Chapter 5 Problems

1. See your lecture notes.
2.

(a) $\operatorname{Pr}\{X>Y\}=0$.
(b) $\operatorname{Pr}\{X \geq Y\}=f(2,2)=1 / 16$.
(c) $\operatorname{Pr}\{X+Y$ is odd $\}=f(1,2)+f(1,4)+f(2,3)=1 / 2$.
(d) $\operatorname{Pr}\{X-Y \leq 1\}=1-\operatorname{Pr}\{X>Y+1\}=1$.
4. We know that

$$
0=\mathrm{E}\left[(X-Y)^{2}\right]=\sum_{x, y}(x-y)^{2} f(x, y)
$$

Therefore, for all $x \neq y, f(x, y)$ must be zero. In particular,

$$
\operatorname{Pr}\{X=Y\}=\sum_{x} f(x, x)=\sum_{x, y} f(x, y)=1
$$

8. First consider the case that the initial symbol is a zero. In order to transmit it correctly, you either pass it through correctly both times, or transmit it incorrectly at both channels. That is,
$\operatorname{Pr}\{$ correct transmission \mid symbol is zero $\}=p^{2}+(1-p)^{2}=1-2 p+2 p^{2}$.
Similarly,
$\operatorname{Pr}\{$ correct transmission \mid symbol is one $\}=1-2 p+2 p^{2}$.
Therefore, apply Bayes's rule to discover that
$\operatorname{Pr}\{$ correct transmission $\}=\left(1-2 p+2 p^{2}\right) \frac{1}{2}+\left(1-2 p+2 p^{2}\right) \frac{1}{2}=1-2 p+2 p^{2}$.
Define $h(p)=1-2 p+2 p^{2}$ to find that $h^{\prime}(p)=-2+4 p$ and $h^{\prime \prime}(p)=4$. Therefore, setting $h^{\prime}=0$ yields a minimum at $p=1 / 2$, as desired.
If we had three independent channels, then similar considerations yield

$$
\operatorname{Pr}\{\text { correct transmission }\}=p^{3}+3(1-p)^{2} p
$$

10. Let us first compute the joint mass function f of (X, Y) :

$$
f(x, y)= \begin{cases}\frac{1}{n(n-1)} & \text { if } 1 \leq x \neq y \leq n \\ 0 & \text { otherwise }\end{cases}
$$

Therefore, for all $x=1, \ldots, n$,

$$
f_{X}(x)=\sum_{\substack{y=1 \\ y \neq x}}^{n} f(x, y)=\frac{1}{n}
$$

For other values of $x, f_{X}(x)=0$. That is, X is distributed uniformly on $\{1, \ldots, n\}$. Similarly, Y is distributed uniformly on $\{1, \ldots, n\}$. Therefore,

$$
\mathrm{E} X=\mathrm{E} Y=\sum_{k=1}^{n} \frac{k}{n}=\frac{n+1}{2}
$$

Also,

$$
\begin{aligned}
\mathrm{E}(X Y) & =\sum_{\substack{1 \leq i \neq j \leq n \\
i \neq j}} \frac{i j}{n(n-1)}=\sum_{\substack{1 \leq i, j \leq n}} \frac{i j}{n(n-1)}-\sum_{\substack{1 \leq i=j \leq n \\
i=j}} \frac{i j}{n(n-1)} \\
& =\frac{1}{n(n-1)}\left\{\left(\sum_{i=1}^{n} i\right)\left(\sum_{j=1}^{n} j\right)-\sum_{i=1}^{n} i^{2}\right\} \\
& =\frac{1}{n(n-1)}\left\{\left(\frac{n(n+1)}{2}\right)^{2}-\sum_{i=1}^{n} i^{2}\right\} \\
& =\frac{1}{n(n-1)}\left\{n^{2}\left(\frac{n+1}{2}\right)^{2}-\sum_{i=1}^{n} i^{2}\right\} \\
& =\frac{n}{n-1}\left(\frac{n+1}{2}\right)^{2}-\frac{1}{n(n-1)} \sum_{i=1}^{n} i^{2} \\
& =\frac{n}{n-1}\left(\frac{n+1}{2}\right)^{2}-\frac{1}{n(n-1)} \frac{n\left(2 n^{2}+3 n+1\right)}{6} \\
& =\frac{n}{n-1}\left(\frac{n+1}{2}\right)^{2}-\frac{1}{n-1} \frac{2 n^{2}+3 n+1}{6} .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\operatorname{cov}(X, Y) & =\frac{n}{n-1}\left(\frac{n+1}{2}\right)^{2}-\frac{1}{n-1} \frac{2 n^{2}+3 n+1}{6} \\
& =\frac{1}{n-1}\left(\frac{n+1}{2}\right)^{2}-\frac{1}{n-1} \frac{2 n^{2}+3 n+1}{6} \\
& =\frac{n^{2}+2 n+1}{4(n-1)}-\frac{2 n^{2}+3 n+1}{6(n-1)} \\
& =\frac{1}{12(n-1)}\left[\left(3 n^{2}+6 n+3\right)-\left(4 n^{2}+6 n+2\right)\right] \\
& =-\frac{n^{2}-1}{12(n-1)}=-\frac{(n-1)(n+1)}{12(n-1)} \\
& =-\frac{n+1}{12}
\end{aligned}
$$

Therefore, $\operatorname{cov}(X, Y) \rightarrow-\infty$ as $n \rightarrow \infty$. Next, we note that

$$
\mathrm{E}\left(X^{2}\right)=\mathrm{E}\left(Y^{2}\right)=\sum_{k=1}^{n} \frac{k^{2}}{n}=\frac{2 n^{2}+3 n+1}{6}
$$

Therefore,

$$
\begin{aligned}
\operatorname{Var}(X)=\operatorname{Var}(Y) & =\frac{2 n^{2}+3 n+1}{6}-\left(\frac{n+1}{2}\right)^{2} \\
& =\frac{2 n^{2}+3 n+1}{6}-\frac{n^{2}+2 n+1}{4} \\
& =\frac{n^{2}}{3}-\frac{n^{2}}{4}+\text { smaller terms } \\
& =\frac{n^{2}}{12}+\text { smaller terms. }
\end{aligned}
$$

Therefore,

$$
\rho(X, Y)=\frac{-(n+1) / 12}{\left(n^{2} / 2\right)+\text { smaller terms }} \rightarrow 0
$$

In fact, you should intuitively think of X and Y as being "almost independent," though it is not clear what this might mean mathematically speaking (I hope!). [This can be made sense of, but needs much more development.]

