
Solutions to Midterm 1
Math 5010-1, Spring 2007, University of Utah

1. In 2005, the United Nations reported that approximately 50.74 percent of
the adults in the US are women. Suppose we take a random sample of 100
people, without replacement, from this population. What are the odds that
there are between 50 and 51 women in this sample?

Solution: Let N denote the population of the United States. Define
W to be the total number of women, so that W ≈ 0.5074N . Then the
probability that there are 50 or 51 women is(
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There is a good approximation to this. Since N is very large compared
to the sample size of 100, sampling with replacement is pretty much the
same as sampling without replacement. Therefore, the answer is close to
the binomial probabilities,(
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)
0.507450 × 0.492650 +
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)
0.507451 × 0.492649 ≈ 0.158.

There is a sense that this can be proved, but that is another matter.

2. There are k coins on the table. Coin i tosses heads with probability i/k for
every i = 1, . . . , k. You choose one at random—all are equally likely—and
toss it n times independently. It turns up heads. What is the probability
that you had chosen coin k?

Solution: Let Ci denote the event that the ith coin is selected. Let Hn

denote the event that the first tosses are all heads. By independence,
P(Hn |Ci) = (i/k)n. Therefore, we can apply the Bayes theorem to find
that
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If you do this for n = 1, then that is acceptable. In that case, things
simplify because

∑k
i=1(i/k) = 1

2 (k+1). Therefore, P(Ck |H1) = 2/(k+1)
in that case.
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3. There are n light bulbs in a storage facility, k of which are not functional.
You select r at random, and without replacement. What is the probability
that you select ` non-functional bulb? You may assume that all light bulbs
are equally likely to be selected.

Solution: The probability is (
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assuming, of course, that k, l, n, r are integers that satisfy: (i) 0 ≤ l ≤ k;
(ii) 0 ≤ r − l ≤ n − k; and (iii) 0 ≤ r ≤ n. Otherwise, the probability is
zero.

4. A fair die is cast 112 times. What is the probability that we roll two dots
at least twice?

Solution: I will state things in the language of binomial random variables
because it will hopefully make things more clear. [Words to the wise:
Binomials are not really needed here, though.]
Call it a success every time you roll two dots. The question asks to
find P{X ≥ 2}, where X is the number of successes. Clearly, X =
Bin(112 , 1/6). Therefore,
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This can be simplified. Please find better things to do with your time
though.

5. A fair coin is tossed, independently, countably many times.

(a) Carefully write down a sample space Ω for this experiment.

Solution: All possible infinite sequences of heads and tails.

(b) Prove, carefully using the laws of probability, that every element of Ω
is possible, but has probability zero.

Solution: “Possible” is easy, since you can write any sequence in Ω
down inductively. Let Sn denote the first n steps of the sequence.
By independence, P(Sn) = (1/2)n. Note that Sn ⊆ Sn−1 for all
n ≥ 2. Therefore, 0 = limn→∞ P(Sn) is the same as the probability
of ∩∞n=1Sn, which is the event that the entire sequence appears.
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