1. Expectations

Theorem 15.1. Let g be a real-valued function of two variables, and (X, Y) have joint mass function f. If the sum converges then

$$
\mathrm{E}[g(X, Y)]=\sum_{x} \sum_{y} g(x, y) f(x, y) .
$$

Corollary 15.2. For all a, b real,

$$
\mathrm{E}(a X+b Y)=a \mathrm{E} X+b \mathrm{E} Y
$$

Proof. Setting $g(x, y)=a x+b y$ yields

$$
\begin{aligned}
\mathrm{E}(a X+b Y) & =\sum_{x} \sum_{y}(a x+b y) f(x, y) \\
& =\sum_{x} a x \sum_{y} f(x, y)+\sum_{x} \sum_{y} b y f(x, y) \\
& =a \sum_{x} x f_{X}(x)+b \sum_{y} y \sum_{x} f(x, y) \\
& =a \mathrm{E} X+b \sum_{y} f_{Y}(y),
\end{aligned}
$$

which is $a \mathrm{E} X+b \mathrm{E} Y$.

2. Covariance and correlation

Theorem 15.3 (Cauchy-Schwarz inequality). If $\mathrm{E}\left(X^{2}\right)$ and $\mathrm{E}\left(Y^{2}\right)$ are finite, then

$$
|\mathrm{E}(X Y)| \leq \sqrt{\mathrm{E}\left(X^{2}\right) \mathrm{E}\left(Y^{2}\right)} .
$$

Proof. Note that

$$
\begin{aligned}
& \left(X \mathrm{E}\left(Y^{2}\right)-Y \mathrm{E}(X Y)\right)^{2} \\
& \quad=X^{2}\left(\mathrm{E}\left(Y^{2}\right)\right)^{2}+Y^{2}(\mathrm{E}(X Y))^{2}-2 X Y \mathrm{E}\left(Y^{2}\right) \mathrm{E}(X Y)
\end{aligned}
$$

Therefore, we can take expectations of both side to find that

$$
\begin{aligned}
& \mathrm{E}\left[\left(X \mathrm{E}\left(Y^{2}\right)-Y \mathrm{E}(X Y)\right)^{2}\right] \\
&=\mathrm{E}\left(X^{2}\right)\left(\mathrm{E}\left(Y^{2}\right)\right)^{2}+\mathrm{E}\left(Y^{2}\right)(\mathrm{E}(X Y))^{2}-2 \mathrm{E}\left(Y^{2}\right)(\mathrm{E}(X Y))^{2} \\
&=\mathrm{E}\left(X^{2}\right)\left(\mathrm{E}\left(Y^{2}\right)\right)^{2}-\mathrm{E}\left(Y^{2}\right)(\mathrm{E}(X Y))^{2} .
\end{aligned}
$$

The left-hand side is ≥ 0. Therefore, so is the right-hand side. Solve to find that

$$
\mathrm{E}\left(X^{2}\right) \mathrm{E}\left(Y^{2}\right) \geq(\mathrm{E}(X Y))^{2} .
$$

[If $\mathrm{E}\left(Y^{2}\right)>0$, then this is OK. Else, $\mathrm{E}\left(Y^{2}\right)=0$, which means that $\mathrm{P}\{Y=$ $0\}=1$. In that case the result is true, but tautologically.]

Thus, if $\mathrm{E}\left(X^{2}\right)$ and $\mathrm{E}\left(Y^{2}\right)$ are finite, then $\mathrm{E}(X Y)$ is finite as well. In that case we can define the covariance between X and Y to be

$$
\begin{equation*}
\operatorname{Cov}(X, Y)=\mathrm{E}[(X-\mathrm{E} X)(Y-\mathrm{E} Y)] . \tag{12}
\end{equation*}
$$

Because $(X-\mathrm{E} X)(Y-\mathrm{E} Y)=X Y-X \mathrm{E} Y-Y \mathrm{E} X+\mathrm{E} X \mathrm{E} Y$, we obtain the following, which is the computationally useful formula for covariance:

$$
\begin{equation*}
\operatorname{Cov}(X, Y)=\mathrm{E}(X Y)-\mathrm{E}(X) \mathrm{E}(Y) . \tag{13}
\end{equation*}
$$

Note, in particular, that $\operatorname{Cov}(X, X)=\operatorname{Var}(X)$.
Theorem 15.4. Suppose $\mathrm{E}\left(X^{2}\right)$ and $\mathrm{E}\left(Y^{2}\right)$ are finite. Then, for all nonrandom a, b, c, d :
(1) $\operatorname{Cov}(a X+b, c Y+d)=a c \operatorname{Cov}(X, Y)$;
(2) $\operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)+2 \operatorname{Cov}(X, Y)$.

Proof. Let $\mu=\mathrm{E} X$ and $\nu=\mathrm{E} Y$ for brevity. We then have

$$
\begin{aligned}
\operatorname{Cov}(a X+b, c Y+d) & =\mathrm{E}[(a X+b-(a \mu+b))(c Y+d-(c \nu+d))] \\
& =\mathrm{E}[(a(X-\mu))(c(Y-\nu))] \\
& =a c \operatorname{Cov}(X, Y) .
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
\operatorname{Var}(X+Y) & =\mathrm{E}\left[(X+Y-(\mu-\nu))^{2}\right] \\
& =\mathrm{E}\left[(X-\mu)^{2}\right]+\mathrm{E}\left[(Y-\nu)^{2}\right]+2 \mathrm{E}[(X-\mu)(Y-\nu)] .
\end{aligned}
$$

Now identify the terms.

