1. Continuous Random Variables

Definition 21.1. We say that X is a continuous random variable with density function f if f is a piecewise continuous nonnegative function, and for all real numbers x,

$$
\mathrm{P}\{X \leq x\}=\int_{-\infty}^{x} f(y) d y
$$

In this case,

$$
F(x)=\mathrm{P}\{X \leq x\}=\int_{-\infty}^{x} f(y) d y
$$

defines the distribution function of X.

Some basic properties:

(1) We have $F(\infty)-F(-\infty)=\int_{-\infty}^{\infty} f(y) d y=1$.
(2) Because f is integrable and nonnegative, for all real numbers x we have

$$
F(x+h)-F(x)=\int_{x}^{x+h} f(y) d y \rightarrow 0 \quad \text { as } h \searrow 0
$$

But the left-most term is $\mathrm{P}\{x<X \leq x+h\}$. Therefore, by Rule 4 of probabilities,

$$
\mathrm{P}\{X=x\}=F(x)-F(x-)=0 \quad \text { for all } x .
$$

(3) If f is continuous at x, then by the fundamental theorem of calculus,

$$
F^{\prime}(x)=f(x) .
$$

This shows that $F^{\prime}=f$ at all but at most countably-many points.

For examples, we merely need to construct any f such that $f(x) \geq 0$ and $\int_{-\infty}^{x} f(y) d y=1$, together with the property that f is continuous piecewise. Here are some standard examples.

Example 21.2 (Uniform density). If $a<b$ are fixed, then the uniform density on (a, b) is the function

$$
f(x)= \begin{cases}\frac{1}{b-a} & \text { if } a \leq x \leq b \\ 0 & \text { otherwise }\end{cases}
$$

In this case, we can compute the distribution function as follows:

$$
F(x)= \begin{cases}0 & \text { if } x<a \\ \frac{x}{b-a} & \text { if } a \leq x \leq b \\ 1 & \text { if } x>b\end{cases}
$$

Example 21.3 (Exponential densities). Let $\lambda>0$ be fixed. Then

$$
f(x)= \begin{cases}\lambda e^{-\lambda x} & \text { if } x \geq 0 \\ 0 & \text { if } x<0\end{cases}
$$

is a density, and is called the exponential density with parameter λ. It is not hard to see that

$$
F(x)= \begin{cases}1-e^{-\lambda x} & \text { if } x \geq 0 \\ 0 & \text { if } x<0\end{cases}
$$

Example 21.4 (The Cauchy density). Define for all real numbers x,

$$
f(x)=\frac{1}{\pi} \frac{1}{1+x^{2}} .
$$

Because

$$
\frac{d}{d x} \arctan x=\frac{1}{1+x^{2}},
$$

we have

$$
\int_{-\infty}^{\infty} f(y) d y=\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{1}{1+y^{2}} d y=\frac{1}{\pi}[\arctan (\infty)-\arctan (-\infty)]=1
$$

Also,

$$
\begin{aligned}
F(x) & =\frac{1}{\pi} \int_{-\infty}^{x} f(y) d y=\frac{1}{\pi}[\arctan (x)-\arctan (-\infty)] \\
& =\frac{1}{\pi} \arctan (x)+\frac{1}{2} \quad \text { for all real } x .
\end{aligned}
$$

