
Lecture 11

1. Some properties of expectations

Suppose X is a random variable with mass function f . If Y = g(X) for
some function g, then what is the expectation of Y ? One way to address
this is to first find the mass function fY of Y , and then to compute EY as∑

a afY (a) [provided that the sum makes sense, of course]. But there is a
more efficient method.

Theorem 11.1. If X has mass function f and g is some function, then

E [g(X)] =
∑

x

g(x)f(x),

provided that either g(x) ≥ 0 for all x, or
∑

x |g(x)|f(x) <∞.

Proof. Let y1, y2, . . . denote the possible values of g(X). Consider the set
Aj = {x : g(x) = yj} for all j ≥ 1. Because the yj ’s are distinct, it follows
that the Aj ’s are disjoint. Moreover,

E [g(X)] =
∞∑

j=1

yjP{g(X) = yj} =
∞∑

j=1

yjP{X ∈ Aj}

=
∞∑

j=1

yj

∑

x∈Aj

f(x) =
∞∑

j=1

∑

x∈Aj

g(x)f(x).

Because the Aj ’s are disjoint,
∞∑

j=1

∑

x∈Aj

g(x)f(x) =
∑

x∈∪∞j=1Aj

g(x)f(x).

The theorem follows from making one final observation: ∪∞j=1Aj is the col-
lection of all possible values of X. !
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One can derive other properties of expectations by applying similar ar-
guments. Here are some useful properties. For proof see the text.

Theorem 11.2. Let X be a discrete random variable with mass function f
and finite expectation EX. Then:

(1) E(aX + b) = aE(X) + b for all constants a, b;
(2) Ea = a for all nonrandom (constant) variables a;
(3) If P{a ≤ X ≤ b} = 1, then a ≤ EX ≤ b;
(4) If g(X) and h(X) have finite expectations, then

E[g(X) + h(X)] = E[g(X)] + E[h(X)].

This is called linearity.

2. A first example

Suppose X has mass function

f(x) =






1/4 if x = 0,

3/4 if x = 1,

0 otherwise.

Recall: EX = (1
4 × 0) + (3

4 × 1) = 3
4 . Now let us compute E(X2) using

Theorem 11.1:

E(X2) =
(

1
4
× 02

)
+

(
3
4
× 12

)
=

3
4
.

Two observations:

(1) This is obvious because X = X2 in this particular example; and
(2) E(X2) '= (EX)2. In fact, the difference between E(X2) and (EX)2

is an important quantity, called the variance of X. We will return
to this topic later.

3. A second example

If X = Bin(n , p), then what is E(X2)? It may help to recall that EX = np.
By Theorem 11.1,

E(X2) =
n∑

k=0

k2

(
n

k

)
pkqn−k =

n∑

k=1

k
n!

(k − 1)!(n− k)!
pkqn−k.
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The question is, “how do we reduce the factor k further”? If we had k − 1
instead of k, then this would be easy to answer. So let us first solve a related
problem.

E
[
X(X − 1)

]
=

n∑

k=0

k(k − 1)
(

n

k

)
pkqn−k =

n∑

k=2

k(k − 1)
n!

k!(n− k)!
pkqn−k

= n(n− 1)
n∑

k=2

(n− 2)!
(k − 2)!

(
[n− 2]− [k − 2]

)
!

pkqn−k

= n(n− 1)
n∑

k=2

(
n− 2
k − 2

)
pkqn−k

= n(n− 1)p2
n∑

k=2

(
n− 2
k − 2

)
pk−2q[n−2]−[k−2]

= n(n− 1)p2
n−2∑

!=0

(
n− 2

!

)
p!q[n−2]−!.

The summand is the probability that Bin(n− 2 , p) is equal to !. Since that
probability is added over all of its possible values, the sum is one. Thus, we
obtain E[X(X − 1)] = n(n− 1)p2. But X(X − 1) = X2 −X. Therefore, we
can apply Theorem 11.2 to find that

E(X2) = E[X(X − 1)] + EX = n(n− 1)p2 + np

= (np)2 + npq.

4. Expectation inequalities

Theorem 11.3 (The triangle inequality). If X has a finite expectation, then
∣∣EX

∣∣ ≤ E(|X|).

Proof. Let g(x) = |x| − x. This is a positive function, and E[g(X)] =
E(|X|) − EX. But P{g(X) ≥ 0} = 1. Therefore, E[g(X)] ≥ 0 by Theorem
11.2. This proves that EX ≤ E(|X|). Apply the same argument to −X to
find that −EX = E(−X) ≤ E(| −X|) = E(|X|). This proves that EX and
−EX are both bounded above by E(|X|), which is the desired result. !

Theorem 11.4 (The Cauchy–Schwarz inequality). If E(|X|) <∞, then

E(|X|) ≤
√

E(X2).
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Proof. Expand the trivial bound (|X|− E(|X|))2 ≥ 0 to obtain:

X2 − 2|X|E(|X|) +
∣∣E(|X|)

∣∣2 ≥ 0.

Take expectations, and note that b = E(|X|) is nonrandom. This proves
that

E(X2)− 2E(|X|)E(|X|) +
∣∣E(|X|)

∣∣2 ≥ 0.

The left-hand side is manifestly equal to E(X2)− |E(|X|)|2, whence follows
the theorem. !

One can use more advanced methods to prove the following:

E(|X|) ≤
√

E(X2) for all random variables X.

Note that |X| and X2 are nonnegative. So the expectations are defined,
though possibly infinite. The preceding form of the Cauchy–Schwarz in-
equality implies that if E(X2) is finite, then so is E(|X|).


