Lecture 10

1. (Cumulative) distribution functions

Let X be a discrete random variable with mass function f. The (cumulative)
distribution function F of X is defined by

F(z) =P{X < z}.
Here are some of the properties of distribution functions:

) ( ) < F(y) whenever = < y; therefore, F' is non-decreasing.
F(x) = P{X > z}.

F( — F(a) =P{a < X < b} for a <b.

F( > 5 en F0):

F(o0) =1 and F(—o0) = 0. [Some care is needed|

Fis rlght continuous. That is, F(z+) = F(x) for all z.

7) f(x) = F(x) — F(x—) is the size of the jump [if any] at x.

2

(1
(
(
(4
(
(
(

Example 10.1. Suppose X has the mass function

3 ifx=0,
fx(z) = % ifx=1,
0 otherwise.

Thus, X has equal chances of being zero and one. Define a new random
variable Y = 2X — 1. Then, the mass function of Y is

1 3 ifa=-1,

X

fY(@ZfX( 5 ): 5 oifz=1,
0 otherwise.



34 10

The procedure of this example actually produces a theorem.

Theorem 10.2. If Y = g(X) for a function g, then

fr@ = > fx(2).

z:9(z)=z

2. Expectation

The expectation EX of a random variable X is defined formally as

EX = fo(x)

T

If X has infinitely-many possible values, then the preceding sum must be
defined. This happens, for example, if ) |z|f(z) < co. Also, EX is always
defined [but could be +o0] if P{X > 0} =1, or if P{X < 0} = 1. The mean
of X is another term for EX.

Example 10.3. If X takes the values +1 with respective probabilities 1/2
each, then EX = 0.

Example 10.4. If X = Bin(n,p), then I claim that EX = np. Here is why:

f(k)
n f—/ﬁ
n
EX = k n—k
>k <k>p q
k=0
- n! k_n—k
= pq
— (k—1)!(n—k)!
_ —~(n—=1\ 3, (n—1)—(k—1)
=np) <k ~ 1)19 q
k=1
n—1 n—1 ' '
= npz < . >p]q(n_1)_]
j=o N/
= np,

thanks to the binomial theorem.
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Example 10.5. Suppose X = Poiss(A). Then, I claim that EX = A\
Indeed,

A

because e* = >3 M /!, thanks to Taylor’s expansion.

Example 10.6. Suppose X is negative binomial with parameters r and p.
Then, EX = r/p because

k—1 r k—r
(21
k=r

e
<
[
(]2
NA

_ = k r k—r
=y ()
o0
k —\7
Z( >pr+1 (k+1)—(r+1)
r
k=
f i J—1 pr+1qj—(r+1)
.o (r+1)

P{Negative binomial (r+1,p)=j}

Thus, for example, E[Geom(p)] = 1/p.

Finally, two examples to test the boundary of the theory so far.

Example 10.7 (A random variable with infinite mean). Let X be a random
variable with mass function,

1
f(x) = Cz?

0 otherwise,

ifr=1,2,...,
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where C' = Z;’;l(l/f). Then,

[ele} . 1
j=1
But P{X < oo} =372,1/(Cj*) = 1.

Example 10.8 (A random variable with an undefined mean). Let X be a
random with mass function,
1
— ifx==+1,+£2,...
fl@)={ Da? DT TR

0 otherwise,
where D = Zjez\{o}(l/jQ)- Then, EX is undefined. If it were defined, then
it would be

-1 ] n ] 1 -1 1 n 1
Jdm X pptlpp] Tpadma | X 5]
j=—m j=1 Jj=—m Jj=1

But the limit does not exist. The rough reason is that if NV is large, then
Z;.V:l(l /7) is very nearly In N plus a constant (Euler’s constant). “There-
fore,” if n, m are large, then

e A | n
Z —,—4—2—, z—lnm—i—lnn:ln(—).
] —J m
j=-m Jj=
If n = m — oo, then this is zero; if m > n — oo, then this goes to —oo; if
n > m — oo, then it goes to 4-oc0.



