
Lecture 13

1. Inequalities

Let us start with an inequality.

Lemma 13.1. If h is a nonnegative function, then for all λ > 0,

P{h(X) ≥ λ} ≤ E[h(X)]
λ

.

Proof. We know already that

E[h(X)] =
∑

x

h(x)f(x) ≥
∑

x: h(x)≥λ

h(x)f(x).

If x is such that h(x) ≥ λ, then h(x)f(x) ≥ λf(x), obviously. Therefore,

E[h(X)] ≥ λ
∑

x: h(x)≥λ

f(x) = λP{h(X) ≥ λ}.

Divide by λ to finish. !

Thus, for example,

P {|X| ≥ λ} ≤ E(|X|)
λ

“Markov’s inequality.”

P {|X − EX| ≥ λ} ≤ Var(X)
λ2

“Chebyshev’s inequality.”

To get Markov’s inequality, apply Lemma 13.1 with h(x) = |x|. To get
Chebyshev’s inequality, first note that |X − EX| ≥ λ if and only if |X −
EX|2 ≥ λ2. Then, apply Lemma 13.1 to find that

P {|X − EX| ≥ λ} ≤
E

(
|X − EX|2

)

λ2
.

Then, recall that the numerator is Var(X).
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In words:

• If E(|X|) <∞, then the probability that |X| is large is small.

• If Var(X) is small, then with high probability X ≈ EX.

2. Conditional distributions

If X is a random variable with mass function f , then {X = x} is an event.
Therefore, if B is also an event, and if P(B) > 0, then

P(X = x |B) =
P({X = x} ∩B)

P(B)
.

As we vary the variable x, we note that {X = x}∩B are disjoint. Therefore,

∑

x

P(X = x |B) =
∑

P({X = x} ∩B)
P(B)

=
P (∪x{X = x} ∩B)

P(B)
= 1.

Thus,

f(x |B) = P(X = x |B)

defines a mass function also. This is called the conditional mass function of
X given B.

Example 13.2. Let X be distributed uniformly on {1 , . . . , n}, where n is
a fixed positive integer. Recall that this means that

f(x) =






1
n

if x = 1, . . . , n,

0 otherwise.

Choose and fix two integers a and b such that 1 ≤ a ≤ b ≤ n. Then,

P{a ≤ X ≤ b} =
b∑

x=a

1
n

=
b− a + 1

n
.

Therefore,

f(x | a ≤ X ≤ b) =






1
b− a + 1

if x = a, . . . , b,

0 otherwise.
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3. Conditional expectations

Once we have a (conditional) mass function, we have also a conditional
expectation at no cost. Thus,

E(X |B) =
∑

x

xf(x |B).

Example 13.3 (Example 13.2, continued). In Example 13.2,

E(X | a ≤ X ≤ b) =
b∑

k=a

k

b− a + 1
.

Now,
b∑

k=a

k =
b∑

k=1

k −
a−1∑

k=1

k

=
b(b + 1)

2
− (a− 1)a

2

=
b2 + b− a2 + a

2
.

Write b2 − a2 = (b− a)(b + a) and factor b + a to get
b∑

k=a

k =
b + a

2
(b− a + 1).

Therefore,

E(X | a ≤ X ≤ b) =
b + a

2
.

This should not come as a surprise. Example 13.2 actually shows that given
B = {a ≤ X ≤ b}, the conditional distribution of X given B is uniform
on {a, . . . , b}. Therefore, the conditional expectation is the expectation of a
uniform random variable on {a, . . . , b}.

Theorem 13.4 (Bayes’s formula for conditional expectations). If P(B) > 0,
then

EX = E(X |B)P(B) + E(X |Bc)P(Bc).

Proof. We know from the ordinary Bayes’s formula that

f(x) = f(x |B)P(B) + f(x |Bc)P(Bc).

Multiply both sides by x and add over all x to finish. !
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Remark 13.5. The more general version of Bayes’s formula works too here:
Suppose B1, B2, . . . are disjoint and ∪∞i=1Bi = Ω; i.e., “one of the Bi’s hap-
pens.” Then,

EX =
∞∑

i=1

E(X |Bi)P(Bi).

Example 13.6. Suppose you play a fair game repeatedly. At time 0, before
you start playing the game, your fortune is zero. In each play, you win or
lose with probability 1/2. Let T1 be the first time your fortune becomes +1.
Compute E(T1).

More generally, let Tx denote the first time to win x dollars, where
T0 = 0.

Let W denote the event that you win the first round. Then, P(W ) =
P(W c) = 1/2, and so

E(Tx) =
1
2
E(Tx |W ) +

1
2
E(Tx |W c). (11)

Suppose x (= 0. Given W , Tx is one plus the first time to make x− 1 more
dollars. Given W c, Tx is one plus the first time to make x + 1 more dollars.
Therefore,

E(Tx) =
1
2

[
1 + E(Tx−1)

]
+

1
2

[
1 + E(Tx+1)

]

= 1 +
E(Tx−1) + E(Tx+1)

2
.

Also E(T0) = 0.
Let g(x) = E(Tx). This shows that g(0) = 0 and

g(x) = 1 +
g(x + 1) + g(x− 1)

2
for x = ±1,±2, . . . .

Because g(x) = (g(x) + g(x))/2,

g(x) + g(x) = 2 + g(x + 1) + g(x− 1) for x = ±1,±2, . . . .

Solve to find that for all integers x ≥ 1,

g(x + 1)− g(x) = −2 + g(x)− g(x− 1).
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Example 14.1 (St.-Petersbourg paradox, continued). We continued with
our discussion of the St.-Petersbourg paradox, and note that for all integers
N ≥ 1,

g(N) = g(1) +
N∑

k=2

(
g(k)− g(k − 1)

)

= g(1) +
N−1∑

k=1

(
g(k + 1)− g(k)

)

= g(1) +
N−1∑

k=1

(
− 2 + g(k)− g(k − 1)

)

= g(1)− 2(N − 1) +
N∑

k=1

(
g(k)− g(k − 1)

)

= g(1)− 2(N − 1) + g(N).

If g(1) < ∞, then g(1) = 2(N − 1). But N is arbitrary. Therefore, g(1)
cannot be finite; i.e.,

E(T1) =∞.

This shows also that E(Tx) = ∞ for all x ≥ 1, because for example T2 ≥
1 + T1! By symmetry, E(Tx) =∞ if x is a negative integer as well.
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