1. (Cumulative) distribution functions

Let X be a discrete random variable with mass function f. The (cumulative) distribution function F of X is defined by

$$
F(x)=\mathrm{P}\{X \leq x\} .
$$

Here are some of the properties of distribution functions:
(1) $F(x) \leq F(y)$ whenever $x \leq y$; therefore, F is non-decreasing.
(2) $1-F(x)=\mathrm{P}\{X>x\}$.
(3) $F(b)-F(a)=\mathrm{P}\{a<X \leq b\}$ for $a<b$.
(4) $F(x)=\sum_{y: y \leq x} f(y)$.
(5) $F(\infty)=1$ and $F(-\infty)=0$. [Some care is needed]
(6) F is right-continuous. That is, $F(x+)=F(x)$ for all x.
(7) $f(x)=F(x)-F(x-)$ is the size of the jump [if any] at x.

Example 10.1. Suppose X has the mass function

$$
f_{X}(x)= \begin{cases}\frac{1}{2} & \text { if } x=0 \\ \frac{1}{2} & \text { if } x=1 \\ 0 & \text { otherwise }\end{cases}
$$

Thus, X has equal chances of being zero and one. Define a new random variable $Y=2 X-1$. Then, the mass function of Y is

$$
f_{Y}(x)=f_{X}\left(\frac{x+1}{2}\right)= \begin{cases}\frac{1}{2} & \text { if } x=-1 \\ \frac{1}{2} & \text { if } x=1 \\ 0 & \text { otherwise }\end{cases}
$$

The procedure of this example actually produces a theorem.
Theorem 10.2. If $Y=g(X)$ for a function g, then

$$
f_{Y}(x)=\sum_{z: g(z)=x} f_{X}(z) .
$$

2. Expectation

The expectation $\mathrm{E} X$ of a random variable X is defined formally as

$$
\mathrm{E} X=\sum_{x} x f(x) .
$$

If X has infinitely-many possible values, then the preceding sum must be defined. This happens, for example, if $\sum_{x}|x| f(x)<\infty$. Also, $\mathrm{E} X$ is always defined [but could be $\pm \infty$] if $\mathrm{P}\{X \geq 0\}=1$, or if $\mathrm{P}\{X \leq 0\}=1$. The mean of X is another term for $\mathrm{E} X$.

Example 10.3. If X takes the values ± 1 with respective probabilities $1 / 2$ each, then $\mathrm{E} X=0$.

Example 10.4. If $X=\operatorname{Bin}(n, p)$, then I claim that $\mathrm{E} X=n p$. Here is why:

$$
\begin{aligned}
\mathrm{E} X & =\sum_{k=0}^{n} \overbrace{k}^{\binom{n}{k} p^{k} q^{n-k}} \\
& =\sum_{k=1}^{n(k)} \frac{n!}{(k-1)!(n-k)!} p^{k} q^{n-k} \\
& =n p \sum_{k=1}^{n}\binom{n-1}{k-1} p^{k-1} q^{(n-1)-(k-1)} \\
& =n p \sum_{j=0}^{n-1}\binom{n-1}{j} p^{j} q^{(n-1)-j} \\
& =n p,
\end{aligned}
$$

thanks to the binomial theorem.

Example 10.5. Suppose $X=\operatorname{Poiss}(\lambda)$. Then, I claim that $E X=\lambda$. Indeed,

$$
\begin{aligned}
\mathrm{E} X & =\sum_{k=0}^{\infty} k \frac{e^{-\lambda} \lambda^{k}}{k!} \\
& =\lambda \sum_{k=1}^{\infty} \frac{e^{-\lambda} \lambda^{k-1}}{(k-1)!} \\
& =\lambda \sum_{j=0}^{\infty} \frac{e^{-\lambda} \lambda^{j}}{j!} \\
& =\lambda,
\end{aligned}
$$

because $e^{\lambda}=\sum_{j=0}^{\infty} \lambda^{j} / j$!, thanks to Taylor's expansion.
Example 10.6. Suppose X is negative binomial with parameters r and p. Then, $\mathrm{E} X=r / p$ because

$$
\begin{aligned}
\mathrm{E} X & =\sum_{k=r}^{\infty} k\binom{k-1}{r-1} p^{r} q^{k-r} \\
& =\sum_{k=r}^{\infty} \frac{k!}{(r-1)!(k-r)!} p^{r} q^{k-r} \\
& =r \sum_{k=r}^{\infty}\binom{k}{r} p^{r} q^{k-r} \\
& =\frac{r}{p} \sum_{k=r}^{\infty}\binom{k}{r} p^{r+1} q^{(k+1)-(r+1)} \\
& =\frac{r}{p} \sum_{j=r+1}^{\infty} \underbrace{\binom{j-1}{(r+1)-1} p^{r+1} q^{j-(r+1)}}_{\mathrm{P}\{\text { Negative binomial }(r+1, p)=j\}} \\
& =\frac{r}{p} .
\end{aligned}
$$

Thus, for example, $\mathrm{E}[\operatorname{Geom}(p)]=1 / p$.
Finally, two examples to test the boundary of the theory so far.
Example 10.7 (A random variable with infinite mean). Let X be a random variable with mass function,

$$
f(x)= \begin{cases}\frac{1}{C x^{2}} & \text { if } x=1,2, \ldots \\ 0 & \text { otherwise }\end{cases}
$$

where $C=\sum_{j=1}^{\infty}\left(1 / j^{2}\right)$. Then,

$$
\mathrm{E} X=\sum_{j=1}^{\infty} j \cdot \frac{1}{C j^{2}}=\infty
$$

But $\mathrm{P}\{X<\infty\}=\sum_{j=1}^{\infty} 1 /\left(C j^{2}\right)=1$.
Example 10.8 (A random variable with an undefined mean). Let X be a random with mass function,

$$
f(x)= \begin{cases}\frac{1}{D x^{2}} & \text { if } x= \pm 1, \pm 2, \ldots \\ 0 & \text { otherwise }\end{cases}
$$

where $D=\sum_{j \in \mathbf{Z} \backslash\{0\}}\left(1 / j^{2}\right)$. Then, $\mathrm{E} X$ is undefined. If it were defined, then it would be

$$
\lim _{n, m \rightarrow \infty}\left(\sum_{j=-m}^{-1} \frac{j}{D j^{2}}+\sum_{j=1}^{n} \frac{j}{D j^{2}}\right)=\frac{1}{D} \lim _{n, m \rightarrow \infty}\left(\sum_{j=-m}^{-1} \frac{1}{j}+\sum_{j=1}^{n} \frac{1}{j}\right) .
$$

But the limit does not exist. The rough reason is that if N is large, then $\sum_{j=1}^{N}(1 / j)$ is very nearly $\ln N$ plus a constant (Euler's constant). "Therefore," if n, m are large, then

$$
\left(\sum_{j=-m}^{-1} \frac{1}{j}+\sum_{j=1}^{n} \frac{1}{j}\right) \approx-\ln m+\ln n=\ln \left(\frac{n}{m}\right) .
$$

If $n=m \rightarrow \infty$, then this is zero; if $m \gg n \rightarrow \infty$, then this goes to $-\infty$; if $n \gg m \rightarrow \infty$, then it goes to $+\infty$.

