1. Properties of probability

Rules 1-3 suffice if we want to study only finite sample spaces. But infinite samples spaces are also interesting. This happens, for example, if we want to write a model that answers, "what is the probability that we toss a coin 12 times before we toss heads?" This leads us to the next, and final, rule of probability.
Rule 4 (Extended addition rule). If A_{1}, A_{2}, \ldots are [countably-many] disjoint events, then

$$
\mathrm{P}\left(\bigcup_{i=1}^{\infty} A_{i}\right)=\sum_{i=1}^{\infty} \mathrm{P}\left(A_{i}\right) .
$$

This rule will be extremely important to us soon. It looks as if we might be able to derive this as a consequence of Lemma 1.3, but that is not the case ...it needs to be assumed as part of our model of probability theory.

Rules 1-4 have other consequences as well.
Example 2.1. Recall that A^{c}, the complement of A, is the collection of all points in Ω that are not in A. Thus, A and A^{c} are disjoint. Because $\Omega=A \cup A^{c}$ is a disjoint union, Rules 2 and 3 together imply then that

$$
\begin{aligned}
1 & =\mathrm{P}(\Omega) \\
& =\mathrm{P}\left(A \cup A^{c}\right) \\
& =\mathrm{P}(A)+\mathrm{P}\left(A^{c}\right) .
\end{aligned}
$$

Thus, we obtain the physically-appealing statement that

$$
\mathrm{P}(A)=1-\mathrm{P}\left(A^{c}\right)
$$

For instance, this yields $\mathrm{P}(\varnothing)=1-\mathrm{P}(\Omega)=0$. "Chances are zero that nothing happens."

Example 2.2. If $A \subseteq B$, then we can write B as a disjoint union: $B=$ $A \cup\left(B \cap A^{c}\right)$. Therefore, $\mathrm{P}(B)=\mathrm{P}(A)+\mathrm{P}\left(B \cap A^{c}\right)$. The latter probability is ≥ 0 by Rule 1 . Therefore, we reach another physically-appealing property:

$$
\text { If } A \cup B \text {, then } \mathrm{P}(A) \leq \mathrm{P}(B) \text {. }
$$

Example 2.3. Suppose $\Omega=\left\{\omega_{1}, \ldots, \omega_{N}\right\}$ has N distinct elements (" N distinct outcomes of the experiment"). One way of assigning probabilities to every subset of Ω is to just let

$$
\mathrm{P}(A)=\frac{|A|}{|\Omega|}=\frac{|A|}{N},
$$

where $|E|$ denotes the number of elements of E. Let us check that this probability assignment satisfies Rules $1-4$. Rules 1 and 2 are easy to verify, and Rule 4 holds vacuously because Ω does not have infinitely-many disjoint subsets. It remains to verify Rule 3 . If A and B are disjoint subsets of Ω, then $|A \cup B|=|A|+|B|$. Rule 3 follows from this. In this example, each outcome ω_{i} has probability $1 / N$. Thus, these are "equally likely outcomes."

Example 2.4. Let

$$
\Omega=\left\{\left(H_{1}, H_{2}\right),\left(H_{1}, T_{2}\right),\left(T_{1}, H_{2}\right),\left(T_{1}, T_{2}\right)\right\} .
$$

There are four possible outcomes. Suppose that they are equally likely. Then, by Rule 3,

$$
\begin{aligned}
\mathrm{P}\left(\left\{H_{1}\right\}\right) & =\mathrm{P}\left(\left\{H_{1}, H_{2}\right\} \cup\left\{H_{1}, T_{2}\right\}\right) \\
& =\mathrm{P}\left(\left\{H_{1}, H_{2}\right\}\right)+\mathrm{P}\left(\left\{H_{1}, T_{2}\right\}\right) \\
& =\frac{1}{4}+\frac{1}{4} \\
& =\frac{1}{2} .
\end{aligned}
$$

In fact, in this model for equally-likely outcomes, $\mathrm{P}\left(\left\{H_{1}\right\}\right)=\mathrm{P}\left(\left\{H_{2}\right\}\right)=$ $\mathrm{P}\left(\left\{T_{1}\right\}\right)=\mathrm{P}\left(\left\{T_{2}\right\}\right)=1 / 2$. Thus, we are modeling two fair tosses of two fair coins.

Example 2.5. Let us continue with the sample space of the previous example, but assign probabilities differently. Here, we define $\mathrm{P}\left(\left\{H_{1}, H_{2}\right\}\right)=$ $\mathrm{P}\left(\left\{T_{1}, T_{2}\right\}\right)=1 / 2$ and $\mathrm{P}\left(\left\{H_{1}, T_{2}\right\}\right)=\mathrm{P}\left(\left\{T_{1}, H_{2}\right\}\right)=1 / 2$. We compute, as we did before, to find that $\mathrm{P}\left(\left\{H_{1}\right\}\right)=\mathrm{P}\left(\left\{H_{2}\right\}\right)=\mathrm{P}\left(\left\{H_{3}\right\}\right)=\mathrm{P}\left(\left\{H_{4}\right\}\right)=$ $1 / 2$. But now the coins are not tossed fairly. In fact, the results of the two coin tosses are the same in this model.

The following generalizes Rule 3 , because $\mathrm{P}(A \cap B)=0$ when A and B are disjoint.

Lemma 2.6 (Another addition rule). If A and B are events (not necessarily disjoint), then

$$
\mathrm{P}(A \cup B)=\mathrm{P}(A)+\mathrm{P}(B)-\mathrm{P}(A \cap B)
$$

Proof. We can write $A \cup B$ as a disjoint union of three events:

$$
A \cup B=\left(A \cap B^{c}\right) \cup\left(A^{c} \cap B\right) \cup(A \cap B)
$$

By Rule 3,

$$
\begin{equation*}
\mathrm{P}(A \cup B)=\mathrm{P}\left(A \cap B^{c}\right)+\mathrm{P}\left(A^{c} \cap B\right)+\mathrm{P}(A \cap B) \tag{1}
\end{equation*}
$$

Similarly, write $A=\left(A \cap B^{c}\right) \cup(A \cap B)$, as a disjoint union, to find that

$$
\begin{equation*}
\mathrm{P}(A)=\mathrm{P}\left(A \cap B^{c}\right)+\mathrm{P}(A \cap B) \tag{2}
\end{equation*}
$$

There is a third identity that is proved the same way. Namely,

$$
\begin{equation*}
\mathrm{P}(B)=\mathrm{P}\left(A^{c} \cap B\right)+\mathrm{P}(A \cap B) \tag{3}
\end{equation*}
$$

Add (2) and (3) and solve to find that

$$
\mathrm{P}\left(A \cap B^{c}\right)+\mathrm{P}\left(A^{c} \cap B\right)=\mathrm{P}(A)+\mathrm{P}(B)-2 \mathrm{P}(A \cap B)
$$

Plug this in to the right-hand side of (1) to finish the proof.

2. An example

Roll two fair dice fairly; all possible outcomes are equally likely.
2.1. A good sample space is

$$
\Omega=\left\{\begin{array}{cccc}
(1,1) & (1,2) & \cdots & (1.6) \\
\vdots & \vdots & \ddots & \vdots \\
(6,1) & (6,2) & \cdots & (6.6)
\end{array}\right\}
$$

We have seen already that $\mathrm{P}(A)=|A| /|\Omega|$ for any event A. Therefore, the first question we address is, "how many items are in Ω ?" We can think of Ω as a 6 -by- 6 table; so $|\Omega|=6 \times 6=36$, by second-grade arithmetic.

Before we proceed with our example, let us document this observation more abstractly.

Proposition 2.7 (The first principle of counting). If we have m distinct forks and n distinct knives, then mn distinct knife-fork combinations are possible.
... not to be mistaken with ...

Proposition 2.8 (The second principle of counting). If we have m distinct forks and n distinct knives, then there are $m+n$ utensils.
... back to our problem ...
2.2. What is the probability that we roll doubles? Let

$$
A=\{(1,1),(2,2), \ldots,(6,6)\}
$$

We are asking to find $\mathrm{P}(A)=|A| / 36$. But there are 6 items in A; hence, $\mathrm{P}(A)=6 / 36=1 / 6$.
2.3. What are the chances that we roll a total of five dots? Let

$$
A=\{(1,4),(2,3),(3,2),(4,1)\} .
$$

We need to find $\mathrm{P}(A)=|A| / 36=4 / 36=1 / 9$.
2.4. What is the probability that we roll somewhere between two and five dots (inclusive)? Let

$$
A=\{\overbrace{(1,1)}^{\text {sum }=2}, \underbrace{(1,2),(2,1)}_{\text {sum }=3}, \overbrace{(1,3),(2,2),(3,1)}^{\text {sum }=4}, \underbrace{(1,4),(4,1),(2,3),(3,2)}_{\text {sum }=5}\} .
$$

We are asking to find $\mathrm{P}(A)=10 / 36$.
2.5. What are the odds that the product of the number of dots thus rolls is an odd number? The event in question is

$$
A:=\left\{\begin{array}{lll}
(1,1), & (1,3), & (1,5) \\
(3,1), & (3,3), & (3,5) \\
(5,1), & (5,3), & (5,5)
\end{array}\right\}
$$

And $\mathrm{P}(A)=9 / 36=1 / 4$.

