By the Cauchy-Schwarz inequality, if $\mathrm{E}\left(X^{2}\right)<\infty$, then $\mathrm{E} X$ is well defined and finite as well. In that case, the variance of X is defined as

$$
\operatorname{var}(X)=\mathrm{E}\left(X^{2}\right)-|\mathrm{E} X|^{2} .
$$

In order to understand why this means anything, note that

$$
\begin{aligned}
\mathrm{E}\left[(X-\mathrm{E} X)^{2}\right] & =\mathrm{E}\left[X^{2}-2 X \mathrm{E} X+(\mathrm{E} X)^{2}\right]=\mathrm{E}\left(X^{2}\right)-2 \mathrm{E}(X) \mathrm{E}(X)+(\mathrm{E} X)^{2} \\
& =\mathrm{E}\left(X^{2}\right)-|\mathrm{E} X|^{2} \\
& =\operatorname{var}(X) .
\end{aligned}
$$

Thus:
(1) We predict the as-yet-unseen value of X by the nonrandom number $\mathrm{E} X$;
(2) $\operatorname{var}(X)$ is the expected squared-error in this prediction. Note that $\operatorname{var}(X)$ is also a nonrandom number.

1. Example 1

If $X=\operatorname{Bin}(n, p)$, then we have seen that $\mathrm{E} X=n p$ and $\mathrm{E}\left(X^{2}\right)=(n p)^{2}+n p q$.
Therefore, $\operatorname{var}(X)=n p q$.

2. Example 2

Suppose X has mass function

$$
f(x)= \begin{cases}1 / 4 & \text { if } x=0 \\ 3 / 4 & \text { if } x=1 \\ 0 & \text { otherwise }\end{cases}
$$

We saw in Lecture 11 that $\mathrm{E} X=3 / 4$. Now we compute the variance by first calculating

$$
\mathrm{E}\left(X^{2}\right)=\left(0^{2} \times \frac{1}{4}\right)+\left(1^{2} \times \frac{3}{4}\right)=\frac{3}{4} .
$$

Thus,

$$
\operatorname{var}(X)=\frac{3}{4}-\left(\frac{3}{4}\right)^{2}=\frac{3}{4}\left(1-\frac{3}{4}\right)=\frac{3}{16} .
$$

3. Example 3

Let n be a fixed positive integer, and X takes any of the values $1, \ldots, n$ with equal probability. Then, $f(x)=1 / n$ if $x=1, \ldots, n ; f(x)=0$, otherwise. Let us calculate the first two "moments" of $X .{ }^{1}$ In this way, we obtain the mean and the variance of X.

The first moment is the expectation, or the mean, and is

$$
\mathrm{E} X=\sum_{k=1}^{n} \frac{k}{n}=\frac{1}{n} \times \frac{(n+1) n}{2}=\frac{n+1}{2}
$$

In order to compute $\mathrm{E}\left(X^{2}\right)$ we need to know the algebraic identity:

$$
\begin{equation*}
\sum_{k=1}^{n} k^{2}=\frac{(2 n+1)(n+1) n}{6} \tag{10}
\end{equation*}
$$

This is proved by induction: For $n=1$ it is elementary. Suppose it is true for $n-1$. Then write

$$
\sum_{k=1}^{n} k^{2}=\sum_{k=1}^{n-1} k^{2}+n^{2}=\frac{(2(n-1)+1)(n-1+1)(n-1)}{6}+n^{2}
$$

thanks to the induction hypothesis. Simplify to obtain

$$
\begin{aligned}
\sum_{k=1}^{n} k^{2} & =\frac{(2 n-1) n(n-1)}{6}+n^{2}=\frac{(2 n-1)\left(n^{2}-n\right)}{6}+n^{2} \\
& =\frac{2 n^{3}-3 n^{2}+n}{6}+\frac{6 n^{2}}{6}=\frac{2 n^{3}+3 n^{2}+n}{6}=\frac{n\left(2 n^{2}+3 n+1\right)}{6},
\end{aligned}
$$

which easily yields (10).
Thus,

$$
\mathrm{E}\left(X^{2}\right)=\sum_{k=1}^{n} \frac{k^{2}}{n}=\frac{1}{n} \times \frac{(2 n+1)(n+1) n}{6}=\frac{(2 n+1)(n+1)}{6}
$$

[^0]Therefore,

$$
\begin{aligned}
\operatorname{var}(X) & =\frac{(2 n+1)(n+1)}{6}-\left(\frac{n+1}{2}\right)^{2}=\frac{2 n^{2}+3 n+1}{6}-\frac{n^{2}+2 n+1}{4} \\
& =\frac{4 n^{2}+6 n+2}{12}-\frac{3 n^{2}+6 n+3}{12} \\
& =\frac{n^{2}-1}{12} .
\end{aligned}
$$

4. Example 4

Suppose $X=\operatorname{Poisson}(\lambda)$. We saw in Lecture 10 that $\mathrm{E} X=\lambda$. In order to compute $\mathrm{E}\left(X^{2}\right)$, we first compute $\mathrm{E}[X(X-1)]$ and find that

$$
\begin{aligned}
\mathrm{E}[X(X-1)] & =\sum_{k=0}^{\infty} k(k-1) \frac{e^{-\lambda} \lambda^{k}}{k!}=\sum_{k=2}^{\infty} \frac{e^{-\lambda} \lambda^{k}}{(k-2)!} \\
& =\lambda^{2} \sum_{k=2}^{\infty} \frac{e^{-\lambda} \lambda^{k-2}}{(k-2)!} .
\end{aligned}
$$

The sum is equal to one; change variables $(j=k-2)$ and recognize the j th term as the probability that $\operatorname{Poisson}(\lambda)=j$. Therefore,

$$
\mathrm{E}[X(X-1)]=\lambda^{2}
$$

Because $X(X-1)=X^{2}-X$, the left-hand side is $\mathrm{E}\left(X^{2}\right)-\mathrm{E} X=\mathrm{E}\left(X^{2}\right)-\lambda$. Therefore,

$$
\mathrm{E}\left(X^{2}\right)=\lambda^{2}+\lambda
$$

It follows that

$$
\operatorname{var}(X)=\lambda
$$

5. Example 5

Suppose $f(x)=p q^{x-1}$ if $x=1,2, \ldots$; and $f(x)=0$ otherwise. This is the Geometric (p) distribution. [The mass function for the first time to heads for a p-coin; see Lecture 8.] We have seen already that $\mathrm{E} X=1 / p$ (Lecture 10). Let us find a new computation for this fact, and then go on and find also the variance.

$$
\begin{aligned}
\mathrm{E} X & =\sum_{k=1}^{\infty} k p q^{k-1}=p \sum_{k=1}^{\infty} k q^{k-1} \\
& =p \frac{d}{d q}\left(\sum_{k=0}^{\infty} q^{k}\right)=p \frac{d}{d q}\left(\frac{1}{1-q}\right)=\frac{p}{(1-q)^{2}}=\frac{1}{p} .
\end{aligned}
$$

Next we compute $\mathrm{E}\left(X^{2}\right)$ by first finding

$$
\begin{aligned}
\mathrm{E}[X(X-1)] & =\sum_{k=1}^{\infty} k(k-1) p q^{k-1}=\frac{p}{q} \sum_{k=1}^{\infty} k(k-1) q^{k-2} \\
& =p q \frac{d^{2}}{d q^{2}}\left(\sum_{k=0}^{\infty} q^{k}\right)=\frac{p}{q} \frac{d^{2}}{d q^{2}}\left(\frac{1}{1-q}\right) \\
& =p q \frac{d}{d q}\left(\frac{1}{(1-q)^{2}}\right)=p q \frac{2}{(1-q)^{3}}=\frac{2 q}{p^{2}}
\end{aligned}
$$

Because $\mathrm{E}[X(X-1)]=\mathrm{E}\left(X^{2}\right)-\mathrm{E} X=\mathrm{E}\left(X^{2}\right)-(1 / p)$, this proves that

$$
\mathrm{E}\left(X^{2}\right)=\frac{2 q}{p^{2}}+\frac{1}{p}=\frac{2 q+p}{p^{2}}=\frac{2-p}{p^{2}} .
$$

Consequently,

$$
\operatorname{var}(X)=\frac{2-p}{p^{2}}-\frac{1}{p^{2}}=\frac{1-p}{p^{2}}=\frac{q}{p^{2}}
$$

For a wholly different solution, see Example (13) on page 124 of your text.

[^0]: ${ }^{1}$ It may help to recall that the p th moment of X is $\mathrm{E}\left(X^{p}\right)$.

