Lecture 17

1. Wrap-up of Lecture 16

Proof of Lemma 16.8. It suffices to prove that

$$E (X_1 + \dots + X_n) = n\mu$$

Var $(X_1 + \dots + X_n) = n\sigma^2$.

We prove this by induction. Indeed, this is obviously true when n = 1. Suppose it is OK for all integers $\leq n - 1$. We prove it for n.

$$E(X_1 + \dots + X_n) = E(X_1 + \dots + X_{n-1}) + EX_n$$
$$= (n-1)\mu + EX_n,$$

by the induction hypothesis. Because $EX_n = \mu$, the preceding is equal to $n\mu$, as planned. Now we verify the more interesting variance computation.

Once again, we assume the assertion holds for all integers $\leq n - 1$, and strive to check it for n.

Define

$$Y = X_1 + \dots + X_{n-1}.$$

Because Y is independent of X_n , $Cov(Y, X_n) = 0$. Therefore, by Lecture 15,

$$Var (X_1 + \dots + X_n) = Var(Y + X_n)$$

= Var(Y) + Var(X_n) + Cov(Y, X_n)
= Var(Y) + Var(X_n).

We know that $\operatorname{Var}(X_n) = \sigma^2$, and by the induction hypothesis, $\operatorname{Var}(Y) = (n-1)\sigma^2$. The result follows.

2. Conditioning

2.1. Conditional mass functions. For all y, define the conditional mass function of X given that Y = y as

$$f_{X|Y}(x \mid y) = P(X = x \mid Y = y) = \frac{P\{X = x, Y = y\}}{P\{Y = y\}}$$

= $\frac{f(x, y)}{f_Y(y)}$, (16)

provided that $f_Y(y) > 0$.

As a function in x, $f_{X|Y}(x | y)$ is a probability mass function. That is:

$$\begin{array}{ll} (1) \ \ 0 \leq f_{X|Y}(x \,|\, y) \leq 1; \\ (2) \ \ \sum_x f_{X|Y}(x \,|\, y) = 1. \end{array}$$

Example 17.1 (Example 14.2, Lecture 14, continued). In this example, the joint mass function of (X, Y), and the resulting marginal mass functions, were given by the following:

$egin{array}{c c} m{x} \setminus m{y} \end{array}$	0	1	2	f_X
0	16/36	8/36	1/36	25/36
1	8/36	2/36	0	10/36
2	1/36	0	0	1/36
f_Y	25/36	10/36	1/36	1

Let us calculate the conditional mass function of X, given that Y = 1:

$$f_{X|Y}(0|1) = \frac{f(0,1)}{f_Y(1)} = \frac{8}{10}$$
$$f_{X|Y}(1|1) = \frac{f(1,1)}{f_Y(1)} = \frac{2}{10}$$

0(0 1)

 $f_{X|Y}(x \mid 1) = 0$ for other values of x.

Similarly,

$$f_{X|Y}(0|0) = \frac{16}{25}$$

$$f_{X|Y}(1|0) = \frac{8}{25}$$

$$f_{X|Y}(2|0) = \frac{1}{25}$$

$$f_{X|Y}(x|0) = 0 \text{ for other values of } x,$$

and

$$\begin{split} f_{X|Y}(0\,|\,2) &= 1 \\ f_{X|Y}(x\,|\,2) &= 0 \text{ for other values of } x. \end{split}$$

2.2. Conditional expectations. Define conditional expectations, as we did ordinary expectations. But use conditional probabilities in place of ordinary probabilities, viz.,

$$E(X | Y = y) = \sum_{x} x f_{X|Y}(x | y).$$
(17)

Example 17.2 (Example 17.1, continued). Here,

$$E(X | Y = 1) = \left(0 \times \frac{8}{10}\right) + \left(1 \times \frac{2}{10}\right) = \frac{2}{10} = \frac{1}{5}.$$

Similarly,

$$E(X | Y = 0) = \left(0 \times \frac{16}{25}\right) + \left(1 \times \frac{8}{25}\right) + \left(2 \times \frac{1}{25}\right) = \frac{10}{25} = \frac{2}{5},$$

and

$$\mathcal{E}(X \mid Y = 2) = 0.$$

Note that $E(X) = \frac{12}{36} = \frac{1}{3}$, which is none of the preceding. If you know that Y = 0, then your best bet for X is 2/5. But if you have no extra knowledge, then your best bet for X is 1/3.

However, let us note the Bayes's formula in action:

$$\begin{split} \mathbf{E}(X) &= \mathbf{E}(X \mid Y = 0) \mathbf{P}\{Y = 0\} + \mathbf{E}(X \mid Y = 1) \mathbf{P}\{Y = 1\} + \mathbf{E}(X \mid Y = 2) \mathbf{P}\{Y = 2\} \\ &= \left(\frac{2}{5} \times \frac{25}{36}\right) + \left(\frac{1}{5} \times \frac{10}{36}\right) + \left(0 \times \frac{1}{36}\right) \\ &= \frac{12}{36}, \end{split}$$

as it should be.

3. Sums of independent random variables

Theorem 17.3. If X and Y are independent, then

$$f_{X+Y}(z) = \sum_{x} f_X(x) f_Y(z-x).$$

Proof. We note that X + Y = z if X = x for some x and Y = z - x for that x. For example, suppose X is integer-valued and ≥ 1 . Then $\{X + Y =$ $z\} = \bigcup_{x=1}^{\infty} \mathbb{P}\{X = x, Y = z - x\}.$ In general,

$$f_{X+Y}(z) = \sum_{x} P\{X = x, Y = z - x\} = \sum_{x} P\{X = x\} P\{Y = z - x\}.$$

is is the desired result. \Box

This is the desired result.

Example 17.4. Suppose $X = \text{Poisson}(\lambda)$ and $Y = \text{Poisson}(\gamma)$ are independent. Then, I claim that $X + Y = \text{Poisson}(\lambda + \gamma)$. We verify this by directly computing as follows: The possible values of X + Y are $0, 1, \ldots$. Let $z = 0, 1, \ldots$ be a possible value, and then check that

$$f_{X+Y}(z) = \sum_{x=0}^{\infty} f_X(x) f_Y(z-x)$$

$$= \sum_{x=0}^{\infty} \frac{e^{-\lambda} \lambda^x}{x!} f_Y(z-x)$$

$$= \sum_{x=0}^{z} \frac{e^{-\lambda} \lambda^x}{x!} \frac{e^{-\gamma} \gamma^{z-x}}{(z-x)!}$$

$$= \frac{e^{-(\lambda+\gamma)}}{z!} \sum_{x=0}^{z} {\binom{z}{x}} \lambda^x \gamma^{z-x}$$

$$= \frac{e^{-(\lambda+\gamma)}}{z!} (\lambda+\gamma)^z,$$

thanks to the binomial theorem. For other values of z, it is easy to see that $f_{X+Y}(z) = 0$.