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Lecture 2

1. Properties of probability

Rules 1-3 suffice if we want to study only finite sample spaces. But infinite
samples spaces are also interesting. This happens, for example, if we want
to write a model that answers, “what is the probability that we toss a coin
12 times before we toss heads?” This leads us to the next, and final, rule of
probability.

Rule 4 (Extended addition rule). If A, As, ... are [countably-many]| disjoint

events, then
P (U Ai> = ZP(AZ»).
i=1 i=1

This rule will be extremely important to us soon. It looks as if we might
be able to derive this as a consequence of Lemma 1.3, but that is not the
case ...it needs to be assumed as part of our model of probability theory.

Rules 1-4 have other consequences as well.
Example 2.1. Recall that A€, the complement of A, is the collection of

all points in € that are not in A. Thus, A and A€ are disjoint. Because
Q= AU A° is a disjoint union, Rules 2 and 3 together imply then that

1=P(Q)
=P(AU A9
=P(A) + P(A°).
Thus, we obtain the physically—appealing statement that
P(A) =1—-P(A°).

For instance, this yields P(@) = 1 — P(2) = 0. “Chances are zero that
nothing happens.”
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Example 2.2. If A C B, then we can write B as a disjoint union: B =
AU(BNA®). Therefore, P(B) = P(A)+P(BNA°). The latter probability is
> 0 by Rule 1. Therefore, we reach another physically-appealing property:

If AU B, then P(A) < P(B).

Example 2.3. Suppose Q = {wi,...,wy} has N distinct elements (“N
distinct outcomes of the experiment”). One way of assigning probabilities
to every subset of €2 is to just let
Al _ |A]

where |E| denotes the number of elements of E. Let us check that this
probability assignment satisfies Rules 1-4. Rules 1 and 2 are easy to verify,
and Rule 4 holds vacuously because {2 does not have infinitely-many disjoint
subsets. It remains to verify Rule 3. If A and B are disjoint subsets of €2,
then |[AU B| = |A| + |B|. Rule 3 follows from this. In this example, each
outcome w; has probability 1/N. Thus, these are “equally likely outcomes.”

Example 2.4. Let
= {(H,H),(H,T), (T, H) (T, T2) .

There are four possible outcomes. Suppose that they are equally likely.
Then, by Rule 3,

P({H:1}) =

g

({#1, Ho} U {Hy T}

({H:1,Hs}) + P({Hy,T2})

a 4

Il
=

| =

In fact, in this model for equally-likely outcomes, P({H;}) = P({H2}) =
P({T1}) = P({T»}) = 1/2. Thus, we are modeling two fair tosses of two fair
coins.

Example 2.5. Let us continue with the sample space of the previous ex-
ample, but assign probabilities differently. Here, we define P({H;, Hy}) =
P({T1,T>2}) =1/2 and P({H,,T>}) = P({T1, H2}) = 1/2. We compute, as
we did before, to find that P({H;}) = P({H2}) = P{H3}) = P{H4}) =
1/2. But now the coins are not tossed fairly. In fact, the results of the two
coin tosses are the same in this model.



2. An example 5

The following generalizes Rule 3, because P(AN B) = 0 when A and B
are disjoint.

Lemma 2.6 (Another addition rule). If A and B are events (not necessarily
disjoint), then

P(AuB)=P(A)+P(B) —P(ANB).

Proof. We can write AU B as a disjoint union of three events:

AUB=(ANB°)U(A°NB)U(ANB).

By Rule 3,
P(AUB)=P(ANB°)+P(A°NB)+P(ANB). (1)
Similarly, write A = (AN B°) U (AN B), as a disjoint union, to find that
P(A) =P(ANB°)+P(ANB). (2)
There is a third identity that is proved the same way. Namely,
P(B)=P(A°NB)+P(ANB). (3)

Add (2) and (3) and solve to find that
P(ANB®)+P(A°NB)=P(A)+P(B) —2P(AN B).
Plug this in to the right-hand side of (1) to finish the proof. O

2. An example
Roll two fair dice fairly; all possible outcomes are equally likely.

2.1. A good sample space is
(1,1) (1,2) --- (1.6)
Q= : : :
6,1) (6,2) --- (6.6)
We have seen already that P(A) = |A|/|?| for any event A. Therefore, the

first question we address is, “how many items are in Q27?” We can think of
Q) as a 6-by-6 table; so |Q2] = 6 x 6 = 36, by second-grade arithmetic.

Before we proceed with our example, let us document this observation
more abstractly.

Proposition 2.7 (The first principle of counting). If we have m distinct
forks and n distinct knives, then mn distinct knife—fork combinations are
possible.

...not to be mistaken with ...



Proposition 2.8 (The second principle of counting). If we have m distinct
forks and n distinct knives, then there are m + n utensils.

... back to our problem ...

2.2. What is the probability that we roll doubles? Let
A={(1,1),(2,2),...,(6,6)}.

We are asking to find P(A) = |A|/36. But there are 6 items in A; hence,

P(A) =6/36 = 1/6.

2.3. What are the chances that we roll a total of five dots? Let

A={(1,4).(2,3),(3,2), (4, 1)}
We need to find P(A) = |A|/36 =4/36 = 1/9.

2.4. What is the probability that we roll somewhere between two and five
dots (inclusive)? Let

SiI_‘Il/iQ sum =4
A=< (1,1) ,(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(4,1),(2,3),(3,2)
sum =3 sum=>5

We are asking to find P(A) = 10/36.

2.5. What are the odds that the product of the number of dots thus rolls
is an odd number? The event in question is

(1,1), (1,3), (1,5)
A:=1<(3,1), (3,3), (3,5)
(5,1), (5,3), (5,5)

And P(A) = 9/36 = 1/4.



