Lecture 18

1. The distribution of the sum of two independent random
variables, continued

Recall that if X and Y are independent, then

Ixvy(z fo ) fy(z — ).

Now we work out three examples of this. [We have seen another already at
the end of Lecture 17.]

Example 18.1. Suppose X = £1 with probability 1/2 each; and Y = 42
with probability 1/2 each. Then,

1/4 ifz=3,-3,1,-1,

0 otherwise.

fxiv(2) = {

Example 18.2. Let X and Y denote two independent geometric(p) random
variables with the same parameter p € (0,1). What is the mass function of
X+Y?Ifz=2,3,..., then

fxty (2 fo Vy(z—2) =) pg" ' fy(z — =)

r=1
z+1 z+1

:quac—lpqz—x _pQZqz 2 _ Z+ ) 2 z 2
=1

Else, fx4+y(z) = 0. This shows that X +Y is a negative binomial. Can you
deduce this directly, and by other means?
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Example 18.3. If X = bin(n,p) and Y = bin(m , p) for the same parameter
p € (0,1), then what is the distribution of X +Y? If z = 0,1,...,n + m,
then

fxiy(2) = %:fx(:c)fy(z — ) = zn: <n>pl‘qn—x

=0 z
n _ m _ (—
_ 2 : < >pa:qn :c( >pz zqm (z—x)
X z—X
0<x<n
0<z—z<m

R, mAn—z n m
e 8 (")
0<z<n

z—m<x<z

[The sum is over all integers = such that z is between 0 and n, and z is also
betweem z — m and m.] For other values of z, fxyy(z) =0.

Equivalently, we can write for all z=0,...,n 4+ m,

<n> < N >
fxiv(z) = <n J; m>pzqm+n_z > A A2 - fT; L
0<z<n
z—m<x<z < z >

Thus, if we showed that the sum is one, then X +Y = bin(n + m,p). In
order to show that the sum is one consider an urn that has n white balls
and m black balls. We choose z balls at random, without replacement. The
probability that we obtain exactly x white and z — x black is precisely,

n m
()L)
n+m\
(")
Therefore, if we add this probability over all possible values of x we should
get one. This does the job.

Can you find a direct way to prove that X +Y = bin(n + m,p)?

2. Transformations of a mass function

Let f denote the mass function of a random variable. For technical reasons,
one often “transforms” f into a new function which is easier to analyze some
times. The transformation can be fairly arbitrary, but it should be possible,
in principle, to compute f from that transformation as well. In this way,
the computations for the transform will often yield useful computations for
the original mass function. [We do this only when it is very hard to work
with the mass function directly.]
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In this course we will study only two transformations: The generating
function, and the moment generating function.

2.1. The generating function. If X is integer valued, then its generating
function [also known as the “probability generating function,” or p.g.f., for
short] G is the function

G(s) =) _s"f(s)  forallse(~1,1).
k

That is, we start with some mass function f, and transform it into another
function—the generating function—G. Note that

G(s) = B[sX].
This is indeed a useful transformation. Indeed,

Theorem 18.4 (Uniqueness). If Gx(s) = Gy(s) for all s € (—=1,1), then
fx =1ty

In order to go from G to f we need a lot of examples. In this course, we
will work out a few. Many more are known.

Example 18.5. Suppose X is uniformly distributed on {—n, ..., m}, where
n and m are positive integers. This means that f(x) = 1/(m +n + 1) if
x=-n,...,mand f(x) =0 otherwise. Consequently, for all s € (—1,1),

G(s) = = z
(8) Zn+m+1 n+m-+1 ZS

r=—n r=—n

s — 8m+1
(n+m+1)(1-s)’

using facts about geometric series.

Example 18.6. Suppose

a—1)s

G(s) = ( forall s € (—1,1),

a—s
where o > 1 > 0. I claim that G is a p.g.f. The standard way to do this is
to expand G into a Taylor expansion. Define

1 -
h(s) = o = (a—s)"L.
Then, h'(s) = (o — s)72, h'(s) = 2(a — s) 73, etc., and in general,

A (s) = nl(a — s)~ (D),
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According to the Taylor-MacLaurin expansion of h,

his) =3 ~smh) (0).

n!
n=0

Note that 2(™(0) = a~'nla~". Therefore, as long as 0 < s/a < 1,

1 _1i(S)H
a— s L=\

In particular,

G(s) = (a;l)s > s"(1/a)" = o1 > sF (/)b
n=0 k=1

(07

By the uniqueness theorem,

a—1/1\1
f(k): o <a) 1fk=1,2,...,

0 otherwise.

Thus, in fact, X = geometric(1/a).



