
Lecture 10

1. (Cumulative) distribution functions

Let X be a discrete random variable with mass function f . The (cumulative)
distribution function F of X is defined by

F (x) = P{X ≤ x}.

Here are some of the properties of distribution functions:

(1) F (x) ≤ F (y) whenever x ≤ y; therefore, F is non-decreasing.
(2) 1− F (x) = P{X > x}.
(3) F (b)− F (a) = P{a < X ≤ b} for a < b.
(4) F (x) =

∑
y: y≤x f(y).

(5) F (∞) = 1 and F (−∞) = 0. [Some care is needed]
(6) F is right-continuous. That is, F (x+) = F (x) for all x.
(7) f(x) = F (x)− F (x−) is the size of the jump [if any] at x.

Example 10.1. Suppose X has the mass function

fX(x) =






1
2 if x = 0,
1
2 if x = 1,

0 otherwise.

Thus, X has equal chances of being zero and one. Define a new random
variable Y = 2X − 1. Then, the mass function of Y is

fY (x) = fX

(
x + 1

2

)
=






1
2 if x = −1,
1
2 if x = 1,

0 otherwise.
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The procedure of this example actually produces a theorem.

Theorem 10.2. If Y = g(X) for a function g, then

fY (x) =
∑

z: g(z)=x

fX(z).

2. Expectation

The expectation EX of a random variable X is defined formally as

EX =
∑

x

xf(x).

If X has infinitely-many possible values, then the preceding sum must be
defined. This happens, for example, if

∑
x |x|f(x) <∞. Also, EX is always

defined [but could be ±∞] if P{X ≥ 0} = 1, or if P{X ≤ 0} = 1. The mean
of X is another term for EX.

Example 10.3. If X takes the values ±1 with respective probabilities 1/2
each, then EX = 0.

Example 10.4. If X = Bin(n , p), then I claim that EX = np. Here is why:

EX =
n∑

k=0

k

f(k)
︷ ︸︸ ︷(

n

k

)
pkqn−k

=
n∑

k=1

n!
(k − 1)!(n− k)!

pkqn−k

= np
n∑

k=1

(
n− 1
k − 1

)
pk−1q(n−1)−(k−1)

= np
n−1∑

j=0

(
n− 1

j

)
pjq(n−1)−j

= np,

thanks to the binomial theorem.
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Example 10.5. Suppose X = Poiss(λ). Then, I claim that EX = λ.
Indeed,

EX =
∞∑

k=0

k
e−λλk

k!

= λ
∞∑

k=1

e−λλk−1

(k − 1)!

= λ
∞∑

j=0

e−λλj

j!

= λ,

because eλ =
∑∞

j=0 λj/j!, thanks to Taylor’s expansion.

Example 10.6. Suppose X is negative binomial with parameters r and p.
Then, EX = r/p because

EX =
∞∑

k=r

k

(
k − 1
r − 1

)
prqk−r

=
∞∑

k=r

k!
(r − 1)!(k − r)!

prqk−r

= r
∞∑

k=r

(
k

r

)
prqk−r

=
r

p

∞∑

k=r

(
k

r

)
pr+1q(k+1)−(r+1)

=
r

p

∞∑

j=r+1

(
j − 1

(r + 1)− 1

)
pr+1qj−(r+1)

︸ ︷︷ ︸
P{Negative binomial (r+1 ,p)=j}

=
r

p
.

Thus, for example, E[Geom(p)] = 1/p.

Finally, two examples to test the boundary of the theory so far.

Example 10.7 (A random variable with infinite mean). Let X be a random
variable with mass function,

f(x) =






1
Cx2

if x = 1, 2, . . .,

0 otherwise,
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where C =
∑∞

j=1(1/j2). Then,

EX =
∞∑

j=1

j · 1
Cj2

=∞.

But P{X <∞} =
∑∞

j=1 1/(Cj2) = 1.

Example 10.8 (A random variable with an undefined mean). Let X be a
random with mass function,

f(x) =






1
Dx2

if x = ±1,±2, . . .,

0 otherwise,

where D =
∑

j∈Z\{0}(1/j2). Then, EX is undefined. If it were defined, then
it would be

lim
n,m→∞




−1∑

j=−m

j

Dj2
+

n∑

j=1

j

Dj2



 =
1
D

lim
n,m→∞




−1∑

j=−m

1
j

+
n∑

j=1

1
j



 .

But the limit does not exist. The rough reason is that if N is large, then∑N
j=1(1/j) is very nearly lnN plus a constant (Euler’s constant). “There-

fore,” if n, m are large, then



−1∑

j=−m

1
j

+
n∑

j=1

1
j



 ≈ − lnm + lnn = ln
( n

m

)
.

If n = m → ∞, then this is zero; if m ' n → ∞, then this goes to −∞; if
n' m→∞, then it goes to +∞.


