1. Inequalities

Let us start with an inequality.
Lemma 13.1. If h is a nonnegative function, then for all $\lambda>0$,

$$
\mathrm{P}\{h(X) \geq \lambda\} \leq \frac{\mathrm{E}[h(X)]}{\lambda}
$$

Proof. We know already that

$$
\mathrm{E}[h(X)]=\sum_{x} h(x) f(x) \geq \sum_{x: h(x) \geq \lambda} h(x) f(x) .
$$

If x is such that $h(x) \geq \lambda$, then $h(x) f(x) \geq \lambda f(x)$, obviously. Therefore,

$$
\mathrm{E}[h(X)] \geq \lambda \sum_{x: h(x) \geq \lambda} f(x)=\lambda \mathrm{P}\{h(X) \geq \lambda\} .
$$

Divide by λ to finish.
Thus, for example,
$\mathrm{P}\{|X| \geq \lambda\} \leq \frac{\mathrm{E}(|X|)}{\lambda}$
"Markov's inequality."
$\mathrm{P}\{|X-\mathrm{E} X| \geq \lambda\} \leq \frac{\operatorname{Var}(X)}{\lambda^{2}}$
"Chebyshev's inequality."
To get Markov's inequality, apply Lemma 13.1 with $h(x)=|x|$. To get Chebyshev's inequality, first note that $|X-\mathrm{E} X| \geq \lambda$ if and only if $\mid X-$ $\left.\mathrm{E} X\right|^{2} \geq \lambda^{2}$. Then, apply Lemma 13.1 to find that

$$
\mathrm{P}\{|X-\mathrm{E} X| \geq \lambda\} \leq \frac{\mathrm{E}\left(|X-\mathrm{E} X|^{2}\right)}{\lambda^{2}}
$$

Then, recall that the numerator is $\operatorname{Var}(X)$.

In words:

- If $\mathrm{E}(|X|)<\infty$, then the probability that $|X|$ is large is small.
- If $\operatorname{Var}(X)$ is small, then with high probability $X \approx \mathrm{E} X$.

2. Conditional distributions

If X is a random variable with mass function f, then $\{X=x\}$ is an event. Therefore, if B is also an event, and if $\mathrm{P}(B)>0$, then

$$
\mathrm{P}(X=x \mid B)=\frac{\mathrm{P}(\{X=x\} \cap B)}{\mathrm{P}(B)} .
$$

As we vary the variable x, we note that $\{X=x\} \cap B$ are disjoint. Therefore,

$$
\sum_{x} \mathrm{P}(X=x \mid B)=\frac{\sum \mathrm{P}(\{X=x\} \cap B)}{\mathrm{P}(B)}=\frac{\mathrm{P}\left(\cup_{x}\{X=x\} \cap B\right)}{\mathrm{P}(B)}=1 .
$$

Thus,

$$
f(x \mid B)=\mathrm{P}(X=x \mid B)
$$

defines a mass function also. This is called the conditional mass function of X given B.

Example 13.2. Let X be distributed uniformly on $\{1, \ldots, n\}$, where n is a fixed positive integer. Recall that this means that

$$
f(x)= \begin{cases}\frac{1}{n} & \text { if } x=1, \ldots, n \\ 0 & \text { otherwise }\end{cases}
$$

Choose and fix two integers a and b such that $1 \leq a \leq b \leq n$. Then,

$$
\mathrm{P}\{a \leq X \leq b\}=\sum_{x=a}^{b} \frac{1}{n}=\frac{b-a+1}{n} .
$$

Therefore,

$$
f(x \mid a \leq X \leq b)= \begin{cases}\frac{1}{b-a+1} & \text { if } x=a, \ldots, b, \\ 0 & \text { otherwise }\end{cases}
$$

3. Conditional expectations

Once we have a (conditional) mass function, we have also a conditional expectation at no cost. Thus,

$$
\mathrm{E}(X \mid B)=\sum_{x} x f(x \mid B) .
$$

Example 13.3 (Example 13.2, continued). In Example 13.2,

$$
\mathrm{E}(X \mid a \leq X \leq b)=\sum_{k=a}^{b} \frac{k}{b-a+1}
$$

Now,

$$
\begin{aligned}
\sum_{k=a}^{b} k & =\sum_{k=1}^{b} k-\sum_{k=1}^{a-1} k \\
& =\frac{b(b+1)}{2}-\frac{(a-1) a}{2} \\
& =\frac{b^{2}+b-a^{2}+a}{2}
\end{aligned}
$$

Write $b^{2}-a^{2}=(b-a)(b+a)$ and factor $b+a$ to get

$$
\sum_{k=a}^{b} k=\frac{b+a}{2}(b-a+1)
$$

Therefore,

$$
\mathrm{E}(X \mid a \leq X \leq b)=\frac{b+a}{2}
$$

This should not come as a surprise. Example 13.2 actually shows that given $B=\{a \leq X \leq b\}$, the conditional distribution of X given B is uniform on $\{a, \ldots, b\}$. Therefore, the conditional expectation is the expectation of a uniform random variable on $\{a, \ldots, b\}$.

Theorem 13.4 (Bayes's formula for conditional expectations). If $\mathrm{P}(B)>0$, then

$$
\mathrm{E} X=\mathrm{E}(X \mid B) \mathrm{P}(B)+\mathrm{E}\left(X \mid B^{c}\right) \mathrm{P}\left(B^{c}\right)
$$

Proof. We know from the ordinary Bayes's formula that

$$
f(x)=f(x \mid B) \mathrm{P}(B)+f\left(x \mid B^{c}\right) \mathrm{P}\left(B^{c}\right)
$$

Multiply both sides by x and add over all x to finish.

Remark 13.5. The more general version of Bayes's formula works too here: Suppose B_{1}, B_{2}, \ldots are disjoint and $\cup_{i=1}^{\infty} B_{i}=\Omega$; i.e., "one of the B_{i} 's happens." Then,

$$
\mathrm{E} X=\sum_{i=1}^{\infty} \mathrm{E}\left(X \mid B_{i}\right) \mathrm{P}\left(B_{i}\right)
$$

Example 13.6. Suppose you play a fair game repeatedly. At time 0 , before you start playing the game, your fortune is zero. In each play, you win or lose with probability $1 / 2$. Let T_{1} be the first time your fortune becomes +1 . Compute $\mathrm{E}\left(T_{1}\right)$.

More generally, let T_{x} denote the first time to win x dollars, where $T_{0}=0$.

Let W denote the event that you win the first round. Then, $\mathrm{P}(W)=$ $\mathrm{P}\left(W^{c}\right)=1 / 2$, and so

$$
\begin{equation*}
\mathrm{E}\left(T_{x}\right)=\frac{1}{2} \mathrm{E}\left(T_{x} \mid W\right)+\frac{1}{2} \mathrm{E}\left(T_{x} \mid W^{c}\right) . \tag{11}
\end{equation*}
$$

Suppose $x \neq 0$. Given W, T_{x} is one plus the first time to make $x-1$ more dollars. Given W^{c}, T_{x} is one plus the first time to make $x+1$ more dollars. Therefore,

$$
\begin{aligned}
\mathrm{E}\left(T_{x}\right) & =\frac{1}{2}\left[1+\mathrm{E}\left(T_{x-1}\right)\right]+\frac{1}{2}\left[1+\mathrm{E}\left(T_{x+1}\right)\right] \\
& =1+\frac{\mathrm{E}\left(T_{x-1}\right)+\mathrm{E}\left(T_{x+1}\right)}{2} .
\end{aligned}
$$

Also $\mathrm{E}\left(T_{0}\right)=0$.
Let $g(x)=\mathrm{E}\left(T_{x}\right)$. This shows that $g(0)=0$ and

$$
g(x)=1+\frac{g(x+1)+g(x-1)}{2} \quad \text { for } x= \pm 1, \pm 2, \ldots
$$

Because $g(x)=(g(x)+g(x)) / 2$,

$$
g(x)+g(x)=2+g(x+1)+g(x-1) \quad \text { for } x= \pm 1, \pm 2, \ldots .
$$

Solve to find that for all integers $x \geq 1$,

$$
g(x+1)-g(x)=-2+g(x)-g(x-1) .
$$

Example 14.1 (St.-Petersbourg paradox, continued). We continued with our discussion of the St.-Petersbourg paradox, and note that for all integers $N \geq 1$,

$$
\begin{aligned}
g(N) & =g(1)+\sum_{k=2}^{N}(g(k)-g(k-1)) \\
& =g(1)+\sum_{k=1}^{N-1}(g(k+1)-g(k)) \\
& =g(1)+\sum_{k=1}^{N-1}(-2+g(k)-g(k-1)) \\
& =g(1)-2(N-1)+\sum_{k=1}^{N}(g(k)-g(k-1)) \\
& =g(1)-2(N-1)+g(N) .
\end{aligned}
$$

If $g(1)<\infty$, then $g(1)=2(N-1)$. But N is arbitrary. Therefore, $g(1)$ cannot be finite; i.e.,

$$
\mathrm{E}\left(T_{1}\right)=\infty .
$$

This shows also that $\mathrm{E}\left(T_{x}\right)=\infty$ for all $x \geq 1$, because for example $T_{2} \geq$ $1+T_{1}$! By symmetry, $\mathrm{E}\left(T_{x}\right)=\infty$ if x is a negative integer as well.

