1. The sample space, events, and outcomes

- Need a math model for describing "random" events that result from performing an "experiment."
- Ω denotes a sample space. We think of the elements of Ω as "outcomes" of the experiment.
- \mathscr{F} is a collection of subsets of Ω; elements of \mathscr{F} are called "events." We wish to assign a "probability" $\mathrm{P}(A)$ to every $A \in \mathscr{F}$. When Ω is finite, \mathscr{F} is always taken to be the collection of all subsets of Ω.

Example 1.1. Roll a six-sided die; what is the probability of rolling a six? First, write a sample space. Here is a natural one:

$$
\Omega=\{1,2,3,4,5,6\} .
$$

In this case, Ω is finite and we want \mathscr{F} to be the collection of all subsets of Ω. That is,

$$
\mathscr{F}=\{\varnothing, \Omega,\{1\}, \ldots,\{6\},\{1,2\}, \ldots,\{1,6\}, \ldots,\{1,2, \ldots, 6\}\} .
$$

Example 1.2. Toss two coins; what is the probability that we get two heads? A natural sample space is

$$
\Omega=\left\{\left(H_{1}, H_{2}\right),\left(H_{1}, T_{2}\right),\left(T_{1}, H_{2}\right),\left(T_{1}, T_{2}\right)\right\} .
$$

Once we have readied a sample space Ω and an event-space \mathscr{F}, we need to assign a probability to every event. This assignment cannot be made at whim; it has to satisfy some properties.

2. Rules of probability

Rule 1. $0 \leq \mathrm{P}(A) \leq 1$ for every event A.
Rule 2. $\mathrm{P}(\Omega)=1$. "Something will happen with probability one."
Rule 3 (Addition rule). If A and B are disjoint events [i.e., $A \cap B=\varnothing$], then the probability that at least one of the two occurs is the sum of the individual probabilities. More precisely put,

$$
\mathrm{P}(A \cup B)=\mathrm{P}(A)+\mathrm{P}(B) .
$$

Lemma 1.3. Choose and fix an integer $n \geq 1$. If $A_{1}, A_{2}, \ldots, A_{n}$ are disjoint events, then

$$
\mathrm{P}\left(\bigcup_{i=1}^{n} A_{i}\right)=\mathrm{P}\left(A_{1}\right)+\cdots+\mathrm{P}\left(A_{n}\right) .
$$

Proof. The proof uses mathematical induction.

Claim. If the assertion is true for $n-1$, then it is true for n.

The assertion is clearly true for $n=1$, and it is true for $n=2$ by Rule 3. Because it is true for $n=2$, the Claim shows that the assertion holds for $n=3$. Because it holds for $n=3$, the Claim implies that it holds for $n=4$, etc.

Proof of Claim. We can write $A_{1} \cup \cdots \cup A_{n}$ as $A_{1} \cup B$, where $B=A_{2} \cup \cdots \cup A_{n}$. Evidently, A_{1} and B are disjoint. Therefore, Rule 3 implies that $\mathrm{P}(A)=$ $\mathrm{P}\left(A_{1} \cup B\right)=\mathrm{P}\left(A_{1}\right)+\mathrm{P}(B)$. But B itself is a disjoint union of $n-1$ events. Therefore $\mathrm{P}(B)=\mathrm{P}\left(A_{2}\right)+\cdots+\mathrm{P}\left(A_{n}\right)$, thanks to the assumption of the Claim ["the induction hypothesis"]. This ends the proof.

