1. Wrap-up of Lecture 16

Proof of Lemma 16.8. It suffices to prove that

$$
\begin{aligned}
\mathrm{E}\left(X_{1}+\cdots+X_{n}\right) & =n \mu \\
\operatorname{Var}\left(X_{1}+\cdots+X_{n}\right) & =n \sigma^{2} .
\end{aligned}
$$

We prove this by induction. Indeed, this is obviously true when $n=1$. Suppose it is OK for all integers $\leq n-1$. We prove it for n.

$$
\begin{aligned}
\mathrm{E}\left(X_{1}+\cdots+X_{n}\right) & =\mathrm{E}\left(X_{1}+\cdots+X_{n-1}\right)+\mathrm{E} X_{n} \\
& =(n-1) \mu+\mathrm{E} X_{n},
\end{aligned}
$$

by the induction hypothesis. Because $\mathrm{E} X_{n}=\mu$, the preceding is equal to $n \mu$, as planned. Now we verify the more interesting variance computation.

Once again, we assume the assertion holds for all integers $\leq n-1$, and strive to check it for n.

Define

$$
Y=X_{1}+\cdots+X_{n-1} .
$$

Because Y is independent of $X_{n}, \operatorname{Cov}\left(Y, X_{n}\right)=0$. Therefore, by Lecture 15,

$$
\begin{aligned}
\operatorname{Var}\left(X_{1}+\cdots+X_{n}\right) & =\operatorname{Var}\left(Y+X_{n}\right) \\
& =\operatorname{Var}(Y)+\operatorname{Var}\left(X_{n}\right)+\operatorname{Cov}\left(Y, X_{n}\right) \\
& =\operatorname{Var}(Y)+\operatorname{Var}\left(X_{n}\right)
\end{aligned}
$$

We know that $\operatorname{Var}\left(X_{n}\right)=\sigma^{2}$, and by the induction hypothesis, $\operatorname{Var}(Y)=$ $(n-1) \sigma^{2}$. The result follows.

2. Conditioning

2.1. Conditional mass functions. For all y, define the conditional mass function of X given that $Y=y$ as

$$
\begin{align*}
f_{X \mid Y}(x \mid y) & =\mathrm{P}(X=x \mid Y=y)=\frac{\mathrm{P}\{X=x, Y=y\}}{\mathrm{P}\{Y=y\}} \\
& =\frac{f(x, y)}{f_{Y}(y)} \tag{16}
\end{align*}
$$

provided that $f_{Y}(y)>0$.
As a function in $x, f_{X \mid Y}(x \mid y)$ is a probability mass function. That is:
(1) $0 \leq f_{X \mid Y}(x \mid y) \leq 1$;
(2) $\sum_{x} f_{X \mid Y}(x \mid y)=1$.

Example 17.1 (Example 14.2, Lecture 14, continued). In this example, the joint mass function of (X, Y), and the resulting marginal mass functions, were given by the following:

$\boldsymbol{x} \backslash \boldsymbol{y}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\boldsymbol{f}_{\boldsymbol{X}}$
$\mathbf{0}$	$16 / 36$	$8 / 36$	$1 / 36$	$25 / 36$
$\mathbf{1}$	$8 / 36$	$2 / 36$	0	$10 / 36$
$\mathbf{2}$	$1 / 36$	0	0	$1 / 36$
$\boldsymbol{f}_{\boldsymbol{Y}}$	$25 / 36$	$10 / 36$	$1 / 36$	$\mathbf{1}$

Let us calculate the conditional mass function of X, given that $Y=1$:

$$
\begin{aligned}
& f_{X \mid Y}(0 \mid 1)=\frac{f(0,1)}{f_{Y}(1)}=\frac{8}{10} \\
& f_{X \mid Y}(1 \mid 1)=\frac{f(1,1)}{f_{Y}(1)}=\frac{2}{10} \\
& f_{X \mid Y}(x \mid 1)=0 \text { for other values of } x .
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
f_{X \mid Y}(0 \mid 0) & =\frac{16}{25} \\
f_{X \mid Y}(1 \mid 0) & =\frac{8}{25} \\
f_{X \mid Y}(2 \mid 0) & =\frac{1}{25} \\
f_{X \mid Y}(x \mid 0) & =0 \text { for other values of } x
\end{aligned}
$$

and

$$
\begin{aligned}
& f_{X \mid Y}(0 \mid 2)=1 \\
& f_{X \mid Y}(x \mid 2)=0 \text { for other values of } x .
\end{aligned}
$$

2.2. Conditional expectations. Define conditional expectations, as we did ordinary expectations. But use conditional probabilities in place of ordinary probabilities, viz.,

$$
\begin{equation*}
\mathrm{E}(X \mid Y=y)=\sum_{x} x f_{X \mid Y}(x \mid y) \tag{17}
\end{equation*}
$$

Example 17.2 (Example 17.1, continued). Here,

$$
\mathrm{E}(X \mid Y=1)=\left(0 \times \frac{8}{10}\right)+\left(1 \times \frac{2}{10}\right)=\frac{2}{10}=\frac{1}{5} .
$$

Similarly,

$$
\mathrm{E}(X \mid Y=0)=\left(0 \times \frac{16}{25}\right)+\left(1 \times \frac{8}{25}\right)+\left(2 \times \frac{1}{25}\right)=\frac{10}{25}=\frac{2}{5},
$$

and

$$
\mathrm{E}(X \mid Y=2)=0
$$

Note that $\mathrm{E}(X)=12 / 36=1 / 3$, which is none of the preceding. If you know that $Y=0$, then your best bet for X is $2 / 5$. But if you have no extra knowledge, then your best bet for X is $1 / 3$.

However, let us note the Bayes's formula in action:

$$
\begin{aligned}
& \mathrm{E}(X) \\
& =\mathrm{E}(X \mid Y=0) \mathrm{P}\{Y=0\}+\mathrm{E}(X \mid Y=1) \mathrm{P}\{Y=1\}+\mathrm{E}(X \mid Y=2) \mathrm{P}\{Y=2\} \\
& =\left(\frac{2}{5} \times \frac{25}{36}\right)+\left(\frac{1}{5} \times \frac{10}{36}\right)+\left(0 \times \frac{1}{36}\right) \\
& =\frac{12}{36}
\end{aligned}
$$

as it should be.

3. Sums of independent random variables

Theorem 17.3. If X and Y are independent, then

$$
f_{X+Y}(z)=\sum_{x} f_{X}(x) f_{Y}(z-x) .
$$

Proof. We note that $X+Y=z$ if $X=x$ for some x and $Y=z-x$ for that x. For example, suppose X is integer-valued and ≥ 1. Then $\{X+Y=$ $z\}=\cup_{x=1}^{\infty} \mathrm{P}\{X=x, Y=z-x\}$. In general,
$f_{X+Y}(z)=\sum_{x} \mathrm{P}\{X=x, Y=z-x\}=\sum_{x} \mathrm{P}\{X=x\} \mathrm{P}\{Y=z-x\}$.
This is the desired result.

Example 17.4. Suppose $X=\operatorname{Poisson}(\lambda)$ and $Y=\operatorname{Poisson}(\gamma)$ are independent. Then, I claim that $X+Y=\operatorname{Poisson}(\lambda+\gamma)$. We verify this by directly computing as follows: The possible values of $X+Y$ are $0,1, \ldots$. Let $z=0,1, \ldots$ be a possible value, and then check that

$$
\begin{aligned}
f_{X+Y}(z) & =\sum_{x=0}^{\infty} f_{X}(x) f_{Y}(z-x) \\
& =\sum_{x=0}^{\infty} \frac{e^{-\lambda} \lambda^{x}}{x!} f_{Y}(z-x) \\
& =\sum_{x=0}^{z} \frac{e^{-\lambda} \lambda^{x}}{x!} \frac{e^{-\gamma} \gamma^{z-x}}{(z-x)!} \\
& =\frac{e^{-(\lambda+\gamma)}}{z!} \sum_{x=0}^{z}\binom{z}{x} \lambda^{x} \gamma^{z-x} \\
& =\frac{e^{-(\lambda+\gamma)}}{z!}(\lambda+\gamma)^{z},
\end{aligned}
$$

thanks to the binomial theorem. For other values of z, it is easy to see that $f_{X+Y}(z)=0$.

