
Lecture 16

1. Some examples

Example 16.1 (Example 14.2, continued). We find that

E(XY ) =
(

1× 1× 2
36

)
=

2
36

.

Also,

EX = EY =
(

1× 10
36

)
+

(
2× 1

36

)
=

12
36

.

Therefore,

Cov(X, Y ) =
2
36
−

(
12
36
× 12

36

)
= − 72

1296
= − 1

18
.

The correlation between X and Y is the quantity,

ρ(X, Y ) =
Cov(X, Y )√

Var(X) Var(Y )
. (14)

Example 16.2 (Example 14.2, continued). Note that

E(X2) = E(Y 2) =
(

12 × 10
36

)
+

(
22 × 1

36

)
=

14
36

.

Therefore,

Var(X) = Var(Y ) =
14
36
−

(
12
36

)2

=
360
1296

=
5
13

.

Therefore, the correlation between X and Y is

ρ(X, Y ) = − 1/18√(
5
13

) (
5
13

) = −13
90

.
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2. Correlation and independence

The following is a variant of the Cauchy–Schwarz inequality. I will not prove
it, but it would be nice to know the following.

Theorem 16.3. If E(X2) and E(Y 2) are finite, then −1 ≤ ρ(X, Y ) ≤ 1.

We say that X and Y are uncorrelated if ρ(X, Y ) = 0; equivalently, if
Cov(X, Y ) = 0. A significant property of uncorrelated random variables is
that Var(X + Y ) = Var(X) + Var(Y ); see Theorem 15.4(2).

Theorem 16.4. If X and Y are independent [with joint mass function f ],
then they are uncorrelated.

Proof. It suffices to prove that E(XY ) = E(X)E(Y ). But

E(XY ) =
∑

x

∑

y

xyf(x , y) =
∑

x

∑

y

xyfX(x)fY (y)

=
∑

x

xfX(x)
∑

y

yfY (y) = E(X)E(Y ),

as planned. !

Example 16.5 (A counter example). Sadly, it is only too common that
people some times think that the converse to Theorem 16.4 is also true. So
let us dispel this with a counterexample: Let Y and Z be two independent
random variables such that Z = ±1 with probability 1/2 each; and Y = 1
or 2 with probability 1/2 each. Define X = Y Z. Then, I claim that X and
Y are uncorrelated but not independent.

First, note that X = ±1 and ±2, with probability 1/4 each. Therefore,
E(X) = 0. Also, XY = Y 2Z = ±1 and ±4 with probability 1/4 each.
Therefore, again, E(XY ) = 0. It follows that

Cov(X, Y ) = E(XY )︸ ︷︷ ︸
0

−E(X)︸ ︷︷ ︸
0

E(Y ) = 0.

Thus, X and Y are uncorrelated. But they are not independent. Intuitively
speaking, this is clear because |X| = Y . Here is one way to logically justify
our claim:

P{X = 1 , Y = 2} = 0 $= 1
8

= P{X = 1}P{Y = 2}.

Example 16.6 (Binomials). Let X = Bin(n , p) denote the total number of
successes in n independent success/failure trials, where P{success per trial} =
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p. Define Ij to be one if the jth trial leads to a success; else Ij = 0. The
key observation is that

X = I1 + · · · + In.

Note that E(Ij) = 1 × p = p and E(I2
j ) = E(Ij) = p, whence Var(Ij) =

p− p2 = pq. Therefore,

E(X) =
n∑

j=1

E(Ij) = np and Var(X) =
n∑

j=1

Var(Ij) = npq.

3. The law of large numbers

Theorem 16.7. Suppose X1, X2, . . . , Xn are independent, all with the same
mean µ and variance σ2 <∞. Then for all ε > 0, however small,

lim
n→∞

P
{∣∣∣∣

X1 + · · · + Xn

n
− µ

∣∣∣∣ ≥ ε

}
= 0. (15)

Lemma 16.8. Suppose X1, X2, . . . , Xn are independent, all with the same
mean µ and variance σ2 <∞. Then:

E
(

X1 + · · · + Xn

n

)
= µ

Var
(

X1 + · · · + Xn

n

)
=

σ2

n
.

Proof of Theorem 16.7. Recall Chebyshev’s inequality : For all random
variables Z with E(Z2) <∞, and all ε > 0,

P {|Z − EZ| ≥ ε} ≤ Var(Z)
ε2

.

We apply this with Z = (X1 + · · · + Xn)/n, and then use use Lemma 16.8
to find that for all ε > 0,

P
{∣∣∣∣

X1 + · · · + Xn

n
− µ

∣∣∣∣ ≥ ε

}
≤ σ2

nε2
.

Let n↗∞ to finish. !


