
Chapter 6 Problems

2. (a) For all real numbers s 6= 1,

G(s) =
1
n

n∑
k=1

sk =
1
n

[ ∞∑
k=0

sk − 1−
∞∑

k=n+1

sk

]

=
1
n

[
1

1− s
− 1− sn+1

1− s

]
=

s− sn+1

n(1− s)
.

If s = 1, then G(s) = 1, trivially.
(b) For all real numbers s 6= 1,

G(s) =
1

2n + 1

n∑
k=−n

sk =
s−n

2n + 1

n∑
k=−n

sk+n =
s−n

2n + 1

2n∑
j=0

sj

=
s−n

2n + 1

[
1− s2n+1

1− s

]
=

s−n − sn+1

(2n + 1)(1− s)
.

If s = 1, then G(s) = 1, trivially.
(c) We write, for all k ≥ 1,

1
k(k + 1)

=
1
k
− 1

k + 1
.

Therefore, as long as |s| < 1,

G(s) =
∞∑

k=1

sk

k
−

∞∑
k=1

sk

k + 1
.

Now,
∞∑

k=1

sk

k
=

∞∑
k=1

∫ s

0

xk−1 dx =
∫ s

0

( ∞∑
k=1

xk−1

)
dx

=
∫ s

0

1
1− x

dx = ln
(

1
1− s

)
.

Also,
∞∑

k=1

sk

k + 1
=

1
s

∞∑
k=1

sk+1

k + 1
=

1
s

∞∑
j=2

sj

j

=
1
s

 ∞∑
j=1

sj

j
− s


=

1
s

[
ln
(

1
1− s

)
− s

]
=

1
s

ln
(

1
1− s

)
− 1.
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Therefore, whenever |s| < 1,

G(s) = 1 +
[
1− 1

s

]
ln
(

1
1− s

)
.

(d) If G converges [absolutely], then we can write it

G(s) =
∞∑

k=1

sk

2k(k + 1)
+

−1∑
k=−∞

sk

2k(k − 1)
.

The first sum converges if |s| ≤ 1, whereas the second if |s| ≥ 1.
Therefore, the only convergent values are for s = ±1. Moreover,
G(1) = 1 because after a change of variables,

G(1) =
∞∑

k=1

1
k(k + 1)

= lim
N→∞

N∑
k=1

1
k(k + 1)

= lim
N→∞

N∑
k=1

(
1
k
− 1

k + 1

)
= lim

N→∞

(
1− 1

1 + N

)
= 1.

(e) Clearly,

G(s) =
1− c

1 + c

∞∑
k=−∞

skc|k|

=
1− c

1 + c

∞∑
k=0

(sc)k +
1− c

1 + c

−1∑
k=−∞

( c

s

)−k

=
1− c

1 + c

∞∑
k=0

(sc)k +
1− c

1 + c

∞∑
j=1

( c

s

)j

.

The first sum converges as long as |s| ≤ 1. But the second converges
only if |s| > c. Therefore, as long as c < |s| ≤ 1,

G(s) =
1− c

1 + c
× 1

1− sc
+

1− c

1 + c

 ∞∑
j=0

( c

s

)j

− 1


=

1− c

1 + c
× 1

1− sc
+

1− c

1 + c

[
1

1− (c/s)
− 1
]

.
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17. According to Example (6) on page 245,

G(s) =
(

1− (λ/n)
1− λs/n

)n

=
(

1− λ

n

)n(
1− λs

n

)−n

→ e−λ

e−λs
= e−λ(1−s).

This proves that the mass function of Xn converges to that of Poisson(λ)
as n →∞. Also,

G(s) =
(

p

1− qs

)n

= pn(1− qs)−n

G′(s) = nqpn(1− qs)−n−1

G′′(s) = n(n + 1)q2pn(1− qs)−n−2.

Therefore,

G′(1) = nqpn(1− q)−n−1 = nqpnp−n−1 =
nq

p

G′′(1) = n(n + 1)q2pnp−n−2 =
n(n + 1)q2

p2
.

Consequently, E(X) = nq/p, and

Var(X) = G′′(1) + G′(1)− [G′(1)]2 (p. 237)

=
n(n + 1)q2

p2
+

nq

p
−
(

nq

p

)2

=
nq2

p2
+

nq

p

=
nq

p

[
q

p
+ 1
]

=
nq

p2
.

Chapter 7 Problems

1. Because (x−α)(β− x) = −x2 + (β−α)x−αβ, f(x) has to be zero unless x
lies between α and β. If α = β, then this cannot be done. If α < β, then
we choose c(α , β) so that

1
c(α, β)

=
∫ β

α

[
−x2 + (β − α)x− αβ

]
dx

= −β3 − α3

3
+

(β − α)(β2 − α2)
2

− αβ(β − α).

Else, if α > β, then c(α , β) is minus one times the reciprocal of the
preceding term.
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9. Compute directly to find that

P
(

X > x +
a

x

∣∣∣X > x
)

=
P{X > x + (a/x)}

P{X > x}

=

∫
x+(a/x)

e−y2/2 dy∫∞
x

e−y2/2 dy

∼

(∫
x+(a/x)

e−y2/2 dy
)′

(∫∞
x

e−y2/2 dy
)′ ,

where “prime” denotes d/dx. We apply the fundamental theorem of cal-
culus to find that (∫ ∞

x

e−y2/2 dy

)′
= − exp

(
−x2

2

)
.

Also, by the fundamental theorem of calculus and the change rule,(∫ ∞

x+(a/x)

e−y2/2 dy

)′
= − exp

(
− (x + (a/x))2

2

)
×
(
x +

a

x

)′
= − exp

(
− (x + (a/x))2

2

)
×
(
1− a

x2

)
∼ − exp

(
− (x + (a/x))2

2

)

= exp
(
−x2 + 2a + (a2/x2)

2

)
∼ exp

(
−x2 + 2a

2

)
.

The claim of the problem follows from these computations.

10. (a) F|X|(a) = P{|X| ≤ a} = P{−a ≤ X ≤ a} = Φ(a) − Φ(−a), provided
that a ≥ 0. Else, F|X|(a) = 0. By symmetry, Φ(a) = 1 − Φ(−a),
whence follows the claim.

(b) As before, F|X|(a) = F (a)−F (−a). Differentiate to find that f|X|(a) =
f(a) + f(−a), when the density f of X exists.

26. For any integer k ≥ 1, X ≥ k if and only log U/ log(1−p) ≥ k−1. Therefore,

P{X ≥ k} = P
{

log U

log q
≥ k − 1

}
= P {log U ≤ (k − 1) log q} (because log q ≤ 0)

= P
{
U ≤ qk−1

}
=
∫ qk−1

0

dy = qk−1.

Therefore, F (n) = 1−P{X ≥ n+1} = 1−qn for all n ≥ 0. It follows that
f(n) = P{X = n} = F (n)−F (n− 1) = qn−1 − qn = qn−1(1− q) = pqn−1

for all n ≥ 0. This proves that X is geometric(p).
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