Solutions to Midterm 1

Math 5010-1, Spring 2007, University of Utah

1. In 2005, the United Nations reported that approximately 50.74 percent of the adults in the US are women. Suppose we take a random sample of 100 people, without replacement, from this population. What are the odds that there are between 50 and 51 women in this sample?

Solution: Let N denote the population of the United States. Define W to be the total number of women, so that $W \approx 0.5074 N$. Then the probability that there are 50 or 51 women is

$$
\frac{\binom{W}{50}\binom{N-W}{50}}{\binom{N}{100}}+\frac{\binom{W}{51}\binom{N-W}{49}}{\binom{N}{100}}
$$

There is a good approximation to this. Since N is very large compared to the sample size of 100 , sampling with replacement is pretty much the same as sampling without replacement. Therefore, the answer is close to the binomial probabilities,

$$
\binom{100}{50} 0.5074^{50} \times 0.4926^{50}+\binom{100}{51} 0.5074^{51} \times 0.4926^{49} \approx 0.158
$$

There is a sense that this can be proved, but that is another matter.
2. There are k coins on the table. Coin i tosses heads with probability i / k for every $i=1, \ldots, k$. You choose one at random-all are equally likely-and toss it n times independently. It turns up heads. What is the probability that you had chosen coin k ?

Solution: Let C_{i} denote the event that the i th coin is selected. Let H_{n} denote the event that the first tosses are all heads. By independence, $\mathrm{P}\left(H_{n} \mid C_{i}\right)=(i / k)^{n}$. Therefore, we can apply the Bayes theorem to find that

$$
\mathrm{P}\left(C_{k} \mid H_{n}\right)=\frac{\mathrm{P}\left(H_{n} \mid C_{k}\right) \mathrm{P}\left(C_{k}\right)}{\sum_{i=1}^{k} \mathrm{P}\left(H_{n} \mid C_{i}\right) \mathrm{P}\left(C_{i}\right)}=\frac{\frac{1}{k}}{\sum_{i=1}^{k}\left(\frac{i}{k}\right)^{n}\left(\frac{1}{k}\right)}=\frac{1}{\sum_{i=1}^{k}\left(\frac{i}{k}\right)^{n}}
$$

If you do this for $n=1$, then that is acceptable. In that case, things simplify because $\sum_{i=1}^{k}(i / k)=\frac{1}{2}(k+1)$. Therefore, $\mathrm{P}\left(C_{k} \mid H_{1}\right)=2 /(k+1)$ in that case.
3. There are n light bulbs in a storage facility, k of which are not functional. You select r at random, and without replacement. What is the probability that you select ℓ non-functional bulb? You may assume that all light bulbs are equally likely to be selected.

Solution: The probability is

$$
\frac{\binom{k}{l}\binom{n-k}{r-l}}{\binom{n}{r}}
$$

assuming, of course, that k, l, n, r are integers that satisfy: (i) $0 \leq l \leq k$; (ii) $0 \leq r-l \leq n-k$; and (iii) $0 \leq r \leq n$. Otherwise, the probability is zero.
4. A fair die is cast 112 times. What is the probability that we roll two dots at least twice?

Solution: I will state things in the language of binomial random variables because it will hopefully make things more clear. [Words to the wise: Binomials are not really needed here, though.]
Call it a success every time you roll two dots. The question asks to find $\mathrm{P}\{X \geq 2\}$, where X is the number of successes. Clearly, $X=$ $\operatorname{Bin}(112,1 / 6)$. Therefore,

$$
\begin{aligned}
\mathrm{P}\{X \geq 2\} & =\sum_{j=2}^{112}\binom{112}{j}\left(\frac{1}{6}\right)^{j}\left(\frac{5}{6}\right)^{112-j} \\
& =1-\left[\binom{112}{0}\left(\frac{1}{6}\right)^{0}\left(\frac{5}{6}\right)^{112-0}+\binom{112}{1}\left(\frac{1}{6}\right)^{1}\left(\frac{5}{6}\right)^{112-1}\right] .
\end{aligned}
$$

This can be simplified. Please find better things to do with your time though.
5. A fair coin is tossed, independently, countably many times.
(a) Carefully write down a sample space Ω for this experiment.

Solution: All possible infinite sequences of heads and tails.
(b) Prove, carefully using the laws of probability, that every element of Ω is possible, but has probability zero.

Solution: "Possible" is easy, since you can write any sequence in Ω down inductively. Let S_{n} denote the first n steps of the sequence. By independence, $\mathrm{P}\left(S_{n}\right)=(1 / 2)^{n}$. Note that $S_{n} \subseteq S_{n-1}$ for all $n \geq 2$. Therefore, $0=\lim _{n \rightarrow \infty} \mathrm{P}\left(S_{n}\right)$ is the same as the probability of $\cap_{n=1}^{\infty} S_{n}$, which is the event that the entire sequence appears.

