Chapter 6 Problems

2. (a) For all real numbers s # 1,

(b) For all real numbers s # 1,
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If s =1, then G(s) = 1, trivially.
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If s =1, then G(s) = 1, trivially.
(c) We write, for all k > 1,
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Therefore, as long as |s| < 1,
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Therefore, whenever |s| < 1,

G(s)—1+[1—i]ln<1i8>.

(d) If G converges [absolutely], then we can write it
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The first sum converges if |s| < 1, whereas the second if |s| > 1.
Therefore, the only convergent values are for s = +1. Moreover,
G(1) = 1 because after a change of variables,
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(e) Clearly,

The first sum converges as long as |s| < 1. But the second converges
only if |s| > ¢. Therefore, as long as ¢ < |s| <1,
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17. According to Example (6) on page 245,
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This proves that the mass function of X, converges to that of Poisson(\)
as n — oo. Also,
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Therefore,
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Consequently, E(X) = ng/p, and
Var(X) = G"(1) + G'(1) — [G'(1)]*  (p. 237)
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Chapter 7 Problems

1. Because (z — )(8 —z) = —2? + (8 — @)z — a3, f(z) has to be zero unless =
lies between o and 3. If & = 3, then this cannot be done. If a < 3, then
we choose ¢(a, 3) so that
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Else, if & > [, then ¢(a, ) is minus one times the reciprocal of the
preceding term.

(e, B)
—af(f — a).




9. Compute directly to find that
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where “prime” denotes d/dx. We apply the fundamental theorem of cal-

culus to find that
%) / 2
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Also, by the fundamental theorem of calculus and the change rule,
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The claim of the problem follows from these computations.

10. (a) Fix|(a) = P{|X| < a} = P{—a < X < a} = ®(a) — ®(—a), provided
that a > 0. Else, Fix|(a) = 0. By symmetry, ®(a) = 1 — ®(—a),
whence follows the claim.

(b) Asbefore, Fix|(a) = F(a)—F(—a). Differentiate to find that f|x|(a) =
f(a) + f(—a), when the density f of X exists.

26. For any integer k > 1, X > k if and only log U/ log(1—p) > k—1. Therefore,
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Therefore, F(n) =1—P{X >n+1} =1—¢" for all n > 0. It follows that

fn)=P{X=n}=F(n)-Fn-1)=¢"~q¢"=¢"""(1-q) =pg" "
for all » > 0. This proves that X is geometric(p).



