that ${ }^{1}$

$$
\int u v^{\prime}=u v-\int v^{\prime} u \quad \text { for indefinite integrals. }
$$

[^0]Evidently, $u^{\prime}(x)=\alpha x^{\alpha-1}$ and $v(x)=-e^{-x}$. Hence,

$$
\begin{aligned}
\Gamma(\alpha+1) & =\int_{0}^{\infty} x^{\alpha} e^{-x} d x \\
& =\left.u v\right|_{0} ^{\infty}-\int_{0}^{\infty} v^{\prime} u \\
& =\left.\left(-\alpha x^{\alpha-1} e^{-x}\right)\right|_{0} ^{\infty}+\alpha \int_{0}^{\infty} x^{\alpha-1} e^{-x} d x
\end{aligned}
$$

The first term is zero, and the second (the integral) is $\alpha \Gamma(\alpha)$, as claimed. Now, it easy to see that $\Gamma(1)=\int_{0}^{\infty} e^{-x} d x=1$. Therefore, $\Gamma(2)=1 \times \Gamma(1)=$ $1, \Gamma(3)=2 \times \Gamma(2)=2, \ldots$, and in general,

$$
\Gamma(n+1)=n!\quad \text { for all integers } n \geq 0
$$

2. Functions of a continuous random variable

The basic problem: If $Y=g(X)$, then how can we compute f_{Y} in terms of f_{X} ?

Example 22.3. Suppose X is uniform on $(0,1)$, and $Y=-\ln X$. Then, we compute f_{Y} by first computing F_{Y}, and then using $f_{Y}=F_{Y}^{\prime}$. Here are the details:

$$
F_{Y}(a)=\mathrm{P}\{Y \leq a\}=\mathrm{P}\{-\ln X \leq a\}
$$

Now, $-\ln (x)$ is a decreasing function. Therefore, $-\ln (x) \leq a$ if and only if $x \geq e^{-a}$, and hence,

$$
F_{Y}(a)=\mathrm{P}\left\{X \geq e^{-a}\right\}=1-F_{X}\left(e^{-a}\right)
$$

Consequently,

$$
f_{Y}(a)=-f_{X}\left(e^{-a}\right) \frac{d}{d a}\left(e^{-a}\right)=e^{-a} f_{X}\left(e^{-a}\right)
$$

Now recall that $f_{X}(u)=1$ if $0 \leq u \leq 1$ and $f_{X}(u)=0$ otherwise. Now e^{-a} is between zero and one if and only if $a \geq 0$. Therefore,

$$
f_{X}\left(e^{-a}\right)= \begin{cases}1 & \text { if } a \geq 0 \\ 0 & \text { if } a<0\end{cases}
$$

It follows then that

$$
f_{Y}(a)= \begin{cases}e^{-a} & \text { if } a \geq 0 \\ 0 & \text { otherwise }\end{cases}
$$

Thus, $-\ln X$ has an exponential density with parameter $\lambda=1$. More generally, if $\lambda>0$ is fixed, then $-(1 / \lambda) \ln X$ has an exponential density with parameter λ.

Example 22.4. Suppose X has density f_{X}. Then let us find the density function of $Y=X^{2}$. Again, we seek to first compute F_{Y}. Now, for all $a>0$,

$$
F_{Y}(a)=\mathrm{P}\left\{X^{2} \leq a\right\}=\mathrm{P}\{-\sqrt{a} \leq X \leq \sqrt{a}\}=F_{X}(\sqrt{a})-F_{X}(-\sqrt{a}) .
$$

Differentiate $[d / d a]$ to find that

$$
f_{Y}(a)=\frac{f_{X}(\sqrt{a})+f_{X}(-\sqrt{a})}{2 \sqrt{a}}
$$

On the other hand, $f_{Y}(a)=0$ if $a \leq 0$. For example, consider the case that X is standard normal. Then,

$$
f_{X^{2}}(a)= \begin{cases}\frac{e^{-a}}{\sqrt{2 \pi a}} & \text { if } a>0 \\ 0 & \text { if } a \leq 0\end{cases}
$$

Or if X is Cauchy, then

$$
f_{X^{2}}(a)= \begin{cases}\frac{1}{\pi \sqrt{a}(1+a)} & \text { if } a>0 \\ 0 & \text { if } a \leq 0\end{cases}
$$

Example 22.5. Suppose $\mu \in \mathbf{R}$ and $\sigma>0$ are fixed constants, and define $Y=\mu+\sigma X$. Find the density of Y in terms of that of X. Once again,

$$
F_{Y}(a)=\mathrm{P}\{\mu+\sigma X \leq a\}=\mathrm{P}\left\{X \leq \frac{a-\mu}{\sigma}\right\}=F_{X}\left(\frac{a-\mu}{\sigma}\right) .
$$

Therefore,

$$
f_{Y}(a)=\frac{1}{\sigma} f_{X}\left(\frac{a-\mu}{\sigma}\right) .
$$

For example, if X is standard normal, then

$$
f_{\mu+\sigma X}(a)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right)
$$

This is the socalled $N\left(\mu, \sigma^{2}\right)$ density.
Example 22.6. Suppose X is uniformly distributed on $(0,1)$, and define

$$
Y= \begin{cases}0 & \text { if } 0 \leq X<\frac{1}{3} \\ 1 & \text { if } \frac{1}{3} \leq X<\frac{2}{3} \\ 2 & \text { if } \frac{2}{3} \leq X<1\end{cases}
$$

Then, Y is a discrete random variable with mass function,

$$
f_{Y}(x)= \begin{cases}\frac{1}{3} & \text { if } x=0,1, \text { or } 2 \\ 0 & \text { otherwise }\end{cases}
$$

For instance, in order to compute $f_{Y}(1)$ we note that

$$
f_{Y}(1)=\mathrm{P}\left\{\frac{1}{3} \leq X<\frac{2}{3}\right\}=\int_{1 / 3}^{2 / 3} \underbrace{f_{X}(y)}_{\equiv 1} d y=\frac{1}{3} .
$$

[^0]: ${ }^{1}$ This follows immediately from integrating the product rule: $(u v)^{\prime}=u^{\prime} v+u v^{\prime}$.

