1. The distribution of the sum of two independent random variables, continued

Recall that if X and Y are independent, then

$$
f_{X+Y}(z)=\sum_{x} f_{X}(x) f_{Y}(z-x) .
$$

Now we work out three examples of this. [We have seen another already at the end of Lecture 17.]

Example 18.1. Suppose $X= \pm 1$ with probability $1 / 2$ each; and $Y= \pm 2$ with probability $1 / 2$ each. Then,

$$
f_{X+Y}(z)= \begin{cases}1 / 4 & \text { if } z=3,-3,1,-1 \\ 0 & \text { otherwise }\end{cases}
$$

Example 18.2. Let X and Y denote two independent geometric (p) random variables with the same parameter $p \in(0,1)$. What is the mass function of $X+Y$? If $z=2,3, \ldots$, then

$$
\begin{aligned}
f_{X+Y}(z) & =\sum_{x} f_{X}(x) f_{Y}(z-x)=\sum_{x=1}^{\infty} p q^{x-1} f_{Y}(z-x) \\
& =\sum_{x=1}^{z+1} p q^{x-1} p q^{z-x-1}=p^{2} \sum_{x=1}^{z+1} q^{z-2}=(z+1) p^{2} q^{z-2} .
\end{aligned}
$$

Else, $f_{X+Y}(z)=0$. This shows that $X+Y$ is a negative binomial. Can you deduce this directly, and by other means?

Example 18.3. If $X=\operatorname{bin}(n, p)$ and $Y=\operatorname{bin}(m, p)$ for the same parameter $p \in(0,1)$, then what is the distribution of $X+Y$? If $z=0,1, \ldots, n+m$, then

$$
\begin{aligned}
f_{X+Y}(z) & =\sum_{x} f_{X}(x) f_{Y}(z-x)=\sum_{x=0}^{n}\binom{n}{x} p^{x} q^{n-x} \\
& =\sum_{\substack{0 \leq x \leq n \\
0 \leq z-x \leq m}}\binom{n}{x} p^{x} q^{n-x}\binom{m}{z-x} p^{z-x} q^{m-(z-x)} \\
& =p^{z} q^{m+n-z} \sum_{\substack{0 \leq x \leq n \\
z-m \leq x \leq z}}\binom{n}{x}\binom{m}{z-x} .
\end{aligned}
$$

[The sum is over all integers x such that x is between 0 and n, and x is also betweem $z-m$ and m.] For other values of $z, f_{X+Y}(z)=0$.

Equivalently, we can write for all $z=0, \ldots, n+m$,

$$
f_{X+Y}(z)=\binom{n+m}{z} p^{z} q^{m+n-z} \sum_{\substack{0 \leq x \leq n \\ z-m \leq x \leq z}} \frac{\binom{n}{x}\binom{m}{z-x}}{\binom{n+m}{z}} .
$$

Thus, if we showed that the sum is one, then $X+Y=\operatorname{bin}(n+m, p)$. In order to show that the sum is one consider an urn that has n white balls and m black balls. We choose z balls at random, without replacement. The probability that we obtain exactly x white and $z-x$ black is precisely,

$$
\frac{\binom{n}{x}\binom{m}{z-x}}{\binom{n+m}{z}}
$$

Therefore, if we add this probability over all possible values of x we should get one. This does the job.

Can you find a direct way to prove that $X+Y=\operatorname{bin}(n+m, p)$?

2. Transformations of a mass function

Let f denote the mass function of a random variable. For technical reasons, one often "transforms" f into a new function which is easier to analyze some times. The transformation can be fairly arbitrary, but it should be possible, in principle, to compute f from that transformation as well. In this way, the computations for the transform will often yield useful computations for the original mass function. [We do this only when it is very hard to work with the mass function directly.]

In this course we will study only two transformations: The generating function, and the moment generating function.
2.1. The generating function. If X is integer valued, then its generating function [also known as the "probability generating function," or p.g.f., for short] G is the function

$$
G(s)=\sum_{k} s^{k} f(s) \quad \text { for all } s \in(-1,1)
$$

That is, we start with some mass function f, and transform it into another function-the generating function- G. Note that

$$
G(s)=\mathrm{E}\left[s^{X}\right]
$$

This is indeed a useful transformation. Indeed,
Theorem 18.4 (Uniqueness). If $G_{X}(s)=G_{Y}(s)$ for all $s \in(-1,1)$, then $f_{X}=f_{Y}$.

In order to go from G to f we need a lot of examples. In this course, we will work out a few. Many more are known.

Example 18.5. Suppose X is uniformly distributed on $\{-n, \ldots, m\}$, where n and m are positive integers. This means that $f(x)=1 /(m+n+1)$ if $x=-n, \ldots, m$ and $f(x)=0$ otherwise. Consequently, for all $s \in(-1,1)$,

$$
\begin{aligned}
G(s) & =\sum_{x=-n}^{m} \frac{s^{x}}{n+m+1}=\frac{1}{n+m+1} \sum_{x=-n}^{m} s^{x} \\
& =\frac{s^{-n}-s^{m+1}}{(n+m+1)(1-s)}
\end{aligned}
$$

using facts about geometric series.

Example 18.6. Suppose

$$
G(s)=\frac{(\alpha-1) s}{\alpha-s} \quad \text { for all } s \in(-1,1)
$$

where $\alpha>1>0$. I claim that G is a p.g.f. The standard way to do this is to expand G into a Taylor expansion. Define

$$
h(s)=\frac{1}{\alpha-s}=(\alpha-s)^{-1}
$$

Then, $h^{\prime}(s)=(\alpha-s)^{-2}, h^{\prime \prime}(s)=2(\alpha-s)^{-3}$, etc., and in general,

$$
h^{(n)}(s)=n!(\alpha-s)^{-(n+1)}
$$

According to the Taylor-MacLaurin expansion of h,

$$
h(s)=\sum_{n=0}^{\infty} \frac{1}{n!} s^{n} h^{(n)}(0) .
$$

Note that $h^{(n)}(0)=\alpha^{-1} n!\alpha^{-n}$. Therefore, as long as $0<s / \alpha<1$,

$$
\frac{1}{\alpha-s}=\frac{1}{\alpha} \sum_{n=0}^{\infty}\left(\frac{s}{\alpha}\right)^{n} .
$$

In particular,

$$
G(s)=\frac{(\alpha-1) s}{\alpha} \sum_{n=0}^{\infty} s^{n}(1 / \alpha)^{n}=\frac{\alpha-1}{\alpha} \sum_{k=1}^{\infty} s^{k}(1 / \alpha)^{k-1} .
$$

By the uniqueness theorem,

$$
f(k)= \begin{cases}\frac{\alpha-1}{\alpha}\left(\frac{1}{\alpha}\right)^{k-1} & \text { if } k=1,2, \ldots, \\ 0 & \text { otherwise } .\end{cases}
$$

Thus, in fact, $X=$ geometric $(1 / \alpha)$.

