
Lecture 17

1. Wrap-up of Lecture 16

Proof of Lemma 16.8. It suffices to prove that

E (X1 + · · · + Xn) = nµ

Var (X1 + · · · + Xn) = nσ2.

We prove this by induction. Indeed, this is obviously true when n = 1.
Suppose it is OK for all integers ≤ n− 1. We prove it for n.

E (X1 + · · · + Xn) = E (X1 + · · · + Xn−1) + EXn

= (n− 1)µ + EXn,

by the induction hypothesis. Because EXn = µ, the preceding is equal to
nµ, as planned. Now we verify the more interesting variance computation.

Once again, we assume the assertion holds for all integers ≤ n− 1, and
strive to check it for n.

Define

Y = X1 + · · · + Xn−1.

Because Y is independent of Xn, Cov(Y, Xn) = 0. Therefore, by Lecture 15,

Var (X1 + · · · + Xn) = Var(Y + Xn)
= Var(Y ) + Var(Xn) + Cov(Y, Xn)
= Var(Y ) + Var(Xn).

We know that Var(Xn) = σ2, and by the induction hypothesis, Var(Y ) =
(n− 1)σ2. The result follows. !
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2. Conditioning

2.1. Conditional mass functions. For all y, define the conditional mass
function of X given that Y = y as

fX|Y (x | y) = P
(
X = x

∣∣ Y = y
)

=
P{X = x , Y = y}

P{Y = y}

=
f(x , y)
fY (y)

,

(16)

provided that fY (y) > 0.
As a function in x, fX|Y (x | y) is a probability mass function. That is:

(1) 0 ≤ fX|Y (x | y) ≤ 1;
(2)

∑
x fX|Y (x | y) = 1.

Example 17.1 (Example 14.2, Lecture 14, continued). In this example, the
joint mass function of (X, Y ), and the resulting marginal mass functions,
were given by the following:

x \ y 0 1 2 fX

0 16/36 8/36 1/36 25/36
1 8/36 2/36 0 10/36
2 1/36 0 0 1/36

fY 25/36 10/36 1/36 1

Let us calculate the conditional mass function of X, given that Y = 1:

fX|Y (0 | 1) =
f(0 , 1)
fY (1)

=
8
10

fX|Y (1 | 1) =
f(1 , 1)
fY (1)

=
2
10

fX|Y (x | 1) = 0 for other values of x.

Similarly,

fX|Y (0 | 0) =
16
25

fX|Y (1 | 0) =
8
25

fX|Y (2 | 0) =
1
25

fX|Y (x | 0) = 0 for other values of x,

and

fX|Y (0 | 2) = 1
fX|Y (x | 2) = 0 for other values of x.
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2.2. Conditional expectations. Define conditional expectations, as we
did ordinary expectations. But use conditional probabilities in place of
ordinary probabilities, viz.,

E(X |Y = y) =
∑

x

xfX|Y (x | y). (17)

Example 17.2 (Example 17.1, continued). Here,

E(X |Y = 1) =
(

0× 8
10

)
+

(
1× 2

10

)
=

2
10

=
1
5
.

Similarly,

E(X |Y = 0) =
(

0× 16
25

)
+

(
1× 8

25

)
+

(
2× 1

25

)
=

10
25

=
2
5
,

and
E(X |Y = 2) = 0.

Note that E(X) = 12/36 = 1/3, which is none of the preceding. If you
know that Y = 0, then your best bet for X is 2/5. But if you have no extra
knowledge, then your best bet for X is 1/3.

However, let us note the Bayes’s formula in action:

E(X)
= E(X |Y = 0)P{Y = 0} + E(X |Y = 1)P{Y = 1} + E(X |Y = 2)P{Y = 2}

=
(

2
5
× 25

36

)
+

(
1
5
× 10

36

)
+

(
0× 1

36

)

=
12
36

,

as it should be.

3. Sums of independent random variables

Theorem 17.3. If X and Y are independent, then

fX+Y (z) =
∑

x

fX(x)fY (z − x).

Proof. We note that X + Y = z if X = x for some x and Y = z − x for
that x. For example, suppose X is integer-valued and ≥ 1. Then {X + Y =
z} = ∪∞x=1P{X = x , Y = z − x}. In general,

fX+Y (z) =
∑

x

P{X = x , Y = z − x} =
∑

x

P{X = x}P{Y = z − x}.

This is the desired result. !
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Example 17.4. Suppose X = Poisson(λ) and Y = Poisson(γ) are inde-
pendent. Then, I claim that X + Y = Poisson(λ + γ). We verify this by
directly computing as follows: The possible values of X + Y are 0, 1, . . . .
Let z = 0, 1, . . . be a possible value, and then check that

fX+Y (z) =
∞∑

x=0

fX(x)fY (z − x)

=
∞∑

x=0

e−λλx

x!
fY (z − x)

=
z∑

x=0

e−λλx

x!
e−γγz−x

(z − x)!

=
e−(λ+γ)

z!

z∑

x=0

(
z

x

)
λxγz−x

=
e−(λ+γ)

z!
(λ + γ)z,

thanks to the binomial theorem. For other values of z, it is easy to see that
fX+Y (z) = 0.


